

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾
Transformations [0.3]

Workshop

Section A: Recap

Sub-Section: Image and Pre-Image

T)----(x', y')

Image and Pre-Image

- The original coordinate is called the
- The transformed coordinate is called the _________

Pre-Image: (x, y)

Image: (x', y')

Sub-Section: Dilation

Dilation

Dilation by a factor a from the x-axis: y' = ay

Dilation by a factor b from the y-axis: x' = bx

NOTE: We are applying the transformations on (x, y) not (x', y').

Sub-Section: Reflection

Reflection

Reflection in the *x*-axis: y' = -y

Reflection in the *y*-axis: x' = -x

Sub-Section: Translation

Translation

Translation by c units in the positive direction of the x-axis: x' = x + c

Translation by d units in the positive direction of the y-axis: y' = y + d

Sub-Section: The Order of Transformations

The Order of Transformation

Order = BODMAS Order

Sub-Section: Interpreting the Transformation of Points

Interpretation of Transformations

 \blacktriangleright When the <u>new Jarith()</u> x' and y' are the subjects, we can read the transformation <u>direct</u>

$$x' = \cancel{x} + 5 \rightarrow 5$$
 right

- When the $\frac{\textit{obsarribler}}{\textit{opposite}} x$ and y are the subjects instead, we must read the transformation in the $\frac{\textit{opposite}}{\textit{opposite}}$ way.
- This includes the order of transformation!

$$x = x' - 5 \rightarrow 5 \text{ right}$$

NOTE: This includes the order of transformation!

TIP: It is best to make x' and y' the subject before you interpret the transformations.

Sub-Section: Applying Transformations to Functions

Transformation of Functions

The aim is to get rid of the old variables, x and y, and have the new variables, x' and y', instead.

$$y = f(x) \rightarrow y' = f(x')$$

- Steps:
 - 1. Transform the points.
 - 2. Make x and y the subjects.
 - 3. Substitute them into the function.

Sub-Section: Finding the Applied Transformations

Now, let's go backwards!

Reverse Engineering

- Steps:
 - 1. Add the dashes (') back to the transformed function.
 - **2.** Make f() the subject.
 - **3.** Equate the LHS of the original and transformed functions to the RHS of the original and transformed functions.
 - **4.** Make x' and y' the subjects and interpret the transformations.

Section B: Warmup

Question 1

Consider the transformation:

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (2x + 1, 3y - 2)$$

a. Find the image of the point P(1,2) under T.

b. Describe the transformation, T, in DRT order.

c. Find the image of the curve, $y = \frac{1}{3}x^2$ under the transformation T.

Section C: Exam 1 (21 Marks)

Question 2 (4 marks)

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 - 4$.

a. Find the coordinates of all the axes intercepts of f. (1 mark)

f(x) = 0	: n= ±2
*1- 4:0	f(0)= -4
ス²= 4	·. (-1,0), (1,0), (0,-4)

b. Let g be the image of the graph of f under the following sequence of transformations:

- Dilation by a factor of $\frac{1}{2}$ from the y-axis.
- \rightarrow Dilation by a factor of 3 from the *x*-axis.
- Translation 1 unit to the left.

Find the rule for g(x). (2 marks)

ソニ コュー4

c. State the coordinates for the axes intercepts of g. (1 mark)

$$\frac{(-1,0), (1,0), (0,-4)}{(-1,0), (0,0)}$$

Question 3 (3 marks)

Consider the function: $f(x) = \frac{1}{2}(x+1)^2 - \frac{3}{2}$

Apply the following sequence of transformations to f(x):

Dilation by a factor 3 from the x-axis.

Translated 4 units in the negative direction of the x-axis.

Reflection in the *y*-axis.

Translated 2 units in the positive direction of the *y*-axis.

Dilation by a factor of $\frac{1}{3}$ from the y-axis.

$$\frac{(x_1)^2}{2^2} - \frac{1}{2}(x_1^2), \quad \frac{3}{2} + \frac{1}{2}(x_1^2)^2 - \frac{3}{2}$$

$$y = \frac{3}{2}(x_1^2)^2 - \frac{3}{2}$$

$$y = \frac{3}{2}(x_1^2)^2 - \frac{3}{2}$$

Question 4 (4 marks)

Let
$$f(x) = \frac{1}{3x+3}$$
.

a. The transformation T_1 given by:

$$T_1: \mathbb{R}^2 \to \mathbb{R}^2, T_1(x, y) = (\underline{x + (b)}y)$$

maps the graph of y = f(x) onto the graph of $y = \frac{1}{x}$.

Find the values of a and b. (2 marks)

b. The transformation T_2 given by:

$$T_2: \mathbb{R}^2 \to \mathbb{R}^2, T_2(x, y) = (c(x+d), y),$$

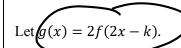
maps the graph of $y = \frac{1}{x}$ onto the graph of y = f(x).

Find the values of c and d. (2 marks)

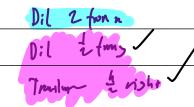
$$S = \frac{1}{2}, \quad S' = \frac{1}{2^{n+1}}$$

$$= \frac{1}{3} (n-3)$$

Question 5 (7 marks)


Consider the cubic function:

$$f(x) = x^3 - 2x^2 - x + 2$$


a. Find the x-intercepts of the graph y = f(x). (3 marks)

$$f(n) = x^{2} (n-1) - n+2$$

$$= x^{2} (x-1) = (n-1)$$

b. Find the sequence of transformations required for f(x) to transform to g(x). Give your answer in DRT order. (2 marks)

c. Find the value(s) of k such that, there is only one negative x-intercept for g(x). (2 marks)

-16162

-1 5h 61

Question 6 (3 marks)

The image of the curve $y = \sqrt{16 - x^2}$ under a transformation T, has the equation $y = \sqrt{55 - 6x - x^2}$.

Find the sequence of transformations that make up *T*, with dilations before translations.

 $((n+1)^{2}-9-55)$

Tran Ceft 3

Section D: Tech Active Exam Skills

G

Calculator Tip: Finding Transformed Functions

- Save the function as f(x).
- Substitute the x and y in terms of x' and y'.
- Solve for y!
- Can also apply the transformations directly to f(x). Must make sure you interpret the transformations correctly or you can easily make a mistake doing this.

CAS C-1

Mathematica UDF:

ApplyTransformList[]

ApplyTransformList[f[x], $\{x, y\}$, list of transforms]

Applies the list of transforms to f[x] in the chronological order.

ApplyTransformList[x^2 , {x, y}, {x-1, 2x, y+3}]

$$4 + x + \frac{x^2}{4}$$

ApplyTransformInvList[f[x], $\{x, y\}$, $\{x-1, 2x, y+3\}$]

$$-3 + f[2(-1 + x)]$$

ApplyTransformInvList[Sin[x], $\{x, y\}$, $\{x-\pi/2, 2y, y-1\}$]

$$\operatorname{Sin}\left[\frac{\mathsf{x}}{2}\right]^2$$

ApplyTransformInvList[]

ApplyTransformInvList[f[x], $\{x, y\}$, list of transforms]

Applies the list of transforms to f[x] in reverse order and as the inverse to the transforms of ApplyTransformList.

In[\circ]:= ApplyTransformInvList[x^2 , {x, y}, {x-1, 2*x, y+3}]
Out[\circ]=

 $1 - 8 x + 4 x^2$

ApplyTransformInvList[f[x], $\{x, y\}$, $\{x-1, 2*x, y+3\}$]

-3+f[2(-1+x)]

Sin[x]

TI UDF:

Out[0]=

transform()

Transform a Function

transform $\left| \sin(x), x, \left\{ x - \frac{\pi}{2}, 2 \cdot y, y - 1 \right\} \right|$

- ▶ Translation $\frac{\pi}{2}$ units along the neg. x-dir. $\cos(x)$
- ▶ Dilation by factor of 2 from the x-axis 2·cos(x)
- ▶ Translation -1 unit along the neg. y-dir.
 2·cos(x)-1

Overview:

Apply any sequence of transformations to a function. The program will display the transformed function after each step.

Input:

Other notes:

The list of transformations can either be presented in a (horizontal or vertical) matrix of expressions or a list of expressions

transform_inv()

Invert a Transformation

$$transform_inv(x^2,x,\{x-1,2\cdot x,y+3\})$$

▶ Inverted Transformations:

$$\left\{y-3,\frac{x}{2},x+1\right\}$$

- ▶ Translation -3 units along the neg. y-dir. x^2 -3
- ▶ Dilation by factor of $\frac{1}{2}$ from the y-axis

$$4 \cdot x^2 - 3$$

▶ Translation 1 unit along the pos. x-dir.

$$4 \cdot x^2 - 8 \cdot x + 1$$

Overview:

Find the preimage of a function under a list of transformations. The program will display the list of inverted transformations and the transformed function after each step.

Input:

Other notes:

The list of transformations can either be presented in a row or column matrix, or a list of expressions

Section E: Exam 2 (21 Marks)

Question 7 (1 mark)

Find the possible transformation(s) for the function $f(x) = x^2$ to transform into $g(x) = 4x^2 + 4$.

- **A.** Dilation by a factor of 4 from the y-axis, translation of 4 units in the positive direction of the y-axis.
- **B.** Dilation by a factor of 4 from the y-axis, translation of 4 units in the negative direction of the y-axis.
- C. Dilation by a factor of $\frac{1}{4}$ from the y-axis, translation of 4 units in the positive direction of the y-axis.
- **D.** Dilation by a factor of $\frac{1}{2}$ from the y-axis, translation of 4 units in the positive direction of the y-axis.

Question 8 (1 mark)

Given that f(x) is a function with a local minimum point at (-2,3). The graph of y = f(3x + 2) + f(3x + 2) +have which of the following?

A. Local minimum at
$$(-4, -8)$$
.

$$\begin{array}{c|cccc}
(-1,6) & & & & & & & \\
(-1,-6) & & & & & & & \\
(-1,-8) & & & & & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
(-4, -8) & & & & & \\
(-\frac{4}{5}, -8) & & & & \\
\end{array}$$

B. Local minimum at
$$\left(-\frac{4}{3}, -8\right)$$
.

C. Local maximum at
$$(-4, -8)$$
.

D. Local maximum at
$$\left(-\frac{4}{3}, -8\right)$$
.

Question 9 (1 mark)

There exists a function where dilating by a factor of 2 from the x-axis gives the same image as dilating it by a factor of $\frac{1}{4}$ from the y-axis. Which of the following could be the function?

$$\mathbf{A.} \ \ f(x) = x^2$$

B.
$$f(x) = 2\sqrt{x}$$
 45 $v \cdot 5$ $v \cdot 5$

$$\mathbf{C.} \ \ f(x) = \sqrt{x} - 4$$

D.
$$f(x) = \frac{1}{x}$$

Question 10 (1 mark)

Which one of the following sequences of transformations is different from the rest?

- Dilation by a factor of 2 from the x-axis, dilation by a factor of $\frac{1}{3}$ from the y-axis, reflection in the y-axis, translation 2 right, translation 4 up.
- Dilation by a factor of 2 from the x-axis, dilation by a factor of $\frac{1}{3}$ from the y-axis, translation 2 left, translation 4 up, reflection in the y-axis.
- C. Reflection in the y-axis, translation 6 left, translation 2 up, dilation by a factor of 2 from the x-axis, dilation by a factor of $\frac{1}{3}$ from the y-axis.
- **D.** Translation 6 left, translation 2 up, reflection in the y-axis, dilation by a factor of $\frac{1}{3}$ from the y-axis, dilation by a factor of 2 from the x-axis.

Question 11 (1 mark)

The graph of the function f is obtained from the graph of the function g with rule $g(x) = 3\cos\left(x - \frac{\pi}{6}\right)$ by a dilation of a factor of $\frac{1}{2}$ from the x-axis, a reflection in the y-axis, a translation of $\frac{\pi}{6}$ units in the negative x-direction and a translation of 4 units in the negative y-direction, in that order.

The rule of f is:

A.
$$f(x) = \frac{3}{2} \cos\left(-x - \frac{\pi}{3}\right) - 4$$

$$\lambda = \begin{bmatrix} -\frac{\pi}{3} \\ -\frac{\pi}{6} \end{bmatrix}, \quad \xi = 2(\xi' + 4)$$

B.
$$f(x) = \frac{3}{2}\cos(-x) - 4$$

C.
$$f(x) = \frac{3}{2}\cos(x) - 4$$

D. $f(x) = -3\cos(\frac{x}{2} - \frac{\pi}{3}) - 4$

E.
$$f(x) = \frac{3}{2} \cos\left(-x + \frac{\pi}{3}\right) - 4$$

CONTOUREDUCATION

Question 12 (1 mark)

The curve with the equation $y = e^x$ is transformed by a dilation from the y-axis by a scale factor of 2, a translation by one unit to the left in the x-direction and a translation of two units downwards in the y-direction. The equation of the transformed curve is:

A.
$$y = 0.5e^{x-1} - 2$$

B.
$$y = 2e^{x-1} - 2$$

C.
$$y = e^{0.5(x+1)} - 2$$

D.
$$y = e^{2(x+1)} - 2$$

Question 13 (7 marks)

Consider the function, $f: \mathbb{R} \to \mathbb{R}$, f(x) = (x-1)(x+1)(2x-1)(x+2).

a. State the values of x for which, f(x) = 0. (1 mark)

$$\alpha = -1, -1, \frac{1}{2}, 1$$

b. The graph of y = f(x) is translated a units to the right, where $a \in \mathbb{R}$, to become the graph y = g(x). Find the values of a for which, the graph y = g(x) has:

i. Three positive x-intercepts. (2 marks)

971
9 52

ii. Four negative x-intercepts. (1 mark)

a L-	
------	--

Let h be the function, $h: \mathbb{R} \to \mathbb{R}$, $h(x) = (x-1)^2(x+2)^2$, which has a local maximum at $\left(-\frac{1}{2}\left(\frac{81}{16}\right)\right)$

Let k be the function, $k : \mathbb{R} \to \mathbb{R}$, $k(x) = 2x^2(2x+3)^2$, which has a local maximum at $\left(-\frac{3}{4}, \frac{81}{32}\right)$

c. Using translations only, describe a sequence of transformations on k, for which its image would have a local maximum at the same coordinates as that of h. (1 mark)

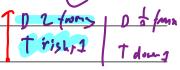
Tm = 1 right

T = 81 right

d. Find a sequence of transformations in the order DRT that maps the graph of y = h(x) to the graph of y = k(x). (2 marks)

Dil I forma

Dil I forma


T Cutt I

Question 14 (8 marks)

Consider the function, $f:[-4,4] \to R$, $f(x) = x^2 + k$, where k is a real number.

a. Consider the transformation, $T(x, y) = \left(2x + 1, \frac{1}{3}y - 1\right)$. Find the transformed function of y = f(x) under the transformation T, and also state its domain. (3 marks)

b. Find the inverse transformation of T and call it T^{-1} (2 marks) **NOTE:** The inverse transformation is a transformation which works in opposite to the original transformation.

c. Using T^{-1} , find the equation of the pre-image of y = f(x) under the transformation T. State the domain also. (3 marks)

NOTE: Pre-image is the function you would have had before the transformation.

$$f(M=3(2n+1)^{2}+3h+3) \qquad [-4,4]$$

$$[-\frac{1}{4},\frac{4}{2}]$$

Section F: Extension Exam 1 (14 Marks)

Qu	estion 15 (5 marks)
	$f(x) = 2x^2 + 4$
	$g(x) = (4x - 3)^2 - 1$
a.	Identify a sequence of transformations that take $f(x)$ to $g(x)$ without the use of dilation from the y-axis. (2 marks)
b.	Identify a sequence of transformations that take $f(x)$ to $g(x)$ without the use of dilation from the x -axis. (2 marks)

c.	Assume that the domain of f and the domain of g are appropriately restricted such that, f^{-1} and g^{-1} both exist. Identify the transformations that take $f^{-1}(x)$ to $g^{-1}(x)$ without the use of dilation from the x -axis. (1 mark)

Question 16 (5 marks)

Consider the function, $f(x) = 2\sqrt{x - k}$, where $k \in R$.

a. Find a sequence of transformations that map $y = x^2$ where $x \ge 0$, to $y = f^{-1}(x)$. (2 marks)

CONTOUREDUCATION

b.	Find the value(s) of k such that, $f(x)$ and $f^{-1}(x)$ do not intersect each other. (3 marks)
	
	
	
Qu	estion 17 (4 marks)
	e image of the curve, $y = 3\sqrt{x^2 + 4x + 7} - 1$ under a transformation T , has the equation $T = \sqrt{4x^2 - 16x + 19}$. Find the sequence of transformations that make up T , with dilations before translations.

Section G: Extension Exam 2 (17 Marks)

Question 18 (1 mark)

The function tangent to g(x) at x = 1 has an equation y = 2x - 4. What is the equation of the tangent of 2g(2x) + 1 at $x = \frac{1}{2}$?

- **A.** y = 4x 4
- **B.** y = 4x 5
- C. y = 8x 7
- **D.** y = 8x 11

Question 19 (1 mark)

The transformation which maps $f(x) = \log_2(x)$ to $g(x) = 2\log_2(2x)$ is:

- A. Dilated by factor 2 from the x-axis, translated 2 units in the positive direction of the y-axis.
- **B.** Dilated by factor 2 from the x-axis, dilated by factor 2 from the y-axis.
- C. Dilated by factor 2 from the x-axis, translated 1 unit in the positive direction of the y-axis.
- **D.** Dilated by factor $\frac{1}{2}$ from the x-axis, dilated by factor 2 from the y-axis.

Question 20 (1 mark)

The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, which maps the graph of $y = 3 - \sqrt{\frac{x+1}{2}}$, onto the graph of $y = \sqrt{x}$ has the rule:

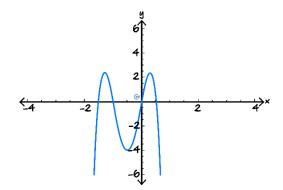
- **A.** T(x,y) = (2x + 1, -y 3)
- **B.** $T(x,y) = \left(\frac{x+1}{2}, 3-y\right)$
- C. T(x,y) = (2x 1,3 y)
- **D.** $T(x,y) = \left(\frac{x+1}{2}, -y 3\right)$

Question 21 (1 mark)

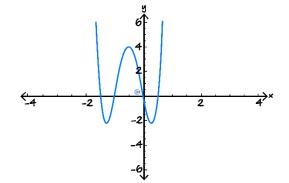
The image of the curve, $y = \sqrt{x^2 + 4}$ under the transformation T, has the equation $y = \sqrt{x^2 + 4x + 40}$. The transformation T could be described as:


- **A.** A dilation by factor 3 from the y-axis followed by dilation by factor 2 from the x-axis and a translation 3 units to the right.
- **B.** A dilation by factor $\frac{1}{3}$ from the *y*-axis followed by a dilation by factor 3 from the *x*-axis and a translation 2 units to the right.
- C. A dilation by factor 2 from the y-axis followed by a dilation by factor 3 from the x-axis and a translation 2 units to the left.
- **D.** A dilation by factor 3 from the y-axis followed by a dilation by factor 3 from the x-axis and a translation 2 units to the left.

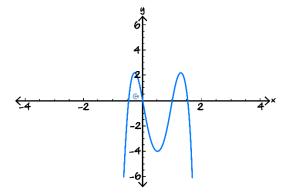
2	Space for Personal Notes

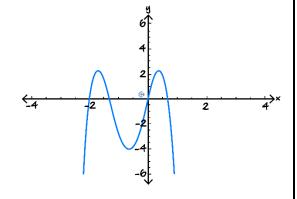

Question 22 (1 mark)

Part of the graph of y = f(x) is shown below.



The corresponding part of the graph of y = -f(2x - 1) is best represented by:


A.


В.

C.

D.

Question 23 (12 marks)

Let $f(x) = \log_e(x+3) + \log_e(x)$.

a. State the domain of f(x). (1 mark)

Consider the function f_1 where, $f_1(x) = \log_e(x + 3 + k) + \log_e(x + k)$ and k is a negative real constant.

b. State the transformation required to get the graph of f to the graph of f_1 . Give your answer in terms of k. (1 mark)

c. When k = -2, the line $y = \frac{5x}{4} - \frac{15}{4} + \log_e(4)$ is tangent to the graph of $y = f_1(x)$ when x = 3. When k = -3, find the equation of the line that is tangent to the graph of $y = 2f_1(x) + 1$ when x = 4. (2 marks)

d. Find the value of x for which, $f'_1(x) = 1$. Express your answer in terms of k. (2 marks) **NOTE:** f'(x) is the derivative of f.

·.	Hence or otherwise, find the value of k so that, the graphs of f_1 and f_1^{-1} have only one point of intersection Give your answer correct to three decimal places. (2 marks)
	NOTE: <i>f</i> and its inverse will be tangential if their point of intersection have the same gradient.
0	w consider the function f_2 where, $f_2(x) = \log_e\left(\frac{x}{a} + 3\right) + \log_e\left(\frac{x}{a}\right)$ and a is a positive real constant.
	State the transformation required to get the graph of f to the graph of f_2 . Give your answer in terms of a . (1 mark)

	point of intersection	. Give your answers	df_2^{-1} have only one correct to three dec	e point of intersect cimal places. (3 ma	ion. Give the coor irks)	rdinate
pace for	Personal Notes					

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-methods-consult-2025

