

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ SAC 1 Revision V [0.20]

Workshop Solutions

Error Logbook:

New Ideas/Concepts	Didn't Read Question
Pg / Q #:	Pg / Q #:
Algebraic/Arithmetic/ Calculator Input Mistake	Working Out Not Detailed Enough
Pg / Q #:	Pg / Q #:
Notes:	Notes:

Section A: SAC 1 Success

Welcome to the fifth SAC 1 workshop!

Context: SAC 1 Workshops

- ➤ SAC 1-50% of SACs, 20% of the study score.
- Will be running all the way till mid-June.
- After that, the workshop will turn into SAC 2 Workshop (Integration).
- Make sure to complete the SAC 1 ~ 8.

Successful SAC

Study Score = How much you know \times How much you show

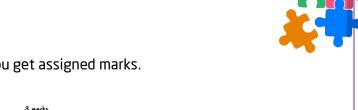
- Answer everything you know.
- Answer without mistakes.

Time management is **key!**

<u>Head Tutor's Comment</u>: Explain how even if you know everything, if you cannot show in the SAC, you will get 0.

Analogy: Skipping Questions

Let's say if you were to fight them and win, you get assigned marks.



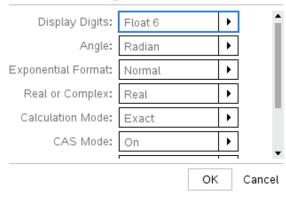
- Who would you fight first?
- Skip the hard question with little marks if it doesn't make sense during the reading time.

SAC Proficiency List

Before the SAC

- Prepare your stationery including a ruler, eraser and your mechanical pencil lead.
- Skim through the bound reference (if applicable).
- Do not speak to other people and lock in.
- TI & Mathematica Only: Check your Contour UDFS.
- ☐ TI Only: Check technology settings.

Document Settings



Reading Time

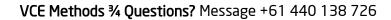
- **Detailed strategy** on how to exactly solve the question on your technology Don't just **read**, think about how to solve it and use what technology commands.
- Identify questions to skip.

For difficult SACs, it's not necessarily about getting the 100%. It's about getting better than everyone else. While others are stuck on a hard 1-marker question, you can do an easy 3-marker first.

- ☐ Identify questions to **start first** You don't have to start from *Q*1!
- □ Look for potential pitfalls Units, domain restriction of the unknown, variable and function meaning.

Writing Time

- Circle what the question is asking for in the question.
- Spend the first 50% of the time on all the easy questions you identified.
- Spend the next **25**% of doing the **difficult questions** you left blank.



□ Spend the last 25% of the time on checking your answers.		
Check your answer by reading the question again and see if you answered the question.		
☐ Check in the order of:		
Domino effect (check a , b , c first) > Questions with high marks (3+) > Hard Questions		
TI ONLY: Use new document - doc 4, 1.		
After the SAC		
☐ Think about how each mark loss can be prevented using this proficiency list.		
☐ Think about the big picture and improve the marks –		
Instead of spending 10 minutes on 10 c) (1 mark), I should have checked 5 a) (3 marks)		
Space for Personal Notes		

Section B: SAC Questions - Tech-Active (52 Marks)

INSTRUCTION:

52 Marks. 15 Minutes Reading, 75 Minutes Writing.

Question 1 (9 marks)

Zack Mewton is conducting an experimental synthesis in pursuit of the Philosopher's Stone - a theoretical substance capable of catalysing the transmutation of lead into gold. The reaction chamber begins at a temperature of 24°C and is heated at a controlled rate of 2°C per minute using a calibrated thermal source.

a.

i. Derive an equation for the temperature T, in ${}^{\circ}C$, t minutes after the heat source is activated. (1 mark)

$$T = 24 + 2t$$
. [1A]

ii. The initial reagent — a purified suspension of metallic salts — must be added when the temperature reaches 32°C. After how many minutes should this be done? (1 mark)

$$t = 4$$
 minutes. [1A]

b. The addition of the metallic salts induces a non-linear thermal fluctuation. The resulting temperature of the system is given by:

$$T_1(t) = T(t) + R(t)$$
, where $R(t) = 8 - 2e^{4t-8}$

i. Perform three iterations of Newton's method with $t_0 = 3$ to find an approximate solution to the equation $T_1(t) = 0$. Give your answer correct to three decimal places. (2 marks)

Using Newton's method with $t_0 = 3$ we get: $t_1 = 2.836$, $t_2 = 2.751$, $t_3 = 2.733$ [1M for one correct value] Our estimate is t = 2.733 [1A]

ii. To stabilise the system, Zack introduces a compensating agent with inverse behaviour.

Determine the equation of the inverse function $R^{-1}(t)$. (2 marks)

Let
$$y = R^{-1}(t)$$
, then $R(y) = t$, so we solve
$$t = 8 - 2e^{4y - 8} \quad [1M]$$

$$e^{4y - 8} = \frac{8 - t}{2}$$

$$4y - 8 = \log_e\left(\frac{8 - t}{2}\right)$$

$$y = \frac{1}{4}\log_e\left(\frac{8 - t}{2}\right) + 2$$
So $R^{-1}(t) = \frac{1}{4}\log_e\left(\frac{8 - t}{2}\right) + 2$. [1A]

c. For precision calibration, the reaction is transferred to a digitally stabilised platform. However, this platform introduces time-dependent perturbations in temperature, described by:

$$C(x) = -3x^2 + 12x - 5$$

where x is the time in minutes since the stabiliser was engaged.

Determine the largest value of a such that the domain restriction [0, a] allows C(x) to possess an inverse. (1 mark)

Turning point at (2,7) so a=2. [1M]

ii. Find the expression for the inverse function $C^{-1}(x)$ over the restricted domain [0, a]. (2 marks)

Let $y = C^{-1}(x)$. Then we solve C(y) = x. This yields $y = 2 \pm \sqrt{\frac{1}{3}(7 - x)}$. [1M] But the range must be [0, 2] so we have

 $C^{-1}(x) = 2 - \sqrt{\frac{1}{3}(7-x)}$ [1A]

Space for Personal Notes

Question 2 (22 marks)

Consider the lines L_1 and L_2 defined by the equations:

$$L_1: kx - 6y = k + 2m \text{ and } L_2: x + (k+5)y = 2,$$

where k and m are real constants.

a. State the value of k if one of the lines is a vertical line. (1 mark)

Vertical line is of the form x = a. This is only possible if k = -5. [1A]

- **b.** Find the value(s) of k and m if:
 - i. The lines L_1 and L_2 have a unique point of intersection. (3 marks)

The gradient of the two lines must differ for a unique point of intersection. [1M] Gradients are the same if $\frac{k}{-6} = \frac{1}{k+5} \implies k = -3, -2$ [1M] So there is a unique point of intersection if

$$k \in \mathbb{R} \setminus \{-3, -2\}, \ m \in \mathbb{R} \ [\mathbf{1A}]$$

ii. The equations defining L_1 and L_2 have no solution. (2 marks)

No solution if the lines are parallel and not the same. If k = -3 then if $m = -\frac{3}{2}$ the lines are the same.

So no solution if k = -3, $m \in \mathbb{R} \setminus \left\{-\frac{3}{2}\right\}$ [1A]

If k = -2 then if m = -1 the lines are the same.

So no solution if k = -2, $m \in \mathbb{R} \setminus \{-1\}$ [1A]

iii. The equations defining L_1 and L_2 have an infinite number of solutions. (1 mark)

$$k = -3 \text{ and } m = -\frac{3}{2}$$

$$OR k = -2 \text{ and } m = -1. \quad [1A]$$

- **c.** Find the value(s) of *k* and *m* if:
 - i. The lines L_1 and L_2 are perpendicular to each other. (2 marks)

Perpendicular if product of the gradients is
$$-1$$
.

Thus $\frac{k}{6} \times \frac{-1}{k+5} = -1$ [1M] $\Longrightarrow k = -6$.

 $k = -6, m \in \mathbb{R}$. [1A]

ii. The acute angle between L_1 and L_2 is equal to 50°. Give your answer(s) correct to three decimal places. (2 marks)

We require that
$$\left| \frac{\frac{k}{6} + \frac{1}{k+5}}{1 + \frac{k}{6} \left(\frac{-1}{k+5} \right)} \right| = \tan(50^{\circ}) \quad [1M]$$

$$\Longrightarrow k = -4.996, k = 5.955$$
 So $k = -4.996, m \in \mathbb{R}$ or $k = 5.955, m \in \mathbb{R}$. [1A]

- **d.** The lines L_1 and L_2 intersect at the point (5, -3).
 - i. Find the value of k and the value of m. (2 marks)

Sub the point into both equations to get the system 18+5k=k+2m $5-3(5+k)=2 \ [\mathbf{1M}]$ solving gives k=-4 and $m=1 \ [\mathbf{1A}]$

ii. Find the equation of the line that **bisects** the acute angle made between L_1 and L_2 when they intersect at (5, -3). Give your answer in the form y = mx + c where m and c are given correct to four decimal places. (3 marks)

The two lines make an acute angle of $\theta = \arctan\left(\frac{1}{5}\right) \approx 11.3099^{\circ}$ [1M

Take one line to be $-4x - 6y = -2 \implies y = \frac{1}{3} - \underbrace{2x}{3}$.

The bisecting line passes through (5, -3) and makes an acute angle of $\approx 5.65^{\circ}$ with the above line.

This line must have gradient of $m \approx -0.8198$. [1M]

The line then has equation y = 1.0990 - 0.8198x [1A]

- **e.** Find the value(s) of k and m if:
 - The line L_1 is tangent to the curve $y = \frac{1}{x} + x^2$ at the point where x = 1. (3 marks)

Let $f(x) = \frac{1}{x} + x^2$. Then f'(1) = 1. So line L_1 has gradient of 1 and passes through (1, 2). [1M]

so now $\frac{k}{6} = 1$ and $\frac{k+2m}{-6} = 1 \implies k = 6, m = -6$ [1A]

ii. The line L_1 passes through the point (2, -9), has a negative x-axis intercept, and is tangent to the curve $y = \frac{1}{x} + x^2$. (3 marks)

Tangent to $f(x) = \frac{1}{x} + x^2$ at x = a is given by $y = -\frac{a^4 - 2a^3x - 2a + x}{a^2}$ [1M]

This line passes through (2, -9) so we get the equation

$$-\frac{a^4 - 4a^3 - 2a + 2}{a^2} = -9$$

 $\implies a = -1, 3 \pm \sqrt{7}$ [1M]

Only a = -1 will give a negative x-axis intercept.

Thus the line is y = -3 - 3x.

So k = -18 and m = 18. [1A]

Space for Personal Notes

Question 3 (21 marks)

A medical researcher is studying the diffusion of a drug from two injection sites, A and B, placed 24 millimetres apart in a tissue sample. The concentration of the drug, y, in mg/L at a point x millimetres from site A along the straight line between the two sites is modelled by:

$$y = \frac{p}{x - 26} - \frac{q}{x + 1} + 12, \quad 0 \le x \le 24, \quad y \ge 0$$

where p and q are positive constants.

- **a.** For a particular formulation of the drug, the parameters are p=20 and q=8.
 - i. Solve an appropriate equation using algebra to determine the location x (in mm from site A) at which the drug concentration is at a maximum. All working must be shown. (4 marks)

Let
$$y(x) = \frac{20}{x - 26} - \frac{8}{x + 1} + 12$$
. To find a maximum we must solve
$$y'(x) = \frac{8}{(x + 1)^2} - \frac{20}{(x - 26)^2} = 0 \quad [\mathbf{1M}]$$

$$\implies -\frac{12\left(x^2 + 38x - 449\right)}{(x - 26)^2(x + 1)^2} = 0$$

so we may solve $x^2 + 38x - 449 = 0$ [1M]

$$(x + 19)^2 - 810 = 0$$

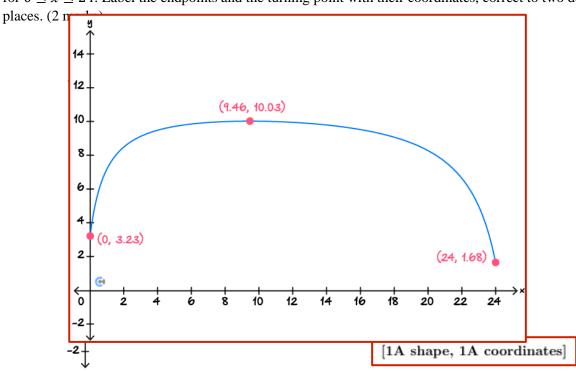
 $x + 19 = \pm 9\sqrt{10}$
 $x = -19 \pm 9\sqrt{10}$ [1M]

But we require that $x \ge 0$ so the only solution is $x = -19 + 9\sqrt{10}$. [1A, must say why we reject value]

ii. Sketch the graph of the function:

$$y = \frac{20}{x - 26} - \frac{8}{x + 1} + 12$$

for $0 \le x \le 24$. Label the endpoints and the turning point with their coordinates, correct to two decimal



iii. At what distance(s) from the injection site B is the drug concentration equal to 7 mg/L? Give your answer in millimetres, correct to three decimal places (2 marks)

Solve $y(x) = 7 \implies x = 0.903, 21.697$. These are distances from site A. [1M] Therefore distance from site B are 23.097 and 2.303 millimetres. [1A]

iv. Determine, correct to one decimal place, the percentage of the distance between A and B over which the concentration y is below 8 mg/L. (2 marks)

We solve
$$y(x) = 8 \implies x = 1.51317, 20.4868$$
. [1M]
So the percentage is $\frac{1.51317 + (24 - 20.4868)}{24} \times 100 = 20.9\%$ [1A]

- **b.** The researcher fixes p = 20 and considers how varying the drug with different values of q affects the concentration model.
 - i. Determine the possible values of q for which the model is defined on the interval $0 \le x \le 24$. (2 marks)

We require that $y(0) \ge 0$ and that $y(24) \ge 0$. [1M] Also q > 0 since we said that it is a **positve** constant. So $0 < q \le \frac{146}{13}$. [1A]

ii. Find, in terms of q, the x-coordinate of the turning point of the function y, when it exists. (2 marks)

We solve $y'(x) = 0 \implies x = 26 - \frac{54(\sqrt{5q} - 10)}{q - 20}, \frac{54(\sqrt{5q} + 10)}{q - 20} + 26$ [1M]

But we need the value that is between 0 and 24 on the domain of q.

So $x = 26 - \frac{54\left(\sqrt{5q} - 10\right)}{q - 20}$ or equivalent. [1A]

iii. Identify the values of q for which the function y does **not** have an inverse. (2 marks)

No inverse if the function has a turning point in the interval 0 < x < 24.

Note we already have the restriction $0 < q \le \frac{146}{13}$ Using above part b.ii we also solve $0 < 26 - \frac{54(\sqrt{5q} - 10)}{q - 20} \implies q > \frac{5}{169}$ [1M]

Combining our restrictions gives no inverse if

$$\frac{5}{169} < q \le \frac{146}{13}$$
 [1A]

iv. Determine the value(s) of q for which the **minimum** drug concentration occurs when x = 24. (2 marks)

We will require that $y(0) \ge y(24)$ [1M] Thus $0 < q \le \frac{125}{13}$ [1A].

c. The research team designs a formulation such that the drug reaches a maximum concentration of exactly 10 mg/L at the midpoint between the injection sites A and B. Determine the corresponding values of p and q that achieve this. (3 marks)

We must have a max of 10 when x = 12. So must have $\frac{dy}{dx} = 0$ when x = 12. [1M] We solve y'(12) = 0 and y(12) = 10 simultaneously to get $p = \frac{392}{27}$ [1M] and $q = \frac{338}{27}$ [1A].

Space for Personal Notes

Section C: Marking Scheme

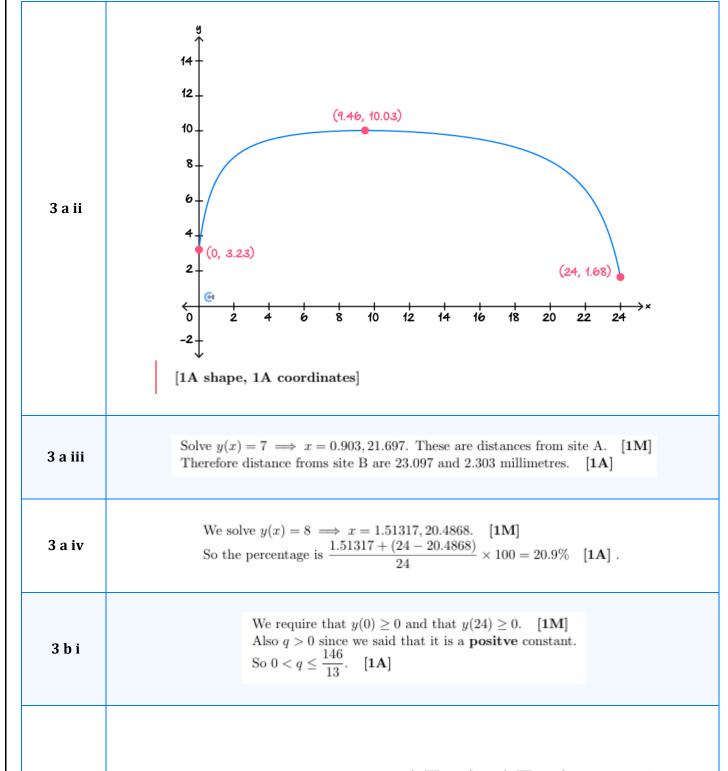
Question Number	Solutions	
1ai	T = 24 + 2t. [1A]	
1 a ii	t = 4 minutes. [1A]	
1 b i	Using Newton's method with $t_0 = 3$ we get: $t_1 = 2.836$, $t_2 = 2.751$, $t_3 = 2.733$ [1M for one correct value] Our estimate is $t = 2.733$ [1A]	
1 b ii	Let $y = R^{-1}(t)$, then $R(y) = t$, so we solve $t = 8 - 2e^{4y - 8} [\mathbf{1M}]$ $e^{4y - 8} = \frac{8 - t}{2}$ $4y - 8 = \log_e\left(\frac{8 - t}{2}\right)$ $y = \frac{1}{4}\log_e\left(\frac{8 - t}{2}\right) + 2$ So $R^{-1}(t) = \frac{1}{4}\log_e\left(\frac{8 - t}{2}\right) + 2$. $[\mathbf{1A}]$	
1 c i	Turning point at $(2,7)$ so $a=2$. [1M]	
1 c ii	Let $y=C^{-1}(x)$. Then we solve $C(y)=x$. This yields $y=2\pm\sqrt{\frac{1}{3}(7-x)}$. [1M] But the range must be $[0,2]$ so we have $C^{-1}(x)=2-\sqrt{\frac{1}{3}(7-x)} [1A]$	
2 a	Vertical line is of the form $x = a$. This is only possible if $k = -5$. [1A]	

2 b i	The gradient of the two lines must differ for a unique point of intersection. [1M] Gradients are the same if $\frac{k}{-6} = \frac{1}{k+5} \implies k = -3, -2$ [1M] So there is a unique point of intersection if $k \in \mathbb{R} \setminus \{-3, -2\}, \ m \in \mathbb{R}$ [1A]
2 b ii	No solution if the lines are parallel and not the same. If $k=-3$ then if $m=-\frac{3}{2}$ the lines are the same. So no solution if $k=-3$, $m\in\mathbb{R}\setminus\left\{-\frac{3}{2}\right\}$ [1A] If $k=-2$ then if $m=-1$ the lines are the same. So no solution if $k=-2$, $m\in\mathbb{R}\setminus\{-1\}$ [1A]
2 b iii	$k = -3 \text{ and } m = -\frac{3}{2}$ OR $k = -2 \text{ and } m = -1$. [1A]
2 c i	Perpendicular if product of the gradients is -1 . Thus $\frac{k}{6} \times \frac{-1}{k+5} = -1$ [1M] $\implies k = -6$. $k = -6$, $m \in \mathbb{R}$. [1A]
2 c ii	We require that $\left \frac{\frac{k}{6} + \frac{1}{k+5}}{1 + \frac{k}{6} \left(\frac{-1}{k+5}\right)}\right = \tan(50^{\circ}) [1M]$ $\implies k = -4.996, k = 5.955$ So $k = -4.996, m \in \mathbb{R}$ or $k = 5.955, m \in \mathbb{R}$. [1A]
2 d i	Sub the point into both equations to get the system $18+5k=k+2m$ $5-3(5+k)=2 \ \ [{\bf 1M}]$ solving gives $k=-4$ and $m=1 \ \ \ [{\bf 1A}]$

CONTOUREDUCATION

2 d ii	The two lines make an acute angle of $\theta = \arctan\left(\frac{1}{5}\right) \approx 11.3099^{\circ}$ [1M] Take one line to be $-4x - 6y = -2 \implies y = \frac{1}{3} - \frac{2x}{3}$. The bisecting line passes through $(5, -3)$ and makes an acute angle of $\approx 5.65^{\circ}$ with the above line. This line must have gradient of $m \approx -0.8198$. [1M] The line then has equation $y = 1.0990 - 0.8198x$ [1A]	
2 e i	Let $f(x) = \frac{1}{x} + x^2$. Then $f'(1) = 1$. So line L_1 has gradient of 1 and passes through $(1,2)$. [1M] $y = 1 + x [1M]$ so now $\frac{k}{6} = 1$ and $\frac{k+2m}{-6} = 1 \implies k = 6, m = -6 [1A]$	
2 e ii	Tangent to $f(x)=\frac{1}{x}+x^2$ at $x=a$ is given by $y=-\frac{a^4-2a^3x-2a+x}{a^2}$ [1M] This line passes through $(2,-9)$ so we get the equation $-\frac{a^4-4a^3-2a+2}{a^2}=-9$ $\implies a=-1,3\pm\sqrt{7}$ [1M] Only $a=-1$ will give a negative x -axis intercept. Thus the line is $y=-3-3x$. So $k=-18$ and $m=18$. [1A]	
3 a i	Let $y(x) = \frac{20}{x-26} - \frac{8}{x+1} + 12$. To find a maximum we must solve $y'(x) = \frac{8}{(x+1)^2} - \frac{20}{(x-26)^2} = 0 [1M]$ $\Rightarrow -\frac{12(x^2+38x-449)}{(x-26)^2(x+1)^2} = 0$ so we may solve $x^2 + 38x - 449 = 0 [1M]$ $(x+19)^2 - 810 = 0$ $x+19 = \pm 9\sqrt{10}$ $x = -19 \pm 9\sqrt{10} [1M]$ But we require that $x \ge 0$ so the only solution is $x = -19 + 9\sqrt{10}$. [1A, must say why we reject value]	

CONTOUREDUCATION



3 b ii

We solve
$$y'(x) = 0 \implies x = 26 - \frac{54(\sqrt{5q} - 10)}{q - 20}, \frac{54(\sqrt{5q} + 10)}{q - 20} + 26$$
 [1M]

But we need the value that is between 0 and 24 on the domain of q.

So
$$x = 26 - \frac{54\left(\sqrt{5q} - 10\right)}{q - 20}$$
 or equivalent. [1A]

3 b iii	No inverse if the function has a turning point in the interval $0 < x < 24$. Note we already have the restriction $0 < q \le \frac{146}{13}$ Using above part b.ii we also solve $0 < 26 - \frac{54\left(\sqrt{5q} - 10\right)}{q - 20} \implies q > \frac{5}{169}$ [1M] Combining our restrictions gives no inverse if $\frac{5}{169} < q \le \frac{146}{13}$ [1A]	
3 b iv	We will require that $y(0) \ge y(24)$ [1M] Thus $0 < q \le \frac{125}{13}$ [1A].	
3 с	We must have a max of 10 when $x=12$. So must have $\frac{dy}{dx}=0$ when $x=12$. [1M] We solve $y'(12)=0$ and $y(12)=10$ simultaneously to get $p=\frac{392}{27}$ [1M] and $q=\frac{338}{27}$ [1A].	

Space for Personal Notes

Section D: Mathematica Solutions

Question Number	<u>Solutions</u>	
	Q1.	
	In[57]:= T[t_] := 24 + 2 t In[58]:= Solve[T[t] == 32]	
	Out[58]= $\{ \{t \to 4\} \}$ In[59]:= R[t_] := 8 - 2 Exp[4 t - 8]	
	In[60]:= Solve[R[y] == t, y, Reals] Out[60]= $\left\{ \left\{ y \rightarrow \left[2 + \frac{1}{4} \text{Log} \left[\frac{8-t}{2} \right] \text{ if } t < 8 \right] \right\} \right\}$	
	In[61]:= T1[t_] := 24 + 2 t + 8 - 2 Exp[4 t - 8] In[62]:= NSolve[T1[t] == 0, t, Reals]	
	Out[62]= $\{\{t \rightarrow -16.\}, \{t \rightarrow 2.73257\}\}$	
	$ln[63]:= n[x_] := x - \frac{T1[x]}{T1'[x]}$	
1	In[64]:= n[3.0] Out[64]= 2.83625	
	In[65]:= n[n[3.0]] Out[65]= 2.75155	
	In[66]:= n[n[n[3.0]]] Out[66]= 2.73328	
	In[67]:= NewtonMethod[T1[x], 3, 4]	
	Iteration x_n x_{n+1} $ x_{n+1} - x_n $ 03.00000002.83624950.16375112.83624952.7515460.08470422.7515462.7332770.01826832.7332772.7325670.00071	
	$ln[68] := c[x_] := -3x^2 + 12x - 5$	
	In[69]:= Solve[c[y] == x, y] // FullSimplify Out[69]= $\left\{ \left\{ y \rightarrow 2 - \frac{\sqrt{7-x}}{\sqrt{3}} \right\}, \left\{ y \rightarrow 2 + \frac{\sqrt{7-x}}{\sqrt{3}} \right\} \right\}$	

Q2.

```
In[70]:= Solve \left[\frac{k}{-6} = \frac{1}{k+5}, k\right] // FullSimplify
Out[70]= \{\{k \rightarrow -3\}, \{k \rightarrow -2\}\}
 ln[71] := Solve[kx - 6y == k + 2m/.k \rightarrow -3, y] // Expand
Out[71]= \left\{\left\{y \rightarrow \frac{1}{2} - \frac{m}{3} - \frac{x}{2}\right\}\right\}
 ln[72] = Solve[x + (k + 5) y = 2 / . k \rightarrow -3, y] // Expand
Out[72]= \left\{\left\{y \to 1 - \frac{x}{2}\right\}\right\}
 In[73]:= Solve[1 == 1 / 2 - m / 3]
Out[73]= \left\{ \left\{ \mathbf{m} \rightarrow -\frac{3}{2} \right\} \right\}
 ln[74] = Solve[kx - 6y = k + 2m/.k \rightarrow -2, y] // Expand
Out[74]= \left\{\left\{y \rightarrow \frac{1}{2} - \frac{m}{2} - \frac{x}{2}\right\}\right\}
 In[75]:= Solve[x + (k + 5) y == 2 /. k \rightarrow -2, y] // Expand
Out[75]= \left\{ \left\{ y \rightarrow \frac{2}{3} - \frac{x}{3} \right\} \right\}
 In[76] = Solve[1/3 - m/3 = 2/3]
Out[76]= \{\{m \rightarrow -1\}\}
 In[77]:= Solve \left[\frac{k}{6}\left(\frac{-1}{k+5}\right) = -1, k\right]
Out[77]= \{\{k \rightarrow -6\}\}
 In[78]:= Solve \left[ Abs \left[ \frac{k/6 + 1/(k+5)}{1 + k/6 (-1/(k+5))} \right] = Tan[50 Degree], k, Reals \right] // N
Out[78]= \{\{k \rightarrow -4.99624\}, \{k \rightarrow 5.955\}\}
 ln[79] = kx - 6y = k + 2m/. \{x \rightarrow 5, y \rightarrow -3\}
Out[79] = 18 + 5 k == k + 2 m
 ln[80]:= x + (k+5) y == 2 /. \{x \rightarrow 5, y \rightarrow -3\}
Out[80] = 5 - 3 (5 + k) == 2
 ln[81] = Solve[18 + 5k = k + 2m && 5 - 3(5 + k) = 2]
Out[81]= \{\{k \to -4, m \to 1\}\}
```

2


```
In[82]:= Abs \left[\frac{k/6 + 1/(k+5)}{1+k/6(-1/(k+5))}\right]/. k \rightarrow -4
 Out[82]= 1
 ln[83]:= ArcTan \left[\frac{1}{r}\right] / Degree // N
 Out[83]= 11.3099
  In[84]:= Solve[-4x-6y==-2, y] // Expand
Out[84] = \left\{ \left\{ y \rightarrow \frac{1}{3} - \frac{2 x}{3} \right\} \right\}
  In[85]:= 11.309932474020215` / 2
 Out[85]= 5.65497
  In[86] = Solve \left[ Abs \left[ \frac{m+2/3}{1+m*(-2/3)} \right] = Tan \left[ 1/2 * ArcTan \left[ \frac{1}{5} \right] \right], m, Reals \right] // N
 Out[86]= \{\{m \rightarrow -0.532496\}, \{m \rightarrow -0.819804\}\}
  ln[87] = Solve[y + 3 = -0.819803902718557 (x - 5), y] // Expand
 Out[87]= \{ \{y \rightarrow 1.09902 - 0.819804 x \} \}
  In[88]:= (* Check and see that the line found with m=-0.53 does not bisect the angle*)
  In[89]:= Solve[y + 3 == -0.5324955213946582 (x - 5), y] // Expand
 Out[89]= \{ \{ y \rightarrow -0.337522 - 0.532496 x \} \}
  ln[90] = f[x_] := 1/x + x^2
  In[91]:= f'[1]
 Out[91]= 1
  In[92]:= f[1]
 Out[92]= 2
  In[93]:= TangentLine[f[x], x, 1]
 Out[93]= 1 + x
  In[94]:= Solve \left[\frac{k}{6} = 1 & \frac{k+2m}{-6} = 1\right]
 Out[94]= \{\{k \rightarrow 6, m \rightarrow -6\}\}
  In[95]:= TangentLine[f[x], x, a] // FullSimplify
 Out[95]= -\frac{-2 a + a^4 + x - 2 a^3 x}{a^2}
 ln[96] := -\frac{-2 a + a^4 + x - 2 a^3 x}{a^2} /. x \rightarrow 2
 Out[96]= -\frac{2-2 a-4 a^3+a^4}{a^2}
 Out[97]= \left\{\left\{a \to -1\right\}, \left\{a \to -1\right\}, \left\{a \to 3 - \sqrt{7}\right\}, \left\{a \to 3 + \sqrt{7}\right\}\right\}
  ln[98] := Solve \left[ -\frac{2-2 a-4 a^3+a^4}{a^2} == -9, a \right] // N
 Out[98]= \{\{a \rightarrow -1.\} , \{a \rightarrow -1.\} , \{a \rightarrow 0.354249\} , \{a \rightarrow 5.64575\} \}
  In[99]:= TangentLine[f[x], x, -1]
 Out[99]= -3 - 3 x
In[100]:= Solve \left[\frac{k}{6} = -3 \&\& \frac{k+2m}{-6} = -3\right]
Out[100]= \{\,\{\,k\,\rightarrow\,\text{-18, m}\rightarrow\text{18}\,\}\,\,\}
```

Q3.

In[101]:=
$$f[x_]$$
 := $\frac{20}{x-26} - \frac{8}{x+1} + 12$

In[102]:= **f'[x]**

Out[102]=
$$-\frac{20}{(-26+x)^2} + \frac{8}{(1+x)^2}$$

In[103]:= Solve[f'[x] == 0, x]

Out[103]=
$$\{ \{ x \rightarrow -19 - 9 \sqrt{10} \}, \{ x \rightarrow -19 + 9 \sqrt{10} \} \}$$

$$ln[104]:= -\frac{20}{(-26+x)^2} + \frac{8}{(1+x)^2} // Together$$

Out[104]=
$$-\frac{12 \left(-449 + 38 x + x^2\right)}{\left(-26 + x\right)^2 \left(1 + x\right)^2}$$

In[105]:= CompleteTheSquare $\left[-449 + 38 \times + \times^{2}, \times\right]$

Out[105]= $-810 + (19 + x)^2$

 $ln[106] = \sqrt{810}$

Out[106]= $9\sqrt{10}$

In[107]:= **f[24]** // N

Out[107]= 1.68

In[108]:= f[0] // N

Out[108]= 3.23077

ln[109] = Solve[f[x] = 7, x] // N

Out[109]= $\{\{x \to 0.903366\}, \{x \to 21.6966\}\}$

In[110]:= 24 - 0.9033659293019256

Out[110]= 23.0966

In[111]:= 24 - 21.696634070698078

Out[111]= 2.30337

ln[112] = Solve[f[x] = 8, x] // N

Out[112]= $\{\{x \to 1.51317\}, \{x \to 20.4868\}\}$

 $ln[113] := \frac{1.5131670194948619 + (24 - 20.486832980505138)}{24} * 100$

Out[113]= 20.9431

3

$$\begin{aligned} &\inf[114] = \mathbf{g}[\mathbf{x}] := \frac{2\theta}{\mathbf{x}-26} - \frac{\mathbf{q}}{\mathbf{x}+1} + 12 \\ &\inf[115] = \mathsf{Solve}[\mathbf{g}[\theta] = \theta] \\ &\operatorname{out}[115] = \left\{ \left\{ \mathbf{q} \to \frac{146}{13} \right\} \right\} \\ &\inf[116] = \mathsf{Solve}[\mathbf{g}[24] = \theta] \\ &\operatorname{out}[116] = \left\{ (\mathbf{q} \to 50) \right\} \\ &\inf[117] = \mathsf{Solve}[\mathbf{g}[\theta] = \theta] \text{ // N} \\ &\operatorname{out}[117] = \left\{ \left\{ \mathbf{q} \to 11.2308 \right\} \right\} \\ &\inf[118] = \mathsf{Assuming}[\mathbf{q} > \theta, \mathsf{Apart}[\mathsf{Solve}[\mathbf{g}'[\mathbf{x}] = \theta, \mathbf{x}]]] \\ &\operatorname{out}[118] = \left\{ \left\{ \mathbf{x} \to 26 - \frac{54 \left(-10 + \sqrt{5} \sqrt{\mathbf{q}} \right)}{-20 + \mathbf{q}} \right\}, \left\{ \mathbf{x} \to 26 + \frac{54 \left(10 + \sqrt{5} \sqrt{\mathbf{q}} \right)}{-20 + \mathbf{q}} \right\} \right\} \\ &\inf[19] = \mathsf{Plot} \left[\left\{ 26 - \frac{54 \left(-10 + \sqrt{5} \sqrt{\mathbf{q}} \right)}{-20 + \mathbf{q}}, 26 + \frac{54 \left(10 + \sqrt{5} \sqrt{\mathbf{q}} \right)}{-20 + \mathbf{q}} \right\}, \left\{ \mathbf{q}, \theta, 146 / 13 \right\} \right] \\ &-20 \\$$

Section E: Casio Solutions

Question Number	<u>Solutions</u>	
1	Define $T(t)=24+2t$ done solve $(T(t)=32,t)$ $(t=4)$ Define $R(t)=8-2e^{4t-8}$ done solve $(R(y)=t,y)$ $ \left\{ \frac{\ln\left(\frac{-t}{2}+4\right)}{4}+2\right\} $ Define $T1(t)=T(t)+R(t)$ done solve $(T1(t)=0,t)$ $(t=-16,t=2.732565875)$ Define $n(t)=t-T1(t)/\frac{d}{dt}(T1(t))$ done $n(3)$ 2.836249486 $n(ans)$ 2.75154571 $n(ans)$ 2.733277251 Define $C(x)=-3x^2+12x-5$ done $fmax(C(x),x)$ $\{MaxValue=7,x=2\}$ solve $(C(y)=x,y)$	

colve (k _	1		1
solve(-6-	k+5	,	k

{k=-3, k=-2}

solve(k*x-6y=k+2m|k=-3,y

 $\left\{ y = \frac{-x}{2} - \frac{m}{3} + \frac{1}{2} \right\}$

solve(x+(k+5)*y=2|k=-3,y

 $\left\{y = \frac{-x}{2} + 1\right\}$

solve(1=1/2-m/3, m

 $\left\{ m = -\frac{3}{2} \right\}$

solve(k*x-6y=k+2m|k=-2, y

 $\left\{ y = \frac{-x}{3} - \frac{m}{3} + \frac{1}{3} \right\}$

solve(x+(k+5)*y=2|k=-2, y

 $\left\{y = \frac{-x}{3} + \frac{2}{3}\right\}$

solve(1/3-m/3=2/3, m)

{m=-1}

solve $(\frac{k}{6} * \frac{-1}{k+5} = -1, k$

{k=-6}

solve
$$\left(\frac{\frac{k/6+\frac{1}{k+5}}{1+\frac{k}{6}*\frac{-1}{k+5}}}{1+\frac{k}{6}*\frac{-1}{k+5}}\right| = \tan(50^{\circ}), k$$

{k=5.9550042,k=-4.996236237}

k*x-6y=k+2m|x=5|y=-3

5•k+18=k+2•m

x+(k+5)*y=2|x=5|y=-3

-3·(k+5)+5=2

5·k+18=k+2·m -3·(k+5)+5=2 k, m

{k=-4, m=1}

$$\left| \frac{k/6 + \frac{1}{k+5}}{1 + \frac{k}{6} * \frac{-1}{k+5}} \right| | k = -4$$

- <u>-</u>

2

```
tan-1 (ans)
                                                                                   11.30993247
solve (-4x-6y=-2, y)
                                                                                    \left\{ y = \frac{-2 \cdot x}{3} + \frac{1}{3} \right\}
11.30993247/2
                                                                                   5.654966235
solve(\left| \frac{m+2/3}{1+m*-2/3} \right| = \tan(5.654966235), m
                                           \{m=-0.5324955214, m=-0.8198039027\}
solve(y+3=-0.8198039027(x-5), y
                                                 {y=-0.8198039027 \cdot x+1.099019514}
solve(y+3=-0.5324955214(x-5), y
                                                 {y=-0.5324955214 \cdot x-0.337522393}
Define f(x)=1/x+x^2
                                                                                                done
\frac{d}{dx}(f(x))|x=1
                                                                                                    1
f(1)
                                                                                                    2
tanLine(f(x), x, 1)
                                                                                                 x+1
 \frac{k+2m}{-6}=1
                                                                                     \{k=6, m=-6\}
tanLine(f(x),x,a)
                                                         a^2+x\cdot\left(2\cdot a-\frac{1}{a^2}\right)-a\cdot\left(2\cdot a-\frac{1}{a^2}\right)+\frac{1}{a}
   simplify (ans)
                                                                         -\frac{a^4-2\cdot a^3\cdot x+x-2\cdot a}{a^2}
   ans \mid x=2
                                                                            -\frac{a^4-4\cdot a^3-2\cdot a+2}{a^2}
   simplify(ans)
                                                                            -\frac{a^4-4\cdot a^3-2\cdot a+2}{a^2}
   solve(ans=-9, a
                                                                 \{a=-1, a=-\sqrt{7}+3, a=\sqrt{7}+3\}
   ans
                                           {a=-1, a=0.3542486889, a=5.645751311}
   tanLine(f(x), x, -1)
                                                                                          -3•x-3
   \begin{cases} k/6 = -3 \\ \frac{k+2m}{-6} = -3 \\ k, m \end{cases}
                                                                               \{k=-18, m=18\}
```

Define $f(x) = \frac{20}{x-26} - \frac{8}{x+1} + 12$

done

 $\frac{\mathrm{d}}{\mathrm{d}x}(f(x))$

 $-\frac{12 \cdot x^2 + 456 \cdot x - 5388}{(x+1)^2 \cdot (x-26)^2}$

solve(ans=0,x

 $\{x=-9\cdot\sqrt{10}-19, x=9\cdot\sqrt{10}-19\}$

f(0)

3.230769231

fmax(f(x), x, 0, 24)

{MaxValue=10.0259918.x=9.460498942}

f(24)

solve(f(x)=7, x

{x=0.9033659293, x=21.69663407}

24-ans

 $\{-x+24=23.09663407, -x+24=2.303365929\}$

solve(f(x) < 8, x)

{-1<x<1.513167019,20.48683298<x<26}

20.94305883

Define $y(x) = \frac{p}{x-26} - \frac{q}{x+1} + 12$

done

solve(y(0)=0|p=20,q

 $\left\{ q = \frac{146}{13} \right\}$

solve(y(24)=0|p=20,q

{q=50}

 $\left\{ q = \frac{146}{13} \right\}$

{q=11.23076923}

solve $(\frac{d}{dx}(y(x)) = 0 \mid p=20, x$

ERROR:Insufficient Memory

 $\frac{d}{dx}(y(x)) = 0 | p = 20$

 $\frac{\mathbf{q} \cdot \mathbf{x}^2 - 20 \cdot \mathbf{x}^2 - 52 \cdot \mathbf{q} \cdot \mathbf{x} - 40 \cdot \mathbf{x} + 676 \cdot \mathbf{q} - 20}{(\mathbf{x} + 1)^2 \cdot (\mathbf{x} - 26)^2} = 0$

simplify(ans)

 $\frac{q \cdot (x^2 - 52 \cdot x + 676) - 20 \cdot x^2 - 40 \cdot x - 20}{(x+1)^2 \cdot (x-26)^2} = 0$

solve(ans=0|q>0, x

ERROR:Insufficient Memory

solve $(q \cdot (x^2 - 52 \cdot x + 676) - 20 \cdot x^2 - 40 \cdot x - 20 = 0, x)$

 $\left\{ x = \frac{2 \cdot \left(13 \cdot q - 27 \cdot \sqrt{5 \cdot q} + 10 \right)}{q - 20}, x = \frac{2 \cdot \left(13 \cdot q + 27 \cdot \sqrt{5 \cdot q} + 10 \right)}{q - 20} \right\}$

propfrac (ans

 $\left\{ x = \frac{-54 \cdot \sqrt{5 \cdot q}}{q - 20} + \frac{540}{q - 20} + 26, x = \frac{54 \cdot \sqrt{5 \cdot q}}{q - 20} + \frac{540}{q - 20} + 26 \right\}$

solve $(\frac{-54 \cdot \sqrt{5 \cdot q}}{q-20} + \frac{540}{q-20} + 26 > 0, q$

 $\left\{q>\frac{5}{169} \text{ and } q\neq20\right\}$

solve(y(0)≥y(24)|p=20,q

 $\left\{ q \le \frac{125}{13} \right\}$

 $\begin{cases} \frac{d}{dx} (y(x)) = 0 | x = 12 \\ y(12) = 10 \end{cases}$

 $\left\{p = \frac{392}{27}, q = \frac{338}{27}\right\}$

3

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

