

VCE Mathematical Methods ¾
Functions & Relations Exam Skills [0.2]

Email: hello@contoureducation.com.au

Workshop Solutions

Section A: Recap

Sub-Section: Maximal Domains

Starting with a domain!

Maximal Domain

- **Definition**: The largest possible set of input values (elements of the domain) for which the function is well-defined.
- Three Important Rules:

<u>Functions</u>	<u>Maximal Domain</u>
\sqrt{z}	$z \ge 0$
$\log(z)$	z > 0
$\frac{1}{z}$	$z \neq 0$

- Steps:
 - 1. Find the restriction of the inside.
 - **2.** Sketch the graph if needed.
 - 3. Solve for domain.

What about a domain of the sum of two functions?

Sums, Differences and Products of Functions

Definition

Rules:

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = \underline{\qquad} f(x) - g(x)$$

$$(f \times g)(x) = \underline{\qquad} f(x) \times g(x)$$

ldea:

Domain of sum or product of two functions =

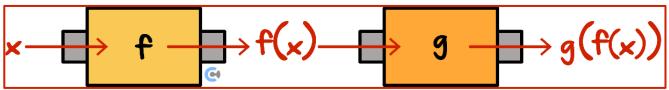
Intersection of the two domains

- Steps:
 - 1. Find the domain of each function.
 - 2. Find the intersection (draw a number line if needed).

Sub-Section: Basics of Composition

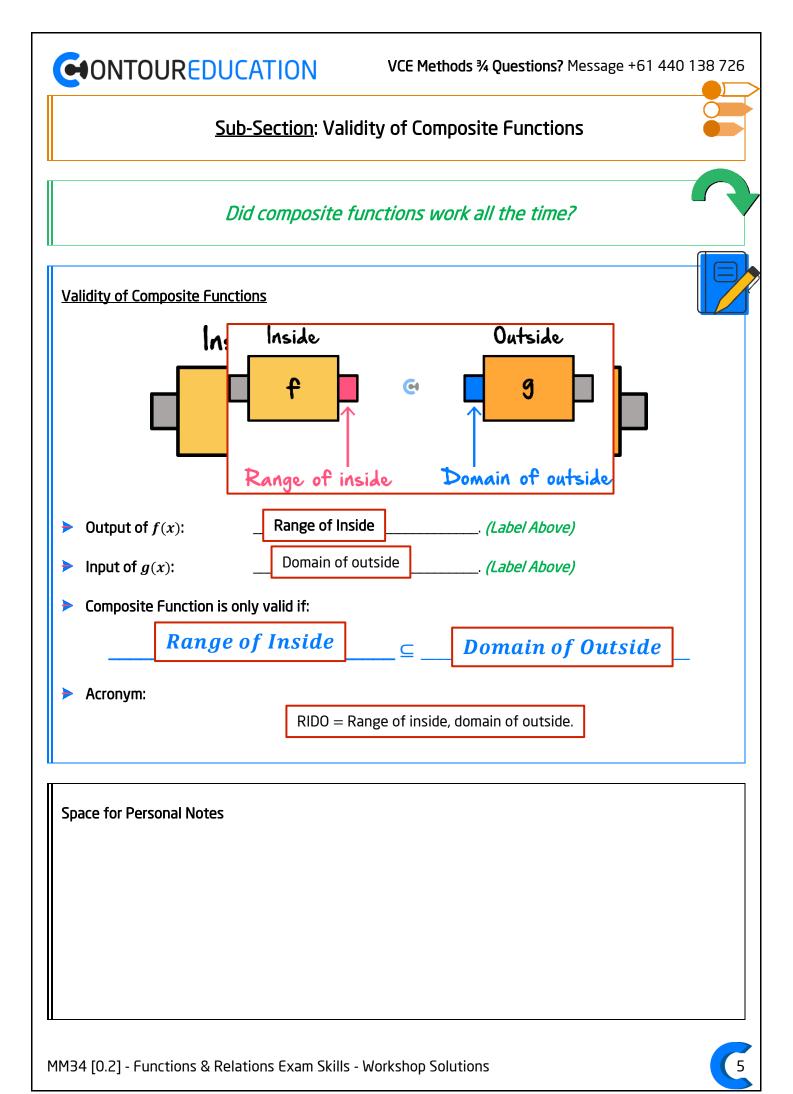
What was the "composition" of functions?

Composite Functions



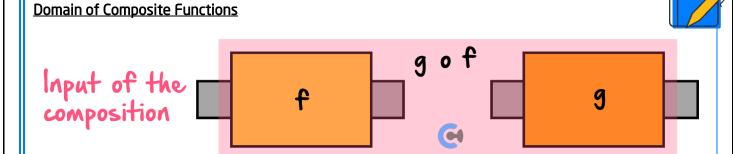
- Definition: A _____series ___ of functions.
- > Representation of the above:

$$y = \underline{\qquad} g(f(x)) = g \circ f(x)$$



Sub-Section: Domain of Composite Functions

How did we find the domain of a composite function?

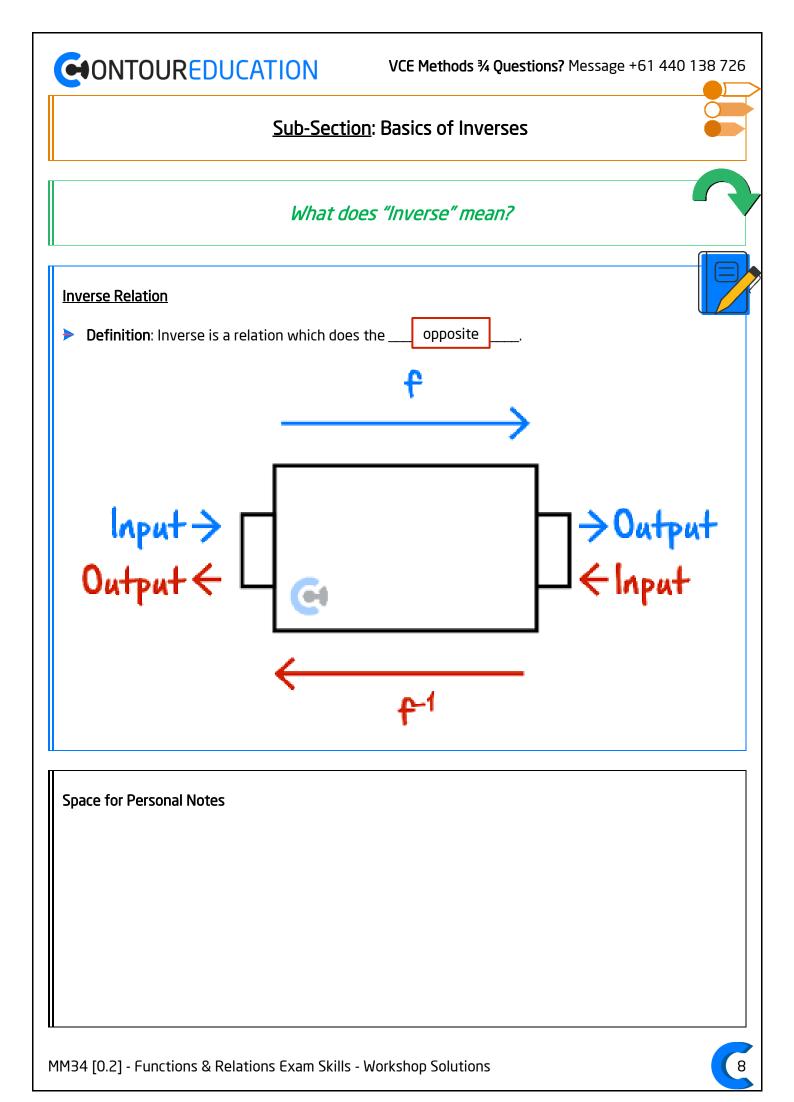


 $Domain\ of\ Composite = Domain\ of\ Inside$

Sub-Section: Range of Composite Functions

Range of Composite \subseteq Range of the Outside

Finding the range of composition function: Use the domain and the rule, just like another function.

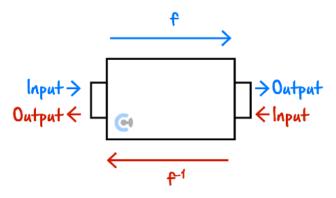


Sub-Section: Swapping x and y

Is there a better way of solving for an inverse relation?

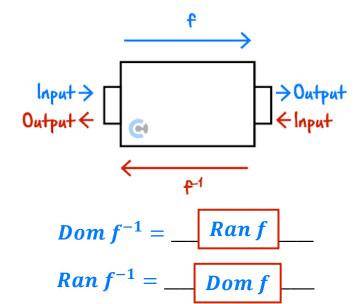
Solving for an Inverse Relation

 \blacktriangleright Swap x and y.



NOTE: f(x) = y.

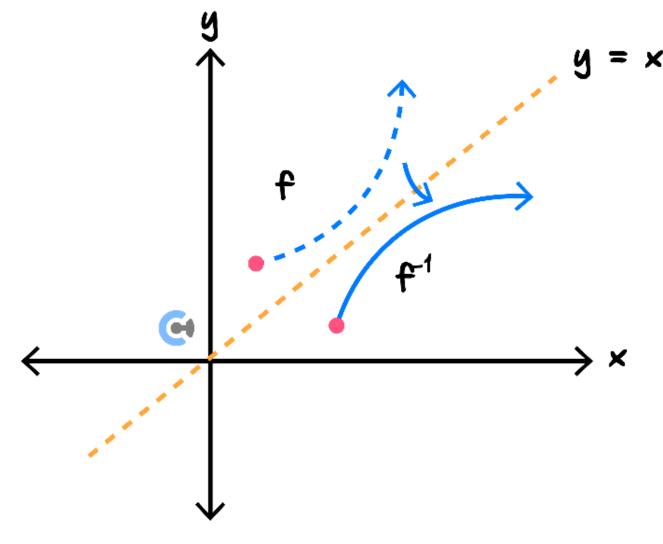
Domain and Range of Inverse Functions



Sub-Section: Symmetry Around y = x

Why does this happen?

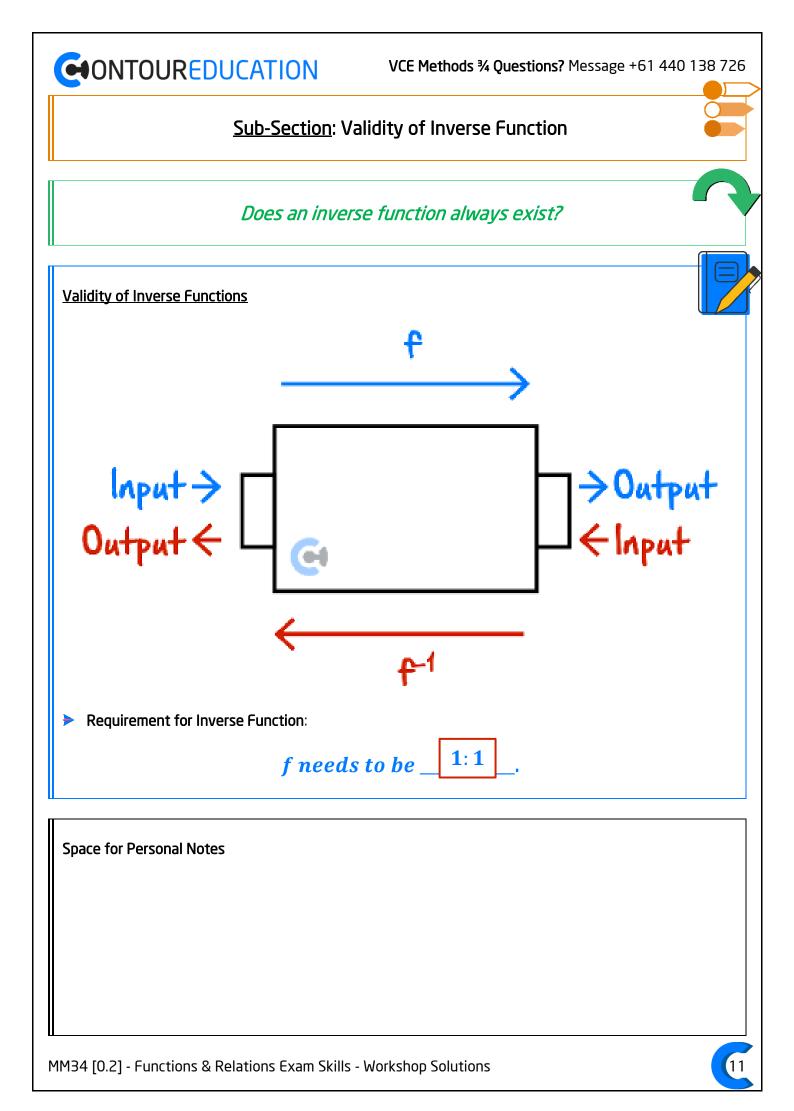
Symmetry of Inverse Functions



Inverse functions are always symmetrical around y = x.

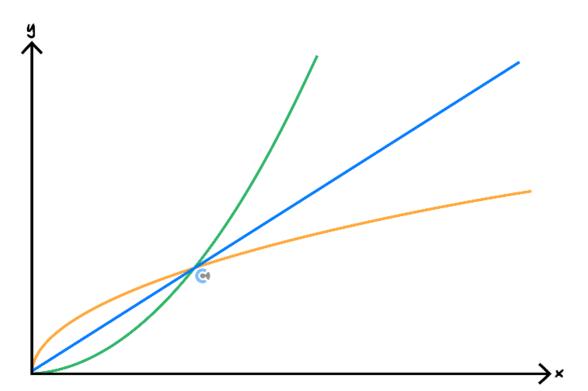
Space for Personal Notes

10



Sub-Section: Intersection Between Inverses

Intersection Between a Function and its Inverse



Fquate with y = x instead.

$$f(x) = x \text{ OR } f^{-1}(x) = x$$

➤ We cannot do this when the function is _____ decreasing _____ function.

 $\begin{tabular}{ll} \textbf{NOTE:} This only works for an increasing function. \\ \end{tabular}$

Sub-Section: Composition of Inverses

Composition of Inverse Functions

$$f \circ f^{-1}(x) = x$$
 for all $x = x$ dom f^{-1}

$$f^{-1} \circ f(x) = x$$
 for all $x \in x$

NOTE: Domain = Domain of Inside.

<u>Sub-Section</u>: Find a New Domain to Fix Composite Functions

Fixing Broken Composite Functions

- Aim: Restrict the domain of the inside function so that the range of the inside function fits inside the domain of the outside.
- Steps:
 - 1. Write down the RIDO statement with the domain of the outside (as it is fixed).
 - 2. Sketch the inside function to see what domain is needed.

Space for Personal Notes			

Sub-Section: Find the Range of Complex Composite Functions

Finding Range of Complex Composite Functions

- > Aim: Find the range of complicated functions.
- > Steps:
 - 1. Break the function into ____ composition ____ of two simple functions.
 - 2. Follow the _____ box diagram ____ to find the range.

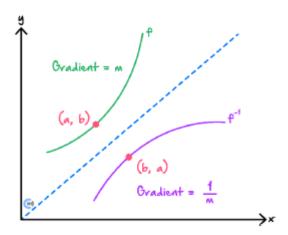
Sub-Section: Find the Gradient of Inverse Functions

•

REMINDER: Gradient of a Point

Gradient at a point
$$=\frac{dy}{dx}$$

Gradient of an Inverse



If Gradient of f at (a, f(a)) = mGradient of f^{-1} at $(f(a), a) = \frac{1}{m}$

Section B: Warm Up

INSTRUCTION: 5 Minutes Writing.

Ouestion 1

Consider $f(x) = \sqrt{2x}$ and g(x) = 2x - 1, both defined over their maximal domains.

a. Is f(g(x)) defined?

No. The range of g is R, but the maximal domain of f is only $x \ge 0$. Since range of inside is not a subset of domain of outside, f(g(x)) cannot exist.

b. Find the large restricted domain of g such that f(g(x)) is defined.

Step 1 Range of inside $\subseteq [0, \infty)$

Step 2 2x - 1 needs to be a subset of $[0, \infty)$

Step 3

Graph of y = 2x - 1 shows that $x \ge 1/2$ is the largest domain for which the range will be $[0, \infty)$

c. Find the range of $y = \log_3(x^2 + 9)$.

[2,∞)

d. Consider the one-to-one function h with the following properties:

h(3) = 2 and h'(3) = 5.

Find the gradient of h^{-1} at x = 2.

1 5

Section C: Exam 1 (20 Marks)

INSTRUCTION: 20 Marks. 26 Minutes Writing.

Question 2 (7 marks)

Consider the two functions:

$$f: D \to \mathbb{R}$$
, $f(x) = \frac{1}{x+2} + 1$

$$g: [0, \infty) \to \mathbb{R}, g(x) = \sqrt{x+4}$$

where D is a restricted domain of f.

a. Define g^{-1} , the inverse function of g. (2 marks)

$$x = \sqrt{y+4} \implies y = x^2 - 4$$
. dom $g^{-1} = \operatorname{ran} g = [0, \infty)$. $g^{-1} : [0, \infty) \to \mathbb{R}, \ g^{-1}(x) = x^2 - 4$.

b. The gradient of g^{-1} when x = 3 is 6. Find the gradient of g when x = 5. (2 marks)

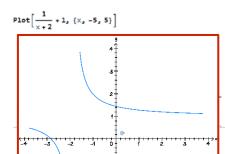
$$g(5) = 3 \implies g'(5) = \frac{1}{6}$$

c. Find the restricted domain, D, of the function f such that the composite function $g \circ f$ is defined. (3 marks)

 $\frac{1}{x+2} + 1 = 0$ x+2 = -1

Then by considering the shape/a rough sketch of the hyperbola we see that $x \le -3$ or x > -2. Therefore,

$$D = (-\infty, -3] \cup (-2, \infty) = \mathbb{R} \setminus (-3, -2]$$



Question 3 (6 marks)

Consider the functions, $f(x) = \frac{1}{x-2}$ and g(x) = 2x + 3 defined on their maximal domains.

Let h(x) = g(f(x)).

a. Write down the rule and domain of h(x). (2 marks)

Solution: $h: \mathbb{R} \setminus \{2\} \to \mathbb{R}, \ h(x) = \frac{2}{x-2} + 3$

b. Define the inverse function, h^{-1} , of h. (2 marks)

Solution: $x = \frac{2}{y-2} + 3$ $x - 3 = \frac{2}{y-2}$ $y = \frac{2}{y-2} + 2$

dom $h^{-1} = \operatorname{ran} h = \mathbb{R} \setminus \{3\}$. Therefore,

 $h^{-1}: \mathbb{R} \setminus \{3\} \rightarrow \mathbb{R}, \ h^{-1}(x) = \frac{2}{x-3} + 2$

c. Find the point(s) of intersection between h and h^{-1} . (2 marks)

Solution: Intersect on the line y = x.

$$\frac{2}{x-2} + 3 = x$$

$$2 = (x-2)(x-3)$$

$$x^2 - 5x + 4 = 0$$

$$(x-4)(x-1) = 0$$

$$x = 1, 4$$

Therefore points of intersection are (1,1) and (4,4)

Question 4 (7 marks)

Consider the function:

$$f: [a, \infty) \to \mathbb{R}, f(x) = \frac{1}{2}x^2 - 2x + 5$$

a. Find the largest value of a such that the inverse function f^{-1} exists. (1 mark)

Solution: $f(x) = \frac{1}{2}(x-2)^2 + 3$ Therefore, a = 2

b. Define f^{-1} . (2 marks)

Solution: dom $f^{-1}=\operatorname{ran}\, f=[3,\infty)$ and $\operatorname{ran}\, f^{-1}=\operatorname{dom}\, f=[2,\infty)$

$$x = \frac{1}{2}(y-2)^2 + 3$$
$$2(x-3) = (y-2)^2$$
$$y = \pm \sqrt{2x-6} + 2$$

By considering ran f^{-1} conclude that

 $f^{-1}:[3,\infty)\to\mathbb{R}, f^{-1}(x)=2+\sqrt{2x-6}.$

c. Given that f is an increasing function, show that f and f^{-1} do not have any points of intersection. (2 marks)

Solution: Would intersect on the line y = x. Consider

$$\frac{1}{2}x^2 - 2x + 5 = x$$
$$\frac{1}{2}x^2 - x + 5 = 0$$

Then $\Delta = 1 - 4 \times \frac{1}{2} \times 5 = -9 < 0$. So the equation has no real solutions. Therefore no intersection.

Let $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \frac{1}{2}x^2 - 2x + 5$ and $h: \mathbb{R} \to \mathbb{R}$, $h(x) = 2^x$.

d. Find the range of h(g(x)). (1 mark)

g(x) has a local minimum at (2,3). Therefore ran $h(g(x)) = [8,\infty)$

e. Find the minimum value of c such that h(g(x+c)) is one-to-one over the interval $[1, \infty)$. (1 mark)

c = 1

Section D: Technology Warmup

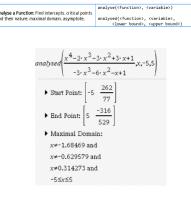
INSTRUCTION: 5 Minutes Writing.

Calculator Commands: Finding the domain and range

- **▶** TI
 - domain (f(x), x), f Min and Fmax.

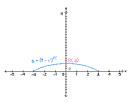
Define $f(x) = \sqrt{9-x^2}$	Done
domain(f(x),x)	-3≤x≤3
fMin(f(x),x)	x=-3 or x=3
fMax(f(x),x)	χ=0
1 (3)	0
/ (0)	3

► TI-UDF



Casio Classpad

Graph the function and use G-Solve to find min and max values for the range.



Mathematica

In[127]:=
$$f[x_] := \sqrt{9-x^2}$$

In[128]:= FunctionDomain[f[x], x]
Out[128]= $-3 \le x \le 3$
In[129]:= FunctionRange[f[x], x, y]
Out[129]= $0 \le y \le 3$

Mathematica UDF :

 \bullet Finfo [f [x], {x, x min, x max}, y]

Returns useful information about a function, including derivative, domain, range, period, horizontal intercepts, vertical intercepts, stationary points, inflexion points, left and sided asymptotes, oblique asymptotes and vertical asymptotes.

$$FInfo \left[\frac{x^2-1}{x\left(x^2-3\right)}, \{x, -Infinity, Infinity\}, y \right]$$
The function is $\frac{x^2-1}{x\left(x^2-3\right)}$
The derivative is $-\frac{x^4+3}{x^2\left(x^2-3\right)^2}$
Domain: $x<-\sqrt{3} \lor -\sqrt{3} < x < \theta \lor \theta < x < \sqrt{3} \lor x > \sqrt{3}$
Range: yeR
Period: θ
Horizontal Intercepts: $\{-1,1\}$
Vertical Intercepts: None
Stationary points: $\{\{(\cancel{e}\cdot 9.871...), (\cancel{e}\cdot -9.123...)\}, \{(\cancel{e}\cdot 0.871...), (\cancel{e}\cdot 0.123...)\}\}$
Left sided asymtote: $y=\theta$
Chlique asymtote: $y=\theta$
Oblique asymtote: $\{x=\theta, x=-\sqrt{3}, x=\sqrt{3}\}$

Calculator Commands: Finding the composite function

► TI

Define $f(x) = \ln(x)$	Done
Define $g(x)=x^2+3$	Done
A(g(x))	$\ln(x^2+3)$

CASIO

define
$$f(x) = \ln(x)$$
 done define $g(x) = x^2+3$ done $f(g(x))$

 $\ln(x^2+3)$

Mathematica

In[141]:=
$$f[x_{-}] := Log[x]$$

In[142]:= $g[x_{-}] := x^2 + 3$
In[143]:= $f[g[x]]$
Out[143]= $Log[3 + x^2]$

Calculator Commands: Finding the inverse function

► TI

Define
$$f(x)=x^2+4\cdot x+9$$
 Done
solve $(f(y)=x,y)$ $y=-(\sqrt{x-5}+2)$ or $y=\sqrt{x-5}-2$

CASIO

define
$$f(x) = x^2+4x+9$$
 done
$$solve(f(y)=x,y)$$

$$\{y=-\sqrt{x-5}-2, y=\sqrt{x-5}-2\}$$

Mathematica

$$\label{eq:initial_initial} \begin{split} &\inf[154] \coloneqq f[x_{-}] := x^2 + 4x + 9 \\ &\inf[155] \coloneqq Solve[f[y] == x, y] \\ & \text{Out}[155] \leftrightharpoons \left\{ \left\{ y \to -2 - \sqrt{-5 + x} \right\}, \left\{ y \to -2 + \sqrt{-5 + x} \right\} \right\} \end{split}$$

NOTE: It doesn't tell us which branch is correct.

Question 5 Tech-Active.

Find the domain and range of $f(x) = \sqrt{\frac{x^2-1}{x^2}}$.

In[20]:=
$$f[x_] := \sqrt{\frac{x^2 - 1}{x^2}}$$

In[21]:= FunctionDomain[f[x], x]

Out[21]= $x \le -1 \mid | x \ge 1$

In[22]:= FunctionRange[f[x], x, y]

Out[22]= $0 \le y < 1$

Section E: Exam 2 (23 Marks)

INSTRUCTION: 23 Marks. 30 Minutes Writing.

Question 6 (1 mark)

The function f defined by $f A \to \mathbb{R}$, $f(x) = (x-2)^2 + 3$ will have an inverse function if its domain A is:

- \mathbf{A} . \mathbb{R}
- **B.** $(-\infty, 3]$
- **C.** [3, 6]
- **D.** $[0, \infty)$

Question 7 (1 mark)

The linear function $f: D \to \mathbb{R}$, f(x) = 2 - x has a range of [-5,1). The domain of f is:

- **A.** (-5,1]
- **B.** (-1,5]
- **C.** (1,7]
- **D.** [7,1)

Question 8 (1 mark)

Let f be a one-to-one differentiable function, and the following values are known:

$$f(2) = 3, f(3) = 4, f'(2) = 5, \text{ and } f'(3) = 6$$

Let $g(x) = f^{-1}(x)$. The value of g'(3) is:

- **B.** $\frac{1}{7}$
- C. $\frac{1}{4}$
- **D.** $\frac{1}{6}$

Question 9 (1 mark)

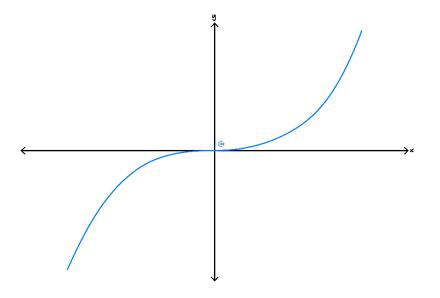
Let $f: [-1,3] \to \mathbb{R}$, f(x) = 2x - 1 and $g: D \to \mathbb{R}$, $g(x) = x^2 - 1$.

The largest interval D such that $f \circ g$ exists is:

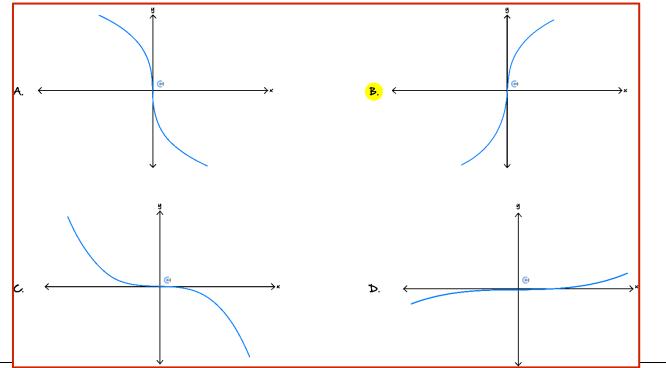
- **A.** (0,2)
- **B.** [0,2]
- C. [-2,2]
- **D.** [0,3]

Question 10 (1 mark)

Part of the graph of y = f(x) is shown below.



The inverse function f^{-1} is best represented by:



Question 11 (8 marks)

Health insurance provides MediBear (C_m) and Bopa (C_b) offer cost-based health insurance plans represented by the functions:

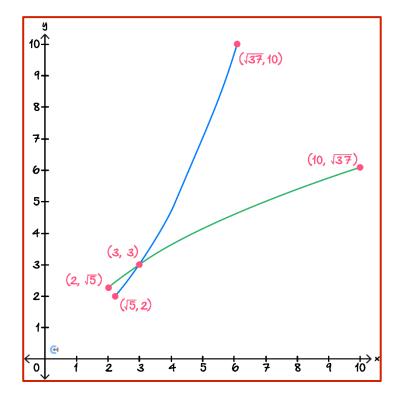
$$C_m = \sqrt{4x - 3}, 2 \le x \le 10$$
 and $C_b = C_m^{-1}(x)$

where C represents the amount paid for the plan by the customers in tens of dollars and x represents the plan's benefits rating.

a. Define the function C_b . (2 marks)

$$C_b: [\sqrt{5}, \sqrt{37}] \to \mathbb{R}, C_b (x) = \frac{1}{4}(x^2 + 3)$$

b. Graph the two functions on the axes below. Label all endpoints with coordinates. (2 marks)



c. What is the maximum plan benefit rating for a plan offered by Bopa? Give your answer correct to one decimal place. (1 mark) $\sqrt{37} \approx 6.1$ **d.** What plan benefit rating results in both plans having the same cost? (1 mark) Find the values of x for which $C_m < C_b$. (2 marks)

Question 12 (10 marks)

Consider the function $f: [a, \infty) \to \mathbb{R}, f(x) = x^2 - 2x - 2$.

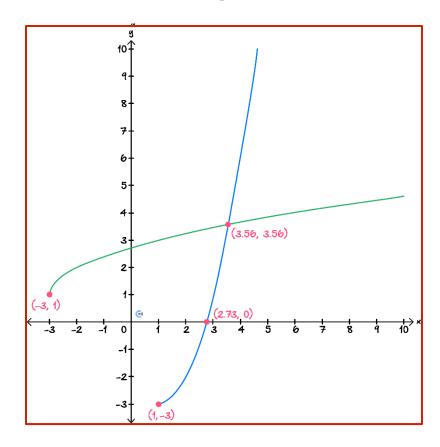
a. State the smallest value of α for which f has an inverse function. (1 mark)

a=1

b. Define the inverse function, f^{-1} . (2 marks)

 $f^{-1}: [-3, \infty) \to \mathbb{R}, f^{-1}(x) = 1 + \sqrt{x+3}$

c. Sketch the graphs of f and its inverse on the axes below. Label all axes intercepts, endpoints and points of intersection with coordinates correct to two decimal places. (3 marks)



CONTOUREDUCATION

d. Let f and f^{-1} intersect at the point P. It is known that f has a gradient of $1 + \sqrt{17}$ at P. Find the acute angle made by the tangents to f and f^{-1} at P. Give your answer in degrees correct to two decimal places. (2 marks)

$$\theta = \left| \tan^{-1}(1 + \sqrt{17}) - \tan^{-1}\left(\frac{1}{1 + \sqrt{17}}\right) \right| \approx 67.91^{\circ}$$

Consider the function $g:[2,\infty)\to\mathbb{R}$, $g(x)=\log_2(x+1)$.

e. Find all possible values for a such that g(f(x)) does not exist. (1 mark)

To not exist we need ran $f < 2 \implies a \in (1 - \sqrt{5}, 1 + \sqrt{5})$

f. If a = 4, find the range of g(f(x)) when it exists. (1 mark)

 $[\log_2(7), \infty)$

Let's take a <u>BREAK</u> (Extension Stream)!

A

Section F: Extension Exam 1 (13 Marks)

INSTRUCTION: 13 Marks. 20 Minutes Writing.

Question 13 (5 marks)

Consider the two functions $f(x) = \frac{1}{x-2}$ and $g(x) = 1 + \cos(x)$ defined on their maximal domains.

a. Determine whether or not the functions $f \circ g(x)$ or $g \circ f(x)$ exist, and justify your answer. If the composite function exists, state its rule and domain. (2 marks)

Solution: $f \circ g(x)$ does not exist because ran $g = [0, 2] \nsubseteq \mathbb{R} \setminus \{2\} = \text{dom } f$. $g \circ f(x)$ does exist since ran $f = \mathbb{R} \setminus \{0\} \subseteq \text{dom } g = \mathbb{R}$. $g \circ f(x) = 1 + \cos\left(\frac{1}{x-2}\right)$, with domain $\mathbb{R} \setminus \{2\}$.

b. Find the values of x for which $f^{-1}(x) > f(x)$. (3 marks)

Solution: $x = \frac{1}{y-2} \implies y = \frac{1}{x} + 2$. Solve, $\frac{1}{x-2} = x$ $x^2 - 2x - 1 = 0$ $(x-1)^2 = 2$ $x = 1 \pm \sqrt{2}$

Consider the shapes of the two graphs to conclude that $f^{-1}(x) > f(x)$ for

$$x\in (-\infty,1-\sqrt{2})\cup (0,2)\cup (1+\sqrt{2},\infty)$$

Question 14 (4 marks)

Let $f: (-\infty, k) \to \mathbb{R}$, $f(x) = \frac{1}{(x-k)^2}$, where k is a real constant.

a. Find the rule for f^{-1} in terms of k. (1 mark)

$$f^{-1}(x) = k - \frac{1}{\sqrt{x}}$$

b. Find the exact value of k so that $f = f^{-1}$ has one unique solution. Express your answer in the form $\frac{a}{b^c}$, for positive integers a, b and rational number c.

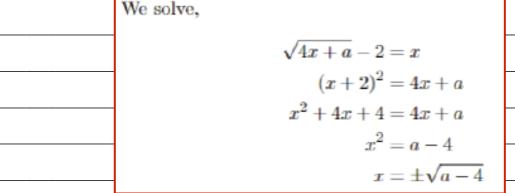
HINT: There will be one unique solution if y = x is tangent to f and f^{-1} when they intersect. (3 marks)

 Solution: Equation 1 is: $\frac{1}{(x-k)^2} = x$	
Equation 2 is: $f'(x) = 1 \implies -\frac{2}{(x-k)^3} = 1$	
E2 $\implies (x-k)^3 = -2$. Then multiply E1 by $\frac{1}{x-k}$	
$-rac{1}{2} = rac{x}{x-k}$	
$\implies k = 3x$	
Sub $k = 3x$ into E2 $\implies (-2x)^3 = -2 \implies x = \frac{1}{2^{2/3}}$. Then,	
$k = \frac{3}{2^{2/3}}$	
$2^{2/3}$	

Question 15 (4 marks)

Let $f: \left[-\frac{a}{4}, a \right] \to \mathbb{R}$, $f(x) = \sqrt{4x + a} - 2$, where a is a positive real number.

a. The graphs of y = f(x) and its inverse $y = f^{-1}(x)$ may have up to two points of intersection. Find the x-coordinates of any possible points of intersection of the graphs of y = f(x) and $y = f^{-1}(x)$ in terms of a. (2 marks)



b. Determine the set of values of a for which the graphs of f and f^{-1} have two points of intersection. (2 marks)

Solution:

From part a. the x-value of any point of intersection must satisfy $x^2 = a - 4$. This will have no real solutions if a < 4, and one real solution if a = 4. Therefore we must have a > 4 for two possible points of intersection.

Now we must consider whether the points of intersection are within the domain of both f and f^{-1} by considering endpoints.

dom $f^{-1} = \operatorname{ran} f = [-2, \sqrt{5a} - 2]$ and dom $f = \left[-\frac{a}{4}, a\right]$

The point $(\sqrt{a-4}, \sqrt{a-4})$ is always in the domain of both f and f^{-1} .

$$-2 = -\frac{a}{4} \implies a = 8.$$

When a > 8 the point $(-\sqrt{a-4}, -\sqrt{a-4})$ is not in the domain of f^{-1} . Two points of intersection for $4 < a \le 8$.

Section G: Extension Exam 2 (16 Marks)

INSTRUCTION: 16 Marks. 20 Minutes Writing.

Question 16 (1 mark)

Let $f(x) = \sqrt{ax + b}$ and let g be the inverse function of f. Given that f(0) = 1 and g'(x) > 0, then all possible values of a are:

A. $a \in \mathbb{R}^-$

B. $a \in \mathbb{R}^+$

C. $a \in \mathbb{R} \setminus \{0\}$

D. $a \in [0,1)$

Question 17 (1 mark)

The range of the function given by $f:(0,3] \to \mathbb{R}$, $f(x) = x^2 - 2x + b$ is:

A. (b-1, b+3)

B. [b-1, b+3]

C. (b, 3]

D. (b-1, b+3]

Question 18 (1 mark)

The functions $f(x) = \log_2(a - x)$ and $g(x) = -\sqrt{x + a}$ are defined on their maximal domains and $a \in \mathbb{R}^+$. The domain of $\frac{f}{a}$ is:

A. [-a, a)

B. [-a, a]

 \mathbf{C} . (-a,a)

D. $\mathbb{R}\setminus\{a\}$

Question 19 (1 mark)

Let f be a one-to-one differentiable function, and the following values are known:

$$f(a) = b, f(b) = c, f'(c) = d, \text{ and } f'(b) = k.$$

Let $g(x) = f^{-1}(x)$. The value of g'(c) is:

- A. $\frac{1}{a}$
- $\mathbf{B}. \ \frac{1}{k}$
- C. $\frac{1}{d}$
- $\mathbf{D.} \ \frac{1}{b}$

Question 20 (1 mark)

Consider the functions $f(x) = x^2 + b$, where $b \in \mathbb{R}$ and $g(x) = \sqrt{(x-2)(x-3)}$ defined on their maximal domains. The composite functions g(f(x)) will have domain equal to \mathbb{R} if:

- **A.** b < -2
- **B.** b < -1
- C. b > 3
- **D.** b > 2

Question 21 (11 marks)

Consider the function $f: [\sqrt{2}, \infty) \to \mathbb{R}, f(x) = \sqrt{2x^2 - 4}$.

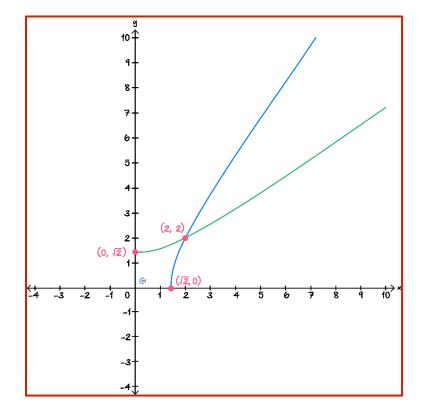
a. Define f^{-1} , the inverse function of f. (2 marks)

$$f^{-1}:[0,\infty)\to \mathbb{R},\, f^{-1}(x)=\sqrt{\frac{x^2+4}{2}}$$

b. Find the coordinates of the point P, which is the intersection between the graphs of y = f(x) and $y = f^{-1}(x)$. (1 mark)

(2, 2)

c. Sketch the graphs of y = f(x), $y = f^{-1}(x)$, on the axes below. Label all axes intercepts. (2 marks)



d. Find the acute angle between the tangents to the curves y = f(x) and $y = f^{-1}(x)$ at the point P. Give your answer in degrees correct to two decimal places. (2 marks)

f'(2) = 2. Therfore $\theta = \left| \tan^{-1}(2) - \tan^{-1}\left(\frac{1}{2}\right) \right| = 36.87^{\circ}$

Now, consider the one-to-one increasing function $g: D \to \mathbb{R}$, where $g(x) = \sqrt{kx^2 - 4}$ and $k \in \mathbb{R}^+$.

e.

i. Find the domain D in terms of k. (1 mark)

Solution: $kx^2 \ge 4 \implies x \le -\frac{2}{\sqrt{k}}$ or $x \ge \frac{2}{\sqrt{k}}$. But it is an increasing one-to-one function, therefore $D = \left[\frac{2}{\sqrt{k}}, \infty\right).$

ii. Find the value(s) of k such that g and g^{-1} do not intersect. (1 mark)

Solution: $g^{-1}(x) = \sqrt{\frac{x^2 + 4}{k}}$ Solving $g(x) = g^{-1}(x) \implies x = \frac{2}{\sqrt{k-1}}$, which is defined for k > 1Therfore no intersection for $k \in (0, 1)$ **f.** The two curves y = g(x) and $y = g^{-1}(x)$ intersect at x = c, where c > 1. The angle between the tangents at x = c is θ .

It is known that $tan(\theta) = \frac{9}{40}$. Determine the value of c and k. (2 marks)

Solution: We solve the simultaneous equations

$$\tan(\theta) = \left| \frac{g'(c) - \frac{1}{g'(c)}}{1+1} \right| = \frac{9}{40} \text{ and } g(c) = g^{-1}(c)$$

 $c = 4 \text{ and } k = \frac{5}{4}$

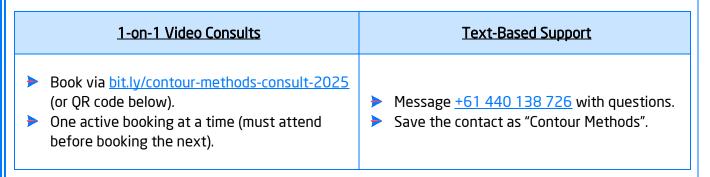
Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.



Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

