

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾
Functions & Relations Exam Skills [0.2]
Workshop

Section A: Recap

Sub-Section: Maximal Domains

Starting with a domain!

Maximal Domain

- **Definition**: The largest possible set of input values (elements of the domain) for which the function is well-defined.
- Three Important Rules:

<u>Functions</u>	<u>Maximal Domain</u>
$\sqrt{\mathbf{z}}$	
$\log(z)$	
$\frac{1}{z}$	

- Steps:
 - 1. Find the restriction of the inside.
 - **2.** Sketch the graph if needed.
 - 3. Solve for domain.

Sub-Section: Domain of Sum, Difference and Product of Functions

What about a domain of the sum of two functions?

Sums, Differences and Products of Functions

Rules:

$$(f+g)(x) = \underline{\hspace{1cm}}$$

$$(f-g)(x) = \underline{\hspace{1cm}}$$

$$(f \times g)(x) = \underline{\hspace{1cm}}$$

ldea:

Domain of sum or product of two functions = _____ of the two domains

- Steps:
 - 1. Find the domain of each function.
 - 2. Find the intersection (draw a number line if needed).

Sub-Section: Basics of Composition

What was the "composition" of functions?

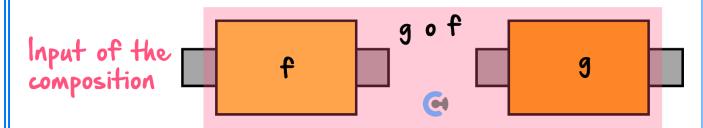
Composite Functions

- **Definition**: A ______ of functions.
- > Representation of the above:

<u>Sub-Section</u>: Domain of Composite Functions

How did we find the domain of a composite function?

Domain of Composite Functions

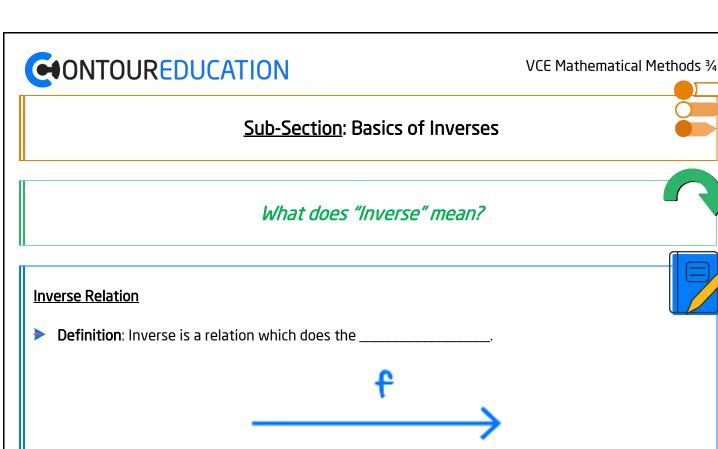


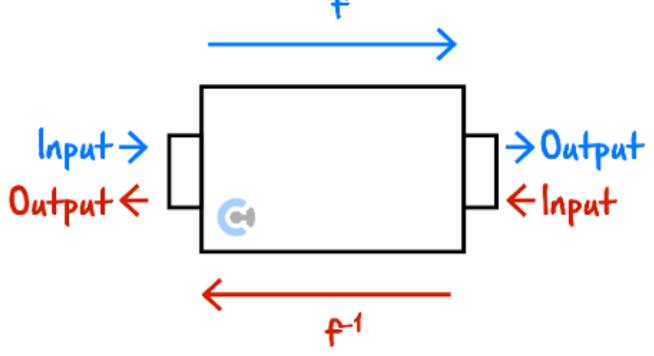
 $Domain\ of\ Composite = Domain\ of\ Inside$

Sub-Section: Range of Composite Functions

Range of Composite \subseteq Range of the Outside

Finding the range of composition function: Use the domain and the rule, just like another function.



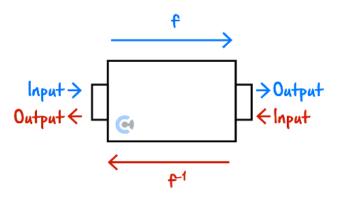


Sub-Section: Swapping x and y

Is there a better way of solving for an inverse relation?

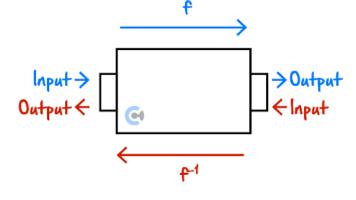
Solving for an Inverse Relation

 \blacktriangleright Swap x and y.



NOTE: f(x) = y.

Domain and Range of Inverse Functions



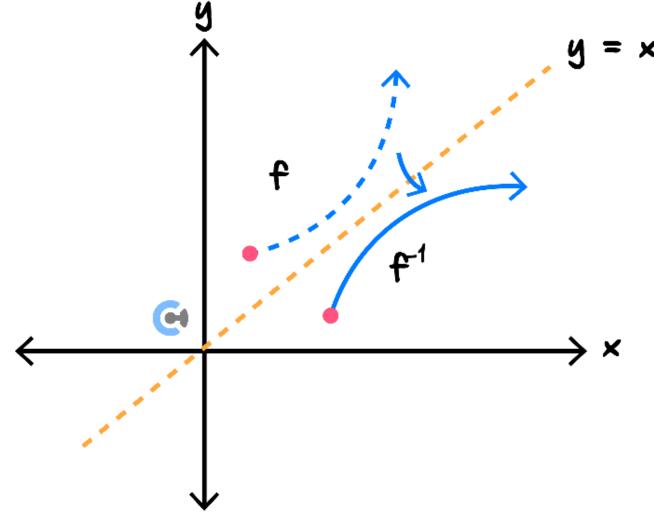
$$Dom f^{-1} =$$

$$Ran f^{-1} =$$

Sub-Section: Symmetry Around y = x

Why does this happen?

Symmetry of Inverse Functions

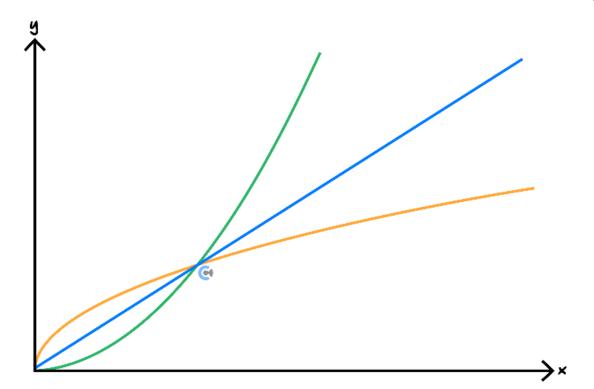


Inverse functions are always symmetrical around y = x.

Sub-Section: Intersection Between Inverses

Where do inverses meet?

Intersection Between a Function and its Inverse



> Equate with _____ instead.

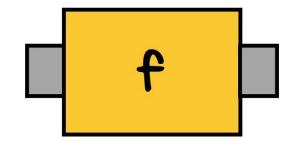
$$f(x) = x \mathsf{OR} f^{-1}(x) = x$$

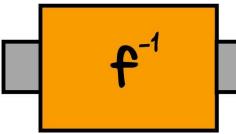
We cannot do this when the function is ______ function.

NOTE: This only works for an increasing function.

Sub-Section: Composition of Inverses

Composition of Inverse Functions





$$f \circ f^{-1}(x) = \underline{\hspace{1cm}}$$

$$f \circ f^{-1}(x) = \underline{\hspace{1cm}}, \qquad for \ all \ x \in \underline{\hspace{1cm}}$$

$$f^{-1}\circ f(x)=\underline{\hspace{1cm}}$$

$$f^{-1} \circ f(x) =$$
___, for all $x \in$ _____

NOTE: Domain = Domain of Inside.

Sub-Section: Find a New Domain to Fix Composite Functions

Fixing Broken Composite Functions

- Aim: Restrict the domain of the inside function so that the range of the inside function fits inside the domain of the outside.
- Steps:
 - 1. Write down the RIDO statement with the domain of the outside (as it is fixed).
 - 2. Sketch the inside function to see what domain is needed.

Sub-Section: Find the Range of Complex Composite Functions

Finding Range of Complex Composite Functions

- > Aim: Find the range of complicated functions.
- > Steps:
 - 1. Break the function into ______ of two simple functions.
 - **2.** Follow the ______ to find the range.

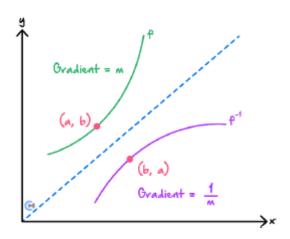
Sub-Section: Find the Gradient of Inverse Functions

This is a fun application of inverse with calculus!

REMINDER: Gradient of a Point

Gradient at a point
$$=\frac{dy}{dx}$$

Gradient of an Inverse



If Gradient of f at (a, f(a)) = m

Gradient of f^{-1} at ______

Section B: Warm Up

INSTRUCTION: 5 Minutes Writing.

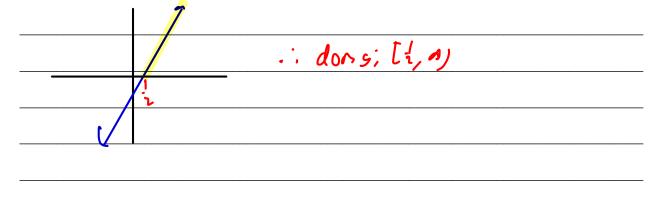
Question 1

Consider $f(x) = \sqrt{2x}$ and g(x) = 2x - 1, both defined over their maximal domains.

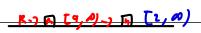
a. Is f(g(x)) defined?

rans: K
donf: to, s) i, f(s(n)) is andely

b. Find the largest domain of g such that f(g(x)) is defined.



c. Find the range of $f(x) = \log_3(x^2 + 9)$.



(4,2)

d. Consider the one-to-one function h with the following properties:

$$h(2) = 3$$
 and $h'(3) = 5$.

Find the gradient of h^{-1} at x = 2.

(312)

Section C: Exam 1 (20 Marks)

INSTRUCTION: 20 Marks. 26 Minutes Writing.

Question 2 (7 marks)

Consider the two functions:

$$f: D \to \mathbb{R}$$
, $f(x) = \frac{1}{x+2} + 1$

$$g: [0, \infty) \to \mathbb{R}, g(x) = \sqrt{x+4}$$

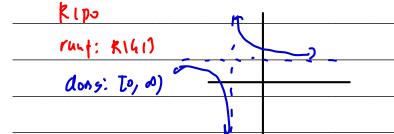
a. Define g^{-1} , the inverse function of g. (2 marks)

b. The gradient of g^{-1} when x = 3 is 6. Find the gradient of g when x = 5. (2 marks)

$$\therefore n = \frac{1}{6}$$

CONTOUREDUCATION

c. Find the maximal domain, D, of the function f such that the composite function $g \circ f$ is defined. (3 marks)



Question 3 (6 marks)

Consider the functions, $f(x) = \frac{1}{x-2}$ and g(x) = 2x + 3 defined on their maximal domains.

Let h(x) = g(f(x)).

a. Write down the rule and domain of h(x). (2 marks)

dos: K\42)

b. Define the inverse function, h^{-1} , of h. (2 marks)

c. Find the point(s) of intersection between h and h^{-1} . (2 marks)

h(n)=zL	(n-4) (n-1) >0
2 +3=n	Li #=1, 9
e = x-)	.; (1,1), (4,4)
2= (4-3) (44)	, ,
22 - 5x1622	
72 -24 the	

Question 4 (7 marks)

Consider the functions:

$$f: [a, \infty) \to \mathbb{R}, f(x) = \frac{1}{2}x^2 - 2x + 5$$

a. Find the largest value of a such that the inverse function f^{-1} exists. (1 mark)

$$f(x) = \frac{1}{2} (x^{-2})^{2} - 4f(x)$$

$$= \frac{1}{2} ((x^{-2})^{2} - 4f(x))$$

$$= \frac{1}{2} (x^{-2})^{2} + 3$$

b. Define f^{-1} . (2 marks)

c. Show that f and f^{-1} do not have any points of intersection. (2 marks)

 $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{-\infty}^{\infty} 36 - 4.70}{2}$ $f(\lambda) = \lambda \qquad \lambda = \frac{61 \int_{$

Let $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \frac{1}{2}x^2 - 2x + 5$ and $h: \mathbb{R} \to \mathbb{R}$, $h(x) = 2^x$.

d. Find the range of h(g(x)). (1 mark)

K [0,0) -> [1]

∴ [8, **-**)

e. Find the value of *c* if the maximal domain that h(g(x+c)) is one-to-one on is $[1, \infty)$. (1 mark)

C=1

Section D: Technology Warmup

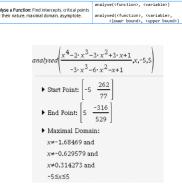
INSTRUCTION: 5 Minutes Writing.

Calculator Commands: Finding the domain and range

- **▶** TI
 - domain (f(x), x), f Min and Fmax.

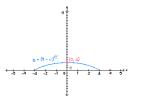
Define $f(x) = \sqrt{9-x^2}$	Done
domain(f(x),x)	-3≤x≤3
fMin(f(x),x)	x=-3 or x=3
fMax(f(x),x)	χ=0
1 (3)	0
/ (0)	3

► TI-UDF



Casio Classpad

Graph the function and use G-Solve to find min and max values for the range.



Mathematica

In[127]:=
$$f[x_{]} := \sqrt{9 - x^2}$$

In[128]:= FunctionDomain[f[x], x]
Out[128]:= $-3 \le x \le 3$
In[129]:= FunctionRange[f[x], x, y]
Out[129]:= $0 \le y \le 3$

Mathematica UDF :

Returns useful information about a function, including derivative, domain, range, period, horizontal intercepts, vertical intercepts, stationary points, inflexion points, left and sided asymptotes, oblique asymptotes and vertical asymptotes.

$$FInfo \left[\frac{x^2-1}{x\left(x^2-3\right)}, \{x, -Infinity, Infinity\}, y \right]$$
The function is $\frac{x^2-1}{x\left(x^2-3\right)}$
The derivative is $-\frac{x^4+3}{x^2\left(x^2-3\right)^2}$
Domain: $x<-\sqrt{3} \lor -\sqrt{3} \lor -\sqrt{3} < x < \theta \lor \theta < x < \sqrt{3} \lor x > \sqrt{3}$
Range: yeR
Period: θ
Horizontal Intercepts: $\{-1, 1\}$
Vertical Intercepts: None
Stationary points: $\{\{(\cancel{e} \cdot 0.871...), (\cancel{e} \cdot 0.123...)\}, \{(\cancel{e} \cdot 0.871...), (\cancel{e} \cdot 0.123...)\}\}$
Left sided asymtote: $y=\theta$
Right sided asymtote: $y=\theta$
Oblique asymtote: $\{0\}$
Vertical asymtote: $\{x=\theta, x=-\sqrt{3}, x=\sqrt{3}\}$

Calculator Commands: Finding the composite function

► TI

Define $f(x) = \ln(x)$	Done
Define $g(x)=x^2+3$	Done
f(g(x))	$\ln(x^2+3)$

CASIO

define
$$f(x) = \ln(x)$$
 done define $g(x) = x^2+3$ done $f(g(x))$ $\ln(x^2+3)$

Mathematica

In[141]:=
$$f[x_{-}] := Log[x]$$

In[142]:= $g[x_{-}] := x^2 + 3$
In[143]:= $f[g[x]]$
Out[143]= $Log[3 + x^2]$

Calculator Commands: Finding the inverse function

► TI

Define
$$f(x)=x^2+4\cdot x+9$$
 Done
solve $(f(y)=x,y)$ $y=-(\sqrt{x-5}+2)$ or $y=\sqrt{x-5}-2$

CASIO

define
$$f(x) = x^2+4x+9$$
 done solve $(f(y)=x, y)$ $\{y=-\sqrt{x-5}-2, y=\sqrt{x-5}-2\}$

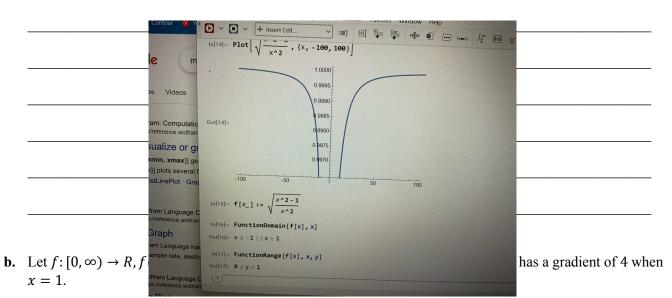
Mathematica

$$\label{eq:infinite} \begin{split} &\inf[154] \coloneqq f[x_{-}] := x^2 + 4 \ x + 9 \\ &\inf[155] \coloneqq Solve[f[y] := x, \ y] \\ & \text{Out}[155] \leftrightharpoons \left\{ \left\{ y \to -2 - \sqrt{-5 + x} \right\}, \left\{ y \to -2 + \sqrt{-5 + x} \right\} \right\} \end{split}$$

NOTE: It doesn't tell us which branch is correct.

Question 5 Tech-Active.

a. Find the domain and range of $f(x) = \sqrt{\frac{x^2 - 1}{x^2}}$.



Section E: Exam 2 (23 Marks)

INSTRUCTION: 23 Marks. 30 Minutes Writing.

Question 6 (1 mark)

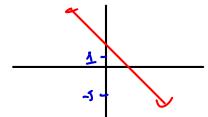
The function f defined by $f A \to \mathbb{R}$, $f(x) = (x-2)^2 + 3$ will have an inverse function if its domain A is:

- \mathbf{A} . \mathbb{R}
- **B.** $(-\infty, 3]$
- **C.** [3, 6]
- **D.** $[0, \infty)$

Question 7 (1 mark)

The linear function $f: D \to \mathbb{R}$, f(x) = 2 - x has a range of [-5,1). The domain of D is:

- **A.** (-5,1]
- **B.** (-1,5]
- **C.** (1,7]
- **D.** [7,1)



- 2-n-1
 - 721
 - 2.45.6
 - 1:7

Question 8 (1 mark)

Let f be a one-to-one differentiable function, and the following values are known:

$$f(2) = 3, f(3) = 4, f'(2) = 5, \text{ and } f'(3) = 6$$

Let $g(x) = f^{-1}(x)$. The value of g'(3) is:

- **B.** $\frac{1}{7}$
- C. $\frac{1}{4}$
- **D.** $\frac{1}{6}$

Question 9 (1 mark)

Let $f: [-1,3] \to \mathbb{R}$, f(x) = 2x - 1 and $g: D \to \mathbb{R}$, $g(x) = x^2 - 1$.

The largest interval D such that $f \circ g$ exists is:

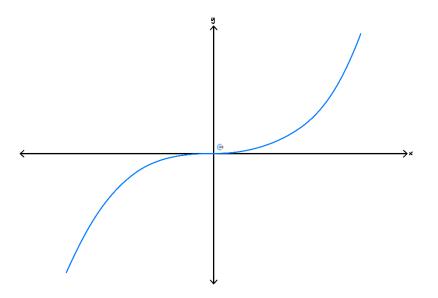
rans:
$$[-1,0)$$

don f: $[-1,0)$
 $g(M=1)$

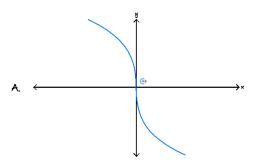
C.
$$[-2,2]$$

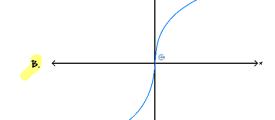
Question 10 (1 mark)

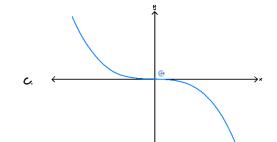
Part of the graph of y = f(x) is shown below.

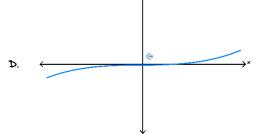


The inverse function f^{-1} is best represented by:









Question 11 (8 marks)

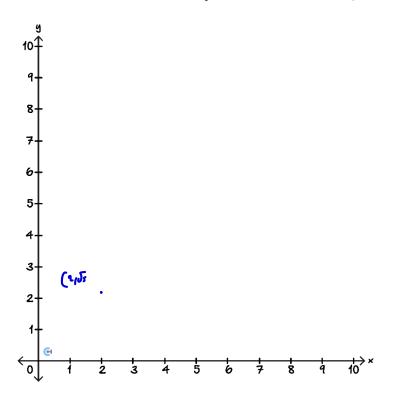
Health insurance providers MediBear and Bopa offer cost-based health insurance plans represented by the functions:

$$C_m = \sqrt{4x - 3}, 2 \le x \le 10$$
 and $C_b = C_m^{-1}(x)$

where C represents the amount paid for the plan in tens of dollars and x represents the plan's benefits rating.

a. Define the function C_b . (2 marks)

b. Graph the two functions on the axes below. Label all endpoints with coordinates. (2 marks)



place. (1 mark)
J17 26.1
What plan benefit rating results in both plans having the same cost? (1 mark)
$m{\Lambda}$
Find for what benefit ratings, customers are better off with a MediBear plan. (2 marks)
ty fr)U (1,10)

Question 12 (10 marks)

Consider the function $f: [a, \infty) \to \mathbb{R}, f(x) = x^2 - 2x - 2$.

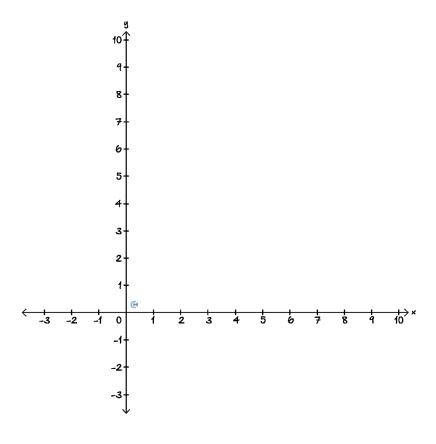
a. State the smallest value of a for which f has an inverse function. (1 mark)

a: 1

b. Define the inverse function, f^{-1} . (2 marks)

f · ((4) =	1 + J = +)	/ n E	[-3, 0)

 \mathbf{c} . Sketch the graphs of f and its inverse on the axes below. Label all axes intercepts, endpoints and points of intersection with coordinates correct to two decimal places. (3 marks)



CONTOUREDUCATION

d. Let f and f^{-1} intersect at the point P. It is known that f has a gradient of $1 + \sqrt{17}$ at P. Find the angle made by the tangents to f and f^{-1} at P. Give your answer in degrees correct to two decimal places. (2 marks)

$$N=1+\sqrt{17}$$
 $O=tan^{-1}(1+\sqrt{17})=78-96°$
 $O:=tan^{-1}(\frac{1}{1+\sqrt{17}})=11.04°$

Consider the function $g:[2,\infty)\to\mathbb{R}$, $g(x)=\log_2(x+1)$.

e. Find all possible values for a such that g(f(x)) does not exist. (1 mark)

f. If a = 4, find the range of g(f(x)). (1 mark)

Let's take a <u>BREAK</u> (Extension Stream)!

Section F: Extension Exam 1 (13 Marks)

INSTRUCTION: 13 Marks. 20 Minutes Writing.

Qu	Question 13 (5 marks)			
Co	nsider the two functions $f(x) = \frac{1}{x-2}$ and $g(x) = 1 + \cos(x)$ defined on their maximal domains.			
a.	Determine whether or not the functions $f \circ g(x)$ or $g \circ f(x)$ exist, and justify your answer. If the composite function exists, state its rule and domain. (2 marks)			
b.	Find the values of x for which $f^{-1}(x) > f(x)$. (3 marks)			

Question 14 (4 marks) Let $f: (-\infty, k) \to \mathbb{R}$, $f(x) = \frac{1}{(x-k)^2}$, where k is a real constant. **a.** Find the rule for f^{-1} in terms of k. (1 mark) **b.** Find the exact value of k so that $f = f^{-1}$ has one unique solution. Express your answer in the form $\frac{a}{b^c}$, for positive integers a, b and rational number c. **HINT:** There will be one unique solution if y = x is tangent to f and f^{-1} when they intersect. (3 marks)

Question 15 (4 marks)

Let $f: \left[-\frac{a}{4}, a \right] \to \mathbb{R}$, $f(x) = \sqrt{4x + a} - 2$, where a is a positive real number.

a. The graphs of y = f(x) and its inverse $y = f^{-1}(x)$ may have up to two points of intersection. Find the x-coordinates of any possible points of intersection of the graphs of y = f(x) and $y = f^{-1}(x)$ in terms of a. (2 marks)

b. Determine the set of values of a for which the graphs of f and f^{-1} have two points of intersection. (2 marks)

Section G: Extension Exam 2 (16 Marks)

INSTRUCTION: 16 Marks. 20 Minutes Writing.

Question 16 (1 mark)

Let $f(x) = \sqrt{ax + b}$ and let g be the inverse function of f. Given that f(0) = 1 and g'(x) > 0, then all possible values of a are:

- A. $a \in \mathbb{R}^-$
- **B.** $a \in \mathbb{R}^+$
- C. $a \in \mathbb{R} \setminus \{0\}$
- **D.** $a \in [0,1)$

Question 17 (1 mark)

The range of the function given by $f:(0,3] \to \mathbb{R}$, $f(x) = x^2 - 2x + b$ is:

- **A.** (b-1, b+3)
- **B.** [b-1, b+3]
- **C.** (*b*, 3]
- **D.** (b-1, b+3]

Question 18 (1 mark)

The functions $f(x) = \log_2(a - x)$ and $g(x) = -\sqrt{x + a}$ are defined on their maximal domains and $a \in \mathbb{R}^+$. The domain of $\frac{f}{a}$ is:

- **A.** [-a, a)
- **B.** [-a,a]
- **C.** (-a, a)
- **D.** $\mathbb{R}\setminus\{a\}$

Question 19 (1 mark)

Let f be a one-to-one differentiable function, and the following values are known:

$$f(a) = b, f(b) = c, f'(c) = d, \text{ and } f'(b) = k.$$

Let $g(x) = f^{-1}(x)$. The value of g'(c) is:

- A. $\frac{1}{a}$
- $\mathbf{B.} \ \ \frac{1}{k}$
- C. $\frac{1}{d}$
- **D.** $\frac{1}{b}$

Question 20 (1 mark)

Consider the functions $f(x) = x^2 + b$, where $b \in \mathbb{R}$ and $g(x) = \sqrt{(x-2)(x-3)}$ defined on their maximal domains. The composite functions g(f(x)) will have domain equal to \mathbb{R} if:

- **A.** b < -2
- **B.** b < -1
- C. b > 1
- **D.** b > 2

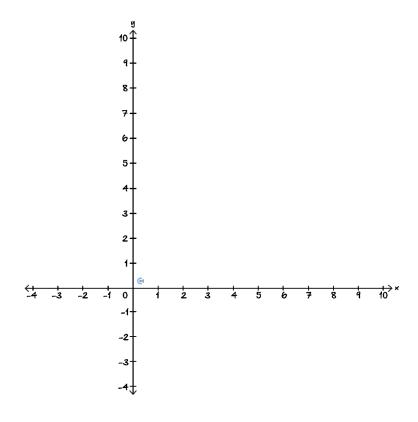
Question 21 (11 marks)

Consider the function $f: [\sqrt{2}, \infty) \to \mathbb{R}$, where $f(x) = \sqrt{2x^2 - 4}$.

a. Define f^{-1} , the inverse function of f. (2 marks)

b. Find the coordinates of the point P, which is the intersection between the graphs of y = f(x) and $y = f^{-1}(x)$. (1 mark)

c. Sketch the graphs of y = f(x), $y = f^{-1}(x)$, on the axes below. Label all axes intercepts. (2 marks)



increasing function $g: D \to \mathbb{R}$, where $g(x) = \sqrt{kx^2 - 4}$ and $k \in \mathbb{R}^+$.
terms of k . (1 mark)
such that g and g^{-1} do not intersect. (1 mark)
1

f.	The two curves $y = g(x)$ and $y = g^{-1}(x)$ intersect at $x = c$, where $c > 1$. The angle between the tangents at $x = c$ is θ . It is known that $\tan(\theta) = \frac{9}{40}$. Determine the value of c and d . (2 marks)

I	Space for Personal Notes
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
ı	