

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Family of Functions & its Exam Skills [0.14]

Workshop

Error Logbook:

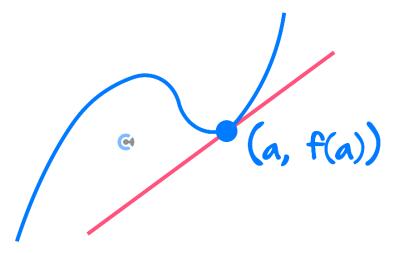
New Ideas/Concepts	Didn't Read Question
Pg / Q #:	Pg / Q #:
Algebraic/Arithmetic/ Calculator Input Mistake	Working Out Not Detailed Enough
Pg / Q #:	Pg / Q #: Notes:

Section A: Recap

Families of Functions

Functions with an unknown.

- They involve understanding and using transformations.
- They involve the use of sliders/manipulate on CAS/technology.

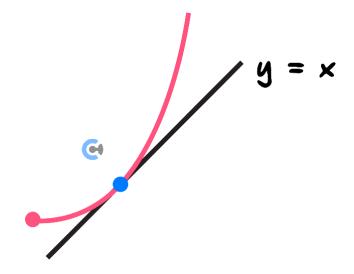

Using Sliders/Manipulate on Technology

- 1. Understanding the effect of the unknown on the graph.
 - As often this is not obvious from transformations.
- 2. Checking your answer.
 - When finding the value(s) of an unknown, check the value smaller and larger than the value obtained to see which side satisfies the condition.

Tangent to a Family of Functions

- For a function to "touch" a line as a tangent:
 - They intersect.

$$f(a) = mx + c$$


• With the same gradient.

$$f'(a) = m$$

We just solve these simultaneously.

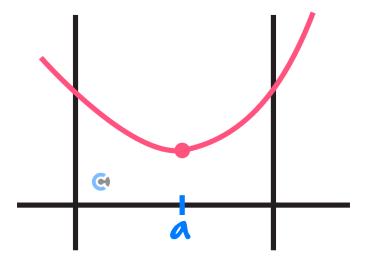
Definition

Family of Functions and Inverse

- For a function to "touch" y = x as a tangent:
 - They intersect.

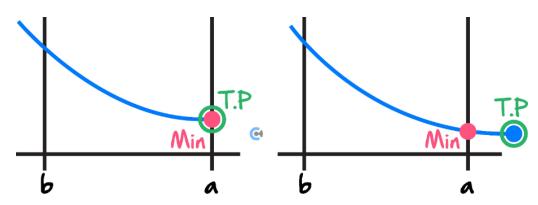
$$f(a) = a$$

• With the same gradient.


$$f'(a) = 1$$

We just solve these simultaneously.

Minimum/Maximum at a Turning Point


To achieve minimum/maximum at x = a.

$$f'(a) = 0$$

ightharpoonup This is only when x=a is not an end point.

Minimum/Maximum at an End Point

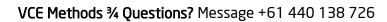
> Step 1: Find the value of the unknown such that the turning point occurs at x = a.

$$f'(a) = 0$$

> Step 2: Find the value of the unknown such that the turning point occurs after/below x=a.

We can determine whether the unknown can be bigger or smaller than the value achieved in step 1.

$$f'(a \pm something) = 0$$


Section B: Warm Up (11 Marks)

INSTRUCTION:

- Regular: 11 Marks. 11 Minutes Writing.
- Extension: Skip

Question 1 (3 marks)
Consider the function:
$f(x) = e^{2x} + k$
Find the value of k such that $f(x)$ hits the line $y = 2x$ only once.

Question 2 (3 marks)
Consider the function $f(x) = \sqrt{x+1} + k$.
Find the value(s) of k such that $f(x)$ and its inverse never intersect.
·
Space for Personal Notes

Consider the function $f(x) = 2x \log_e(x)$ Find the value of k such that $f(x - k)$ has a local minimum when $x = 10$. Question 4 (2 marks) Consider the family of functions $f(x) = (x - k)^2 + 4, x \in [2, 10]$. Find the value(s) of k such that the minimum value of the function occurs at $x = 2$	
Question 4 (2 marks) Consider the family of functions $f(x) = (x - k)^2 + 4, x \in [2, 10]$.	
Question 4 (2 marks) Consider the family of functions $f(x) = (x - k)^2 + 4, x \in [2, 10]$.	
Question 4 (2 marks) Consider the family of functions $f(x) = (x - k)^2 + 4, x \in [2, 10]$.	_
Question 4 (2 marks) Consider the family of functions $f(x) = (x - k)^2 + 4$, $x \in [2, 10]$.	_
Question 4 (2 marks) Consider the family of functions $f(x) = (x - k)^2 + 4, x \in [2, 10]$.	_
Question 4 (2 marks) Consider the family of functions $f(x) = (x - k)^2 + 4, x \in [2, 10]$.	
Question 4 (2 marks) Consider the family of functions $f(x) = (x - k)^2 + 4, x \in [2, 10]$.	_
Question 4 (2 marks) Consider the family of functions $f(x) = (x - k)^2 + 4, x \in [2, 10]$.	_
Question 4 (2 marks) Consider the family of functions $f(x) = (x - k)^2 + 4, x \in [2, 10]$.	_
Question 4 (2 marks) Consider the family of functions $f(x) = (x - k)^2 + 4, x \in [2, 10]$.	_
Consider the family of functions $f(x) = (x - k)^2 + 4, x \in [2, 10]$.	_
Consider the family of functions $f(x) = (x - k)^2 + 4$, $x \in [2, 10]$.	_
Consider the family of functions $f(x) = (x - k)^2 + 4, x \in [2, 10]$.	
Consider the family of functions $f(x) = (x - k)^2 + 4, x \in [2, 10]$.	-
The the reference of the paper that the minimum value of the function occurs at $\lambda = L$	
	_
	_
	_
	_
	_
	_

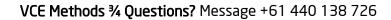
Section C: Exam 1 Questions (17 Marks)

INSTRUCTION:

- Regular: 17 Marks. 5 Minutes Reading. 25 Minutes Writing.
- Extension: 17 Marks. 5 Minutes Reading. 17 Minutes Writing.

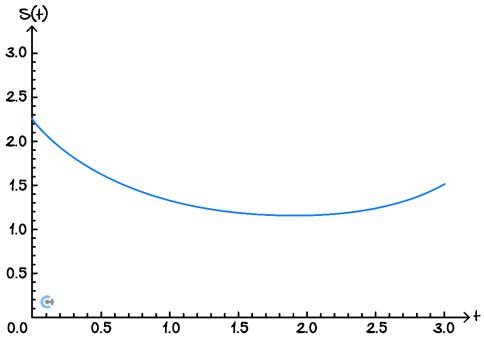
Question	5	(3	marks)
----------	---	----	--------

Consider the function:


$$f(x) = e^{\frac{1}{2}x} + 1$$

Find the value(s) of k such that f(x - k) hits the line $y = \frac{1}{2}x$ twice.

Question 6 (4 marks)				
Consider the function $f: [a, \infty) \to R$, $f(x) = (x - 3)^2 + k$.				
a. Find the minimum value of a such that f^{-1} exists. (1 mark)				
Let $g: D \to R$, $g(x) = \log_e(2x + 1)$ where D is the maximal domain of g.				
b. Find the value(s) of k such that $g(f(x))$ exists. (1 mark)				
c. Find the value(s) of k such that f and f^{-1} has two intersections. (2 marks)				
indicated in the variation of the such that y and y indicated in the such that y and y				
				



Question 7 (3 marks)
Let $f: R \to R$, $f(x) = e^x + k$, where k is a real number. The tangent to the graph of f at the point where $x = a$,
has a y-axis intercept in the interval $y \in [0,2]$.
Find the possible values of k in terms of a .
Space for Personal Notes

Question 8 (7 marks)

Contour students' stress levels were measured during their MM34 workshop which lasts for 3 hours.

$$S(t) = \frac{a}{t+1} + \frac{1}{4-t}$$
 where $0 \le t \le 3, a \in (0, 1000)$

t is number of hours since the start of the MM34 workshop.

a. Find the derivative of S(t). (2 marks)

b. For what value(s) of a would students have a minimum stress level at t = 1. (2 marks)

VCE Methods ¾ Questions? Message +61 440 138 726

	The state of the s
c.	For what value(s) of a would students have a minimum stress level at the end of the MM 34 workshop. (3 marks)
St	pace for Personal Notes

Section D: Tech Active Exam Skills

<u>Calculator Commands:</u> Using Sliders/Manipulate on CAS

9

Mathematica

NOTE: The function must be typed out instead of using its saved name.

f1(x)=function with unknown Create Sliders Create a slider for: unknown OK Cancel

Casio

unknown =type any nun -5.00000 5.00000

<u>Calculator Commands:</u> Finding k so that f and f^{-1} intersect once

- Step 1: Plot the functions with sliders.
- > Step 2: Solve the equations f(a) = a and f'(a) = 1 simultaneously on our CAS.
- Step 3: Check that your answer makes sense by using your sliders.
- **Example** Consider the function $f(x) = e^{kx}$, where k > 0. Find the exact value of k for which f and f^{-1} , have exactly one point of intersection.
- Mathematica:

$$In[29]:= f[x_] := Exp[kx]$$

$$In[33]:= Solve[f[x] == x && f'[x] == 1]$$

Out[33]=
$$\left\{ \left\{ k \to \frac{1}{e}, x \to e \right\} \right\}$$

TI:

Define
$$f(x) = e^{k \cdot x}$$
 Done

Define
$$df(x)=k \cdot e^{k \cdot x}$$

Done

solve(
$$f(x)=x$$
 and $df(x)=1,k,x$)

$$k$$
=0.367879 and x =2.71828

$$solve(f(\boldsymbol{e}) = \boldsymbol{e}, k)$$

$$k=e^{-1}$$

solve
$$(k \cdot x = \ln(x) \text{ and } df(x) = 1, k, x)$$
 $k = e^{-1} \text{ and } x = e$

$$k=e^{-1}$$
 and $x=e$

Casio:

$$\begin{cases} \exp(k*x) = x \\ k*\exp(k*x) = 1 \\ x, k \end{cases}$$

$$\begin{cases} e^{k*x} - x = 0, k*e^{k*x} - 1 = 0 \end{cases}$$

$$\begin{cases} k*x = \ln(x) \\ k*\exp(k*x) = 1 \\ x, k \end{cases}$$

 $\{x=e, k=e^{-1}\}$

NOTE: Sometimes for tricker equations we will not immediately get a solution for the system of equations or it will not be exact, but often altering the equations with some simple algebra will then allow the CAS to solve it correctly.

Section E: Exam 2 Questions (27 Marks)

INSTRUCTION:

- Regular: 27 Marks. 5 Minutes Reading. 40 Minutes Writing.
- Extension: 27 Marks. 5 Minutes Reading. 27 Minutes Writing.

Question 9 (1 mark)

The graph of y = kx - 2 intersects the graph of $y = x^2 + 6x$ at two distinct points for:

- **A.** k = 8
- **B.** $k > 6 + 2\sqrt{2}$ or $k < 6 2\sqrt{2}$
- **C.** $2 \le k \le 6$
- **D.** $4 2\sqrt{3} \le k \le 4 + 2\sqrt{3}$

Question 10 (1 mark)

Consider the function $g(x) = e^{x^2 - 4kx + k}$. The value(s) of k for which g has a local minimum when y = 1 are:

- **A.** k = 0
- **B.** $k = 0, \frac{1}{4}$
- C. k = 0.1
- **D.** k = 2

Question 11 (1 mark)

Consider the function $f(x) = 2x^3 + x^2 - 7x - 6$. The value(s) of k for which f(x + k) has one positive x-intercept are:

- **A.** k > 2
- **B.** $-2 < k \le 1$
- C. $-1 \le k < 2$
- **D.** -1 < k < 2

Question 12 (1 mark)

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 - 3x + 4$. The function g(x) = f(x) + c, where $c \in R$, has one x-intercept for:

- **A.** c > -2
- **B.** c < -6
- C. -6 < c < -2
- **D.** c < -6 or c > -2

Question 13 (1 mark)

Consider the function:

$$f: [0,25] \to R, f(x) = \frac{2}{x+1} + \frac{k}{30-x}$$

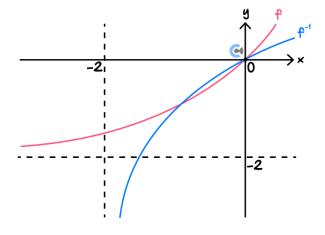
where k > 0.

Find the value(s) of k such that the minimum of f(x) occurs at x = 25.

- **A.** $\frac{25}{338}$
- **B.** $\left[\frac{25}{338}, \infty\right)$
- C. $(-\infty, \frac{25}{338}]$
- **D.** $(0, \frac{25}{338}]$

Question 14 (1 mark)

For $f: [2, \infty) \to f(x) = (x-2)^2 + k$, the value(s) of k such that there is only one intersection between f and f^{-1} .


- A. $(-\infty, 2)$
- **B.** $(2, \frac{9}{4}]$
- C. $(-\infty, 2] \cup \left\{\frac{9}{4}\right\}$
- **D.** $(-\infty, 2) \cup \left\{\frac{9}{4}\right\}$

Question 15 (10 marks)

Consider a function $f(x) = 2e^x - 2$.

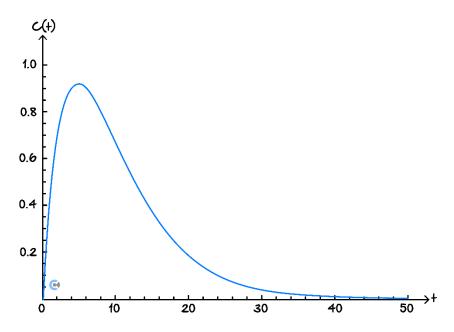
Part of the graphs of f and f^{-1} are shown below.

a. Find the gradient of f and the gradient of f^{-1} at x = 0. (2 marks)

The functions of g_k , where $k \in \mathbb{R}^+$, are defined with domain R such that $g_k(x) = 2e^{kx} - 2$.

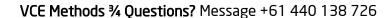
b. Find the value of k such that $g_k(x) = f(x)$. (1 mark)

c. Find the rule for the inverse functions g_k^{-1} of g_k , where $k \in \mathbb{R}^+$. (1 mark)


VCE Methods ¾ Questions? Message +61 440 138 726

d.	Describe the transformation that maps the graph of g_1 onto the graph of g_k . (1 mark)	
e.	Describe the transformation that maps the graph of g_1^{-1} onto the graph of g_k^{-1} . (1 mark)	
f.	The lines L_1 and L_2 are the tangents at the origin to the graphs of g_k and g_k^{-1} respectively. Find the value(s) k for which the angle between L_1 and L_2 is 30°. (2 marks)	of
g.	Let p be the value of k for which $g_k(x) = g_k^{-1}(x)$ has only one solution. Find p . (2 marks)	
Sp	ace for Personal Notes	

Question 16 (11 marks)


The function $C(t) = 0.5te^{-0.2t}$ is a reasonable model of the measured blood cyanide concentrations in $\mu g/mL$ after t minutes, which is shown in the figure below.

a. Find the value of t for which the concentration is maximum. (2 marks)

b. Find the inflection point of C(t). Give your answer correct to two decimal places. (2 marks)

Another function $C_1(t) = ate^{-bt}$ is used to measure the concentration of another substance in the blood in $\mu g/mL$ after t minutes. c. Find the values of a and b if the maximum amount of this substance in the blood was $120 \,\mu g/mL$ after 2 hours. (2 marks) It is known that $C_1(t)$ has a maximum value of $100 \mu g/mL$. **d.** Solve for the value of a in terms of b. (2 marks) **e.** Solve for the value(s) of b such that $C_1(t)$ is above 80 $\mu g/mL$ for less than 10 minutes. Give your answer correct to two decimal places. (3 marks)

Section F: Extension Exam 1 (11 Marks)

INSTRUCTION:

- Regular: Skip
- Extension: 11 Marks. 2 Minutes Reading. 15 Minutes Writing.

Quest	Question 17 (11 marks)		
Let f	Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-kx} + 2x$, where k is a real number.		
a.			
i.	Find in terms of k , the coordinates for the stationary point of the graph of $y = f(x)$ (when it exists) and specify the range of values of k for which this stationary point exists. (3 marks)		
ii.	Find the value of k for which the stationary point of f occurs on the x -axis. (1 mark)		

	For a particular value of k , the tangent to f at $x = -4$ passes through the origin. Find this value of k and equation of this tangent. (3 marks)
n	sider the function $g(x) = e^{-\frac{x}{2}} + 2x$.
	State how many real solutions the equation $g(x) = 0$ has. (1 mark)

VCE Methods 34 Questions? Message +61 440 138 726

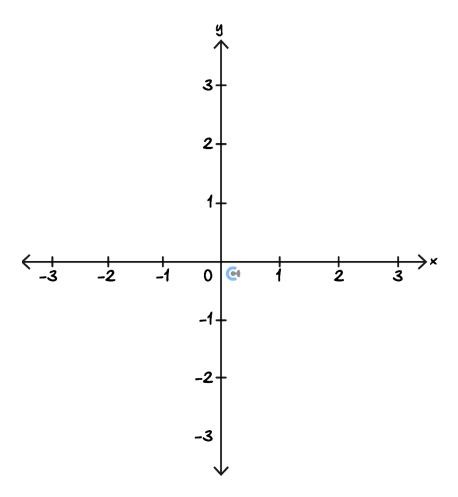
It is known that the tangent to g(x) when x = -4 has equation $y = \left(\frac{4-e^2}{2}\right)x - e^2$. **d.** Newton's method is used to approximate a root of g, with $x_0 = -4$. Find the value of x_1 without performing any differentiation. (2 marks)

	Space for Personal Notes
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
11	

Section G: Extension Exam 2 (13 Marks)

INSTRUCTION:

- Regular: Skip
- Extension: 13 Marks. 3 Minutes Reading. 18 Minutes Writing.


Question 18 (13 marks)

Let f be the hyperbolic tangent function, that is $f(x) = \tanh(x)$.

The function f may be defined, $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$.

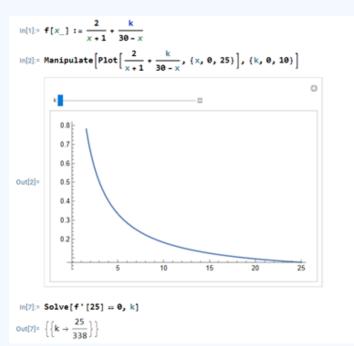
a. Define the inverse function of f. Write down the rule for $f^{-1}(x)$ in the form $f^{-1}(x) = \log_e(g(x))$, for some function g. (2 marks)

b. Sketch the graphs of f and f^{-1} on the axes below. Label all asymptotes with equations and points of intersection with coordinates. (3 marks)

Now consider the family of functions $f: \mathbb{R} \to \mathbb{R}$, $g_k(x) = \frac{e^{kx}-1}{e^{kx}+1}$. The function g_1 specifies the function g_k when k=1.

c. Find the acute angle between the tangents to g_1 and g_1^{-1} , at their point of intersection. Give your answer in degrees correct to one decimal place. (2 marks)

d.	Find the value(s) of k such that g_k and g_k^{-1} intersect exactly once. (2 marks)
e.	Find the value(s) of k such that g_k and g_k^{-1} intersect once and make an acute angle of 45° at this point of intersection. (2 marks)
f.	Find the value(s) of k such that g_k and g_k^{-1} intersect at a point when $x = -\frac{1}{2}$. (2 marks)



Section H: Tech-Active Solutions

Question Number	<u>Solutions</u>	
9	$k > 6 + 2\sqrt{2} \text{ or } k < 6 - 2\sqrt{2}$ $In[27]:= Solve[kx - 2 = x^2 + 6x, x]$ $Out[27]:= \left\{ \left\{ x \to \frac{1}{2} \left(-6 + k - \sqrt{28 - 12 k + k^2} \right) \right\}, \left\{ x \to \frac{1}{2} \left(-6 + k + \sqrt{28 - 12 k + k^2} \right) \right\} \right\}$ $In[29]:= Solve[28 - 12 k + k^2 = \emptyset, k]$ $Out[29]:= \left\{ \left\{ k \to 2 \left(3 - \sqrt{2} \right) \right\}, \left\{ k \to 2 \left(3 + \sqrt{2} \right) \right\} \right\}$	
10	$k = 0, \frac{1}{4}$ $In[40]:= f[x_{_}] := Exp[x^2 - 4kx + k]$ $In[41]:= Solve[f'[x] == 0, x] // Quiet$ $Out[41]= \{\{x \to 2k\}\}$ $In[42]:= Solve[f[2k] == 1, k, Reals]$ $Out[42]= \left\{\{k \to 0\}, \left\{k \to \frac{1}{4}\right\}\right\}$	
11	$-1 \le k < 2$ $In[45]:= \mathbf{f}[x_{-}] := -6 - 7x + x^{2} + 2x^{3}$ $In[46]:= \mathbf{Solve}[\mathbf{f}[x] := 0, x]$ $Out[46]:= \left\{ \left\{ x \to -\frac{3}{2} \right\}, \{x \to -1\}, \{x \to 2\} \right\}$	
12	$c < -6 \text{ or } c > -2$ $ln[50]:= f[x_{-}] := x^3 - 3x + 4$ $ln[51]:= Solve[f'[x] = \theta, x]$ $out[51]= \{\{x \to -1\}, \{x \to 1\}\}$ $ln[53]:= f[-1]$ $out[53]:= 6$ $ln[54]:= f[1]$ $out[54]:= 2$	

13

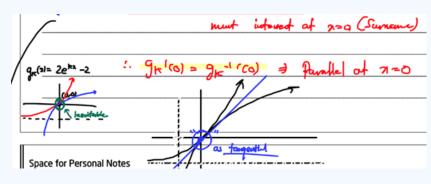
14

$$(-\infty,2) \cup \left\{\frac{9}{4}\right\}$$

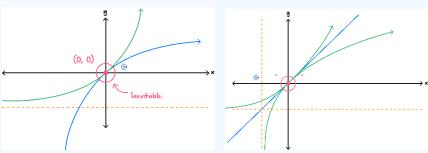
In[8]:=
$$f[x_]$$
 := $(x - 2)^2 + k$

$$ln[10]:= Solve[f[x] == x, x]$$

$$Out \text{[10]= } \left\{ \left\{ x \to \frac{1}{2} \, \left(\, 5 \, - \, \sqrt{9 - 4 \, k} \, \right) \, \right\} \text{, } \left\{ x \to \frac{1}{2} \, \left(\, 5 \, + \, \sqrt{9 - 4 \, k} \, \right) \, \right\} \right\}$$


$$In[11]:= Solve[9-4k == 0, k]$$

Out[11]=
$$\left\{\left\{k \rightarrow \frac{9}{4}\right\}\right\}$$


15 (a)

In[19]:=
$$f[x_{-}] := 2 Exp[x] - 2$$

In[20]:= $Solve[f[y] := x, y, Reals]$
Out[20]:= $\left\{ \left\{ y \to \left[Log\left[\frac{2+x}{2} \right] \right] \text{ if } x > -2 \right] \right\} \right\}$
In[21]:= $f1[x_{-}] := Log\left[\frac{2+x}{2} \right]$
In[22]:= $f'[0]$
Out[22]:= 2
In[23]:= $f1'[0]$
Out[23]:= $\frac{1}{2}$

15 (b)	In[24]:= $g[x_{-}] := 2 Exp[kx] - 2$ In[26]:= Solve[f[x] == $g[x]$, k, Reals] Out[26]= $\{\{k \to 1\}\}$	
15 (c)	Out[27]:= Solve[g[y] == x, y, Reals]	
15 (d)	Dilation by factor $\frac{1}{k}$ from the y-axis.	
15 (e)	Dilation by factor $\frac{1}{k}$ from the x -axis.	
15 (f)	$In[32] := g'[0]$ $Out[34] = \left\{ \left\{ k \to \frac{1}{2\sqrt{3}} \right\}, \left\{ k \to \frac{\sqrt{3}}{2} \right\} \right\}$	

15 (g)

In[41]:= Solve[g[x] == x && g'[x] == 1, Reals] Out[41]=
$$\left\{ \left\{ k \to \frac{1}{2}, x \to 0 \right\} \right\}$$

16 (a)

In[12]:=
$$c[t_{-}]$$
 := $1/2 t Exp[-1/5 t]$

In[14]:= $c'[t]$

Out[14]= $\frac{e^{-t/5}}{2} - \frac{1}{10} e^{-t/5} t$

In[13]:= $Solve[c'[t] == 0, t]$

Out[13]= $\{\{t \to 5\}\}$

16 (b)

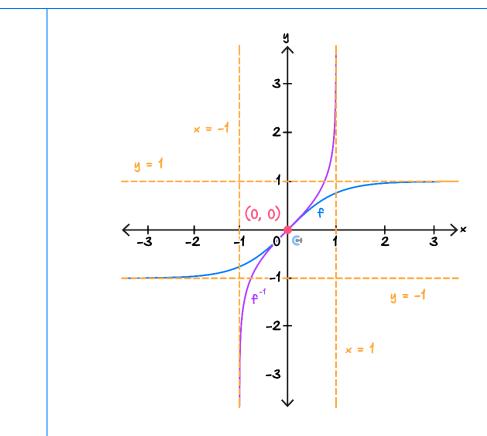
In[15]:= c''[t]

Out[15]:=
$$-\frac{1}{5}e^{-t/5} + \frac{1}{50}e^{-t/5}t$$

In[16]:= Solve[c''[t] == 0, t]

Out[16]:= $\{\{t \to 10\}\}$

In[18]:= $\{10, c[10]\} // N$


Out[18]:= $\{10, 0.676676\}$

(10.00,0.68)

MM34 [0.14] - Family of Functions & its Exam Skills - Workshop

16 (c)	= Solve[f'[120] == 0 && f[120] == 120] (플이함수 Solve: Inconsistent or redundant transcendenta Solve: Inverse functions are being used by Solve = \{\left\{a \to e, b \to \frac{1}{120}\right\}\}	
16 (d)	Solve[f'[t] == 0, t] [풀이 함수 $ \left\{ \left\{ t \rightarrow \frac{1}{b} \right\} \right\} $ Solve[f[1/b] == 100, a] [풀이 함수 $ \left\{ \left\{ a \rightarrow 100 \ b \ e \right\} \right\} $	
16 (e)	: $f[t_{-}]$:= $100 b e^{1-b t} t$: $NSolve[f[t] == f[t+10] \&\& f[t] == 80, \{t, b\}, Reals]$ 실수 영역 : $\{\{t \to 3.48685, b \to 0.135272\}, \{t \to -13.4868, b \to -0.135272\}\}$: $(* b>0.14$: Check using sliders *)	
18 (a)	$f^{-1}: (-1,1) \to \mathbb{R}, \ f^{-1}(x) = \log_e \left(\sqrt{\frac{1+x}{1-x}} \right)$ (1M for domain, 1M for rule in correct form) $\ln[140]:= \mathbf{f}[x_{_}] := \frac{Exp[2x] - 1}{Exp[2x] + 1}$ $\ln[141]:= Solve[\mathbf{f}[\mathbf{y}] = \mathbf{x}, \ \mathbf{y}, \ Reals]$ $\mathrm{Out}[141]:= \left\{ \left\{ \mathbf{y} \to \frac{1}{2} Log\left[\frac{-1-x}{-1+x}\right] \ \text{if } -1 < \mathbf{x} < 1 \right\} \right\}$	

18 (b)

(1M asymptotes, 1M shape of f, 1M shape of f^{-1})

Intersect at (0,0). $g_1'(0) = \frac{1}{2} \implies (g^{-1})'(0) = 2$ (1M).

Therefore angle is $|\arctan(2) - \arctan(1/2)| = 36.9^{\circ}$ (1M) $\ln[142] = \mathbf{g}[x_{-}] := \frac{\mathsf{Exp}[k \, x] - 1}{\mathsf{Exp}[k \, x] + 1}$ $\ln[143] = \mathbf{g}'[\theta] / . k \to 1$ $0ut[143] = \frac{1}{2}$ $\ln[144] = \mathsf{Abs}[\mathsf{ArcTan}[2] - \mathsf{ArcTan}[1/2]] / \mathsf{Degree} / / \mathsf{N}$

Always intersect at the origin. Use sliders/our graph from part b.

Out[144]= 36.8699

18 (d)

18 (e)	Intersect at the origin and $-2 < k < 2$. $g'_k(0) = \frac{k}{2}$ So we solve $\left \frac{\frac{k}{2} - \frac{2}{k}}{1+1} \right = \tan(45^\circ)$ and $-2 < k < 2$ $\Rightarrow k = 2 + 2\sqrt{2}, 2 - 2\sqrt{2}$
18 (f)	Note that for $k>2$ intersections occur along the line $y=x$ but for $k<-2$ intersections occur along the line $y=-x$. (1M) $k=\pm 2\log_e(3) \text{ (1M)}$ $\lim_{\ 163\ ^2} \operatorname{Solve}[\mathbf{g}[-1/2]=1/2, \operatorname{Reals}]$ $\operatorname{out}_{\ 63\ ^2} \left\{ \{\mathbf{k} \to 2\log[3] \} \right\}$ $\operatorname{in}_{\ 66\ ^2} \operatorname{Solve}[\mathbf{g}[-1/2]=-1/2, \operatorname{Reals}]$ $\operatorname{out}_{\ 66\ ^2} \left\{ \{\mathbf{y} \to \frac{\log[\frac{1-x}{2+x}]}{2+x} \mid \text{if } -1 < x < 1 \right\} \right\}$ $\operatorname{in}_{\ 66\ ^2} \mathbf{g1}[x] := \frac{1}{k} \log \left[\frac{-1-x}{x-1} \right]$ $\operatorname{in}_{\ 66\ ^2} \mathbf{solve}[\mathbf{g}[-1/2]=\mathbf{g1}[-1/2], \{x, k\}, \operatorname{Reals}]$ $\operatorname{out}_{\ 66\ ^2} \mathbf{solve}[\mathbf{g}[-1/2]=\mathbf{g1}[-1/2], \{x, k\}, \operatorname{Reals}]$ $\operatorname{out}_{\ 66\ ^2} \left\{ \left\{ \mathbf{k} \to \frac{\infty}{2\cdot 2\cdot 2\cdot 0\cdot \dots} \right\} \right\}$ $\operatorname{in}_{\ 172\ ^2} \mathbf{solve}[\mathbf{g}[\mathbf{x}]=\mathbf{g1}[\mathbf{x}]/\cdot \mathbf{k} + 2\log[3], \mathbf{x}, \operatorname{Reals}]$ $\operatorname{out}_{\ 72\ ^2} \left\{ \left\{ \mathbf{x} \to -\frac{1}{2} \right\}, (\mathbf{x} \to 0), \left\{ \mathbf{x} \to \frac{1}{2} \right\} \right\}$ $\operatorname{in}_{\ 73\ ^2} \mathbf{solve}[\mathbf{g}[\mathbf{x}]=\mathbf{g1}[\mathbf{x}]/\cdot \mathbf{k} + 2\log[3], \mathbf{x}, \operatorname{Reals}]$ $\operatorname{out}_{\ 73\ ^2} \left\{ \left\{ \mathbf{x} \to -\frac{1}{2} \right\}, (\mathbf{x} \to 0), \left\{ \mathbf{x} \to \frac{1}{2} \right\} \right\}$ $\operatorname{in}_{\ 73\ ^2} \mathbf{solve}[\mathbf{g}[\mathbf{x}]=\mathbf{g1}[\mathbf{x}]/\cdot \mathbf{k} + 2\log[3], \mathbf{x}, \operatorname{Reals}]$ $\operatorname{out}_{\ 73\ ^2} \left\{ \left\{ \mathbf{x} \to -\frac{1}{2} \right\}, (\mathbf{x} \to 0), \left\{ \mathbf{x} \to \frac{1}{2} \right\} \right\}$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via <u>bit.ly/contour-methods-consult-2025</u> (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

