

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

# VCE Mathematical Methods ¾ Application of Differentiation [0.12]

Workshop

#### **Error Logbook:**

| New Ideas/Concepts                                | Didn't Read Question            |
|---------------------------------------------------|---------------------------------|
| Pg / Q #:                                         | Pg / Q #:                       |
|                                                   |                                 |
|                                                   |                                 |
| Algebraic/Arithmetic/<br>Calculator Input Mistake | Working Out Not Detailed Enough |
| Pg / Q #:                                         | Pg / Q #:                       |
| Notes:                                            | Notes:                          |
|                                                   |                                 |
|                                                   |                                 |
|                                                   |                                 |





#### Section A: Recap

#### **Tangents**



- A tangent is a linear line which just touches the curve.
- The gradient of a tangent line has to be equal to the gradient of the curve at the intersection.

$$y = f(x)$$
(a,  $f(a)$ )

$$m_{tangent} = f'(a)$$

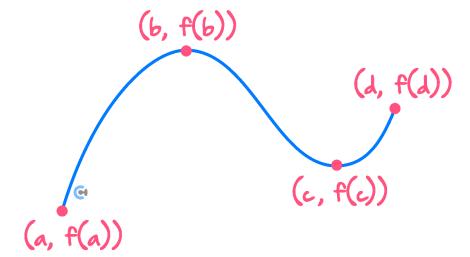
#### **Normals**



- A normal is a linear line which is perpendicular to the tangent.
- The gradient of a normal line has to be equal to the **negative reciprocal** of the gradient of the curve at the intersection.

$$y = f(x)$$

$$(a, f(a))$$
Normal


$$m_{normal} = -\frac{1}{f'(a)}$$



#### **Absolute Maximum and Minimum**



- Absolute Maxima/Minima are the overall largest/smallest y-values for the given domain.
- They occur at either an endpoint or a turning point.



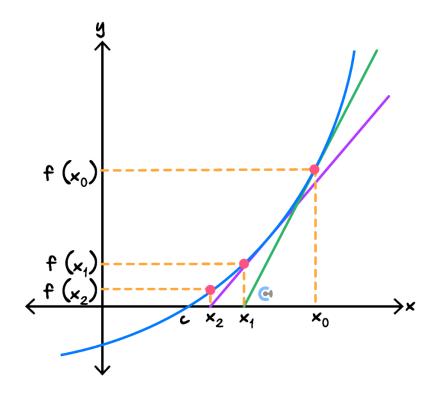
Absolute Min: f(a)

Absolute Max: f(b)

- Steps
  - 1. Find stationary points and endpoints.
  - **2.** Find the largest/lowest y-value for max/min.

#### **Optimisation Problems**




- Applying absolute maxima and minima in a real-world setting.
- Steps:
  - 1. Construct a function for the subject you want to find the maximum or minimum of.
  - **2.** Find its domain if appropriate.
  - **3.** Find its endpoints and turning points.
  - **4.** Identify the maximum or minimum *y*-value.



#### **Newton's Method**



It is a method of approximating the x-intercept using tangents.



$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- Steps
  - **1.** Find the tangent at the x-value given.
  - 2. Find the x-intercept of the tangent using an iterative formula.
  - **3.** Find the next tangent at the x = x-intercept of the previous tangent.
  - **4.** Repeat until the value doesn't change by much.



#### **Tolerance**



**Definition**: The maximum difference between  $x_n$  and  $x_{n+1}$  we can have when we stop the iteration.

We stop when 
$$|x_{n+1} - x_n| < tolerance$$
.

The question will give us the tolerance level.

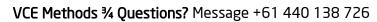
#### **Limitation of Newton's Method**



- Terminating Sequence: Occurs when we hit a stationary point.
- Approximating a Wrong Root: Occurs when we start on the wrong side.
- Oscillating Sequence: Occurs when we oscillate between two values without getting closer to the real root.

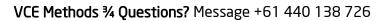


#### Section B: Warm Up (15 Marks)


#### **INSTRUCTION:**

- Regular: 15 Marks. 15 Minutes Writing.
- Extension: Skip

| Question 1 (2 marks)                                                                   |  |
|----------------------------------------------------------------------------------------|--|
| Find the equation of the line that is normal to $y = x^3 - 2x^2 + 2x + 1$ at $x = 1$ . |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |
|                                                                                        |  |




| Question 2 (3 marks)                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| Consider the function $f:(1,\infty)\to R$ , $f(x)=\frac{2}{x-1}$ . Find the equation of the line tangent to $f$ that is parallel to $y=4-2x$ . |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |





|             | bal maximum and global minimum of the function $f: [-4,0] \rightarrow R, f(x) = x^3 + 3x^2 - 9x - 10$ | )_ |
|-------------|-------------------------------------------------------------------------------------------------------|----|
| and the gro | our maximum and groods minimum of the function j. [ 1,0] · 1,7 (x) x 1 0x 2x 10                       | •  |
|             |                                                                                                       | _  |
|             |                                                                                                       | _  |
|             |                                                                                                       | _  |
|             |                                                                                                       |    |
| =           |                                                                                                       | _  |
|             |                                                                                                       | _  |
|             |                                                                                                       | _  |
|             |                                                                                                       |    |
|             |                                                                                                       | _  |
|             |                                                                                                       | _  |
|             |                                                                                                       | _  |
|             |                                                                                                       |    |
|             |                                                                                                       | _  |
|             |                                                                                                       |    |
|             |                                                                                                       |    |
| nace for E  | Personal Notes                                                                                        |    |
| Jace IVI F  | reisolidi Notes                                                                                       |    |
|             |                                                                                                       |    |
|             |                                                                                                       |    |
|             |                                                                                                       |    |
|             |                                                                                                       |    |
|             |                                                                                                       |    |
|             |                                                                                                       |    |
|             |                                                                                                       |    |
|             |                                                                                                       |    |
|             |                                                                                                       |    |
|             |                                                                                                       |    |
|             |                                                                                                       |    |





| ipace for Personal Notes |                                    | James is building a rectangular fence around a garden bed. Find the maximum area of the garden bed that he can |   |  |  |  |
|--------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------|---|--|--|--|
|                          | enclose with 28 metres of fencing. |                                                                                                                |   |  |  |  |
|                          |                                    |                                                                                                                | _ |  |  |  |
|                          |                                    |                                                                                                                | _ |  |  |  |
|                          |                                    |                                                                                                                |   |  |  |  |
|                          |                                    |                                                                                                                | - |  |  |  |
|                          |                                    |                                                                                                                | _ |  |  |  |
|                          |                                    |                                                                                                                | _ |  |  |  |
|                          |                                    |                                                                                                                |   |  |  |  |
|                          |                                    |                                                                                                                | - |  |  |  |
|                          |                                    |                                                                                                                | - |  |  |  |
| pace for Personal Notes  |                                    |                                                                                                                | _ |  |  |  |
| pace for Personal Notes  |                                    |                                                                                                                |   |  |  |  |
| pace for Personal Notes  |                                    |                                                                                                                |   |  |  |  |
| pace for Personal Notes  |                                    |                                                                                                                |   |  |  |  |
|                          |                                    |                                                                                                                |   |  |  |  |
|                          | расе                               | e for Personal Notes                                                                                           |   |  |  |  |
|                          | pace                               | e for Personal Notes                                                                                           |   |  |  |  |
|                          | pace                               | e for Personal Notes                                                                                           |   |  |  |  |
|                          | pace                               | e for Personal Notes                                                                                           |   |  |  |  |
|                          | pace                               | e for Personal Notes                                                                                           |   |  |  |  |
|                          | pace                               | e for Personal Notes                                                                                           |   |  |  |  |
|                          | pace                               | e for Personal Notes                                                                                           |   |  |  |  |
|                          | pace                               | e for Personal Notes                                                                                           |   |  |  |  |
|                          | расє                               | e for Personal Notes                                                                                           |   |  |  |  |
|                          | pace                               | e for Personal Notes                                                                                           |   |  |  |  |
|                          | pace                               | e for Personal Notes                                                                                           |   |  |  |  |
|                          | расє                               | e for Personal Notes                                                                                           |   |  |  |  |
|                          | расє                               | e for Personal Notes                                                                                           |   |  |  |  |
|                          | расє                               | e for Personal Notes                                                                                           |   |  |  |  |

**Question 5** (4 marks)

Consider the function  $f(x) = x^2 - 3$ . Newton's method is used to approximate the root of this function.

**a.** Using Newton's method, an expression for  $x_{n+1}$  is:

$$x_{n+1} = \frac{x_n^2 + a}{bx_n}$$

Find the values of a and b. (2 marks)

**b.** Explain why  $x_0 = 0$  will be a bad starting point. (1 mark)

c. Find  $x_1$  if  $x_0 = 2$ . (1 mark)



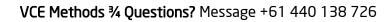
#### Section C: Exam 1 Questions (17 Marks)

#### **INSTRUCTION:**



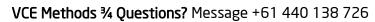
- Regular: 17 Marks. 5 Minutes Reading. 25 Minutes Writing.
- Extension: 17 Marks. 5 Minutes Reading. 17 Minutes Writing.

Question 6 (4 marks)


Consider the two functions below.

$$f: [-10,3] \to R, f(x) = (x+1)^2 + 5$$

$$g: [-4,10] \rightarrow R, g(x) = -2x - 10$$


**a.** Find the minimum vertical distance between f(x) and g(x). (3 marks)

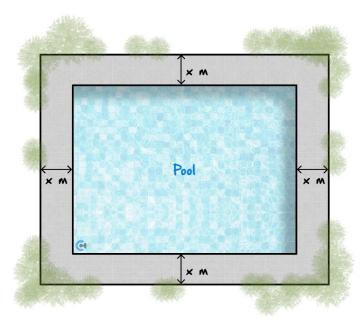
**b.** Find the maximum vertical distance between f(x) and g(x). (1 mark)



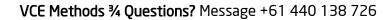


| Question 7 (5 marks) |                                                                                                                                   |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Coi                  | nsider a function $f(x) = \sqrt{x}$ .                                                                                             |  |  |  |
| l•                   | Find the tangent of $f(x)$ at $x = 2$ . (2 marks)                                                                                 |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      | Find the tangent of $f(x)$ which makes the angle of 30° measured anticlockwise from the positive side of the $x$ -axis. (3 marks) |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      | <del></del>                                                                                                                       |  |  |  |
|                      | <del></del>                                                                                                                       |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      | <del></del>                                                                                                                       |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      |                                                                                                                                   |  |  |  |
| p                    | ace for Personal Notes                                                                                                            |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      |                                                                                                                                   |  |  |  |
|                      |                                                                                                                                   |  |  |  |






| <u> </u>                                                         |  |
|------------------------------------------------------------------|--|
| Question 8 (2 marks)                                             |  |
| Consider the equation $x^3 = \sin(\pi x)$ .                      |  |
| Using Newton's method with $x_0 = 1$ , find the value of $x_1$ . |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
| Space for Personal Notes                                         |  |
| Space for recisional motes                                       |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |




Question 9 (6 marks)

Subu has a rectangular garden. It is 14 metres long and 11 metres wide. He wants to put a rectangular swimming pool in the middle of the garden and a path of width x metres around the edge, as shown below.



| a. | Show that an expression for the length of the diagonal of the pool in terms of x is $\sqrt{8x^2 - 100x + 317}$ . |
|----|------------------------------------------------------------------------------------------------------------------|
|    | (2 marks)                                                                                                        |





| For what value(s) of $x$ will the condition be satisfied? (2 marks)                              |
|--------------------------------------------------------------------------------------------------|
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
| Find the maximum possible area of the pool and the value of $x$ for which this occurs. (2 marks) |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |

15



#### Section D: Tech Active Exam Skills

#### **Calculator Commands: Finding Derivatives**



Mathematica

- ► TI
  - Shift Minus

$$\frac{d}{dx}(f(x))$$

- Casio
  - Math 2

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{f}(\mathrm{x}))$$

#### **Calculator Commands:** Finding Second Derivatives



Mathematica

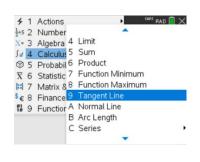
- **▶** TI
  - Shift Minus

$$\frac{d^2}{dx^2}(f(x))$$

- Casio
  - Math 2

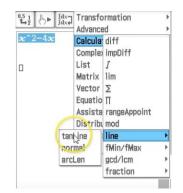
$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}(f(x))$$




#### **Calculator Commands:** Finding tangents on CAS

Mathematica

<< SuiteTools`


TangentLine[f[x], x, a]

- TI-Nspire
  - Menu 4 9



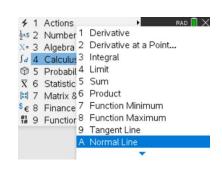
tangentLine(f(x),x,a)

#### Casio Classpad



tangentLine(f(x),x,a)

G


#### **Calculator Commands:** Finding normals on CAS

Mathematica

<< SuiteTools`

NormalLine[f[x], x, a]

- TI-Nspire
  - Menu 4 A



normalLine(f(x),x,a)

#### Casio Classpad

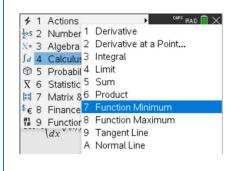


normalLine(f(x), x, a)



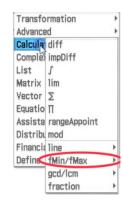
#### <u>Calculator Commands:</u> Finding Absolute Max and Min for $x \in [a, b]$




Mathematica

Maximize[ $\{f[x], a \le x \le b\}, x$ ]

Minimize[ $\{f[x], a \le x \le b\}, x$ ]


TI-Nspire

Menu 4 7 and Menu 4 8



fMax(f(x),x,a,b) fMin(f(x),x,a,b)

Casio Classpad



fMax(f(x),x,a,b)

fMin(f(x),x,a,b)

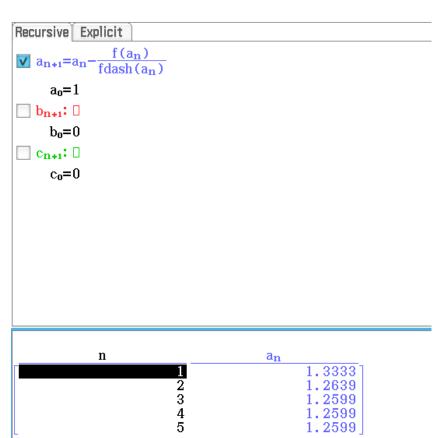


#### Calculator Commands: Newton's Method on Technology



- Consider finding a root to  $f(x) = x^3 2$  with initial value  $x_0 = 1$ .
- Mathematica.

In[531]:= 
$$f[x_{]} := x^{3} - 2$$
  
In[533]:=  $n[x_{]} := x - \frac{f[x]}{f'[x]}$   
In[534]:=  $n[x] // Together$   
Out[534]=  $\frac{2(1 + x^{3})}{3x^{2}}$ 


In[537]:= For 
$$\left[i = 1; x = 1, i < 5, i++, x = \frac{2(1.0 + x^3)}{3x^2}; Print[x]\right]$$
1.33333
1.26389
1.25993
1.25992

**TI.** Define the n(x) function then keep iterating by putting your previous value back into n(x).

| Define $f(x)=x^3-2$                                   | Done                                               |
|-------------------------------------------------------|----------------------------------------------------|
| $x - \frac{f(x)}{\frac{d}{dx}(f(x))}$                 | $\frac{2 \cdot \left(x^3 + 1\right)}{3 \cdot x^2}$ |
| Define $n(x) = \frac{2 \cdot (x^3 + 1)}{3 \cdot x^2}$ | Done                                               |
| n(1)                                                  | 1.33333                                            |
| n(1.3333333333333333)                                 | 1.26389                                            |
| n(1.2638888888889)                                    | 1.25993                                            |



- Classpad.
  - Under Sequences.



### **CONTOUREDUCATION**

# <u>e</u>

#### **Calculator Commands: Stationary Point**

- ALWAYS sketch the graph first to get an idea of the nature of the stationary point.
- The turning points for a function f(x) can be found by solving f'(x) = 0 and subbing the result into f.
- **Example:** Find the turning point for  $f(x) = e^{-x^2 + 2x}$ .
- TI:

Define 
$$f(x) = e^{-x^2 + 2 \cdot x}$$

$$solve\left(\frac{d}{dx}(f(x)) = 0, x\right)$$
 $f(1)$ 

Done

$$x = 1$$

Casio:

define 
$$f(x) = e^{-x^2+2x}$$
  
done  
 $solve(\frac{d}{dx}(f(x))=0,x)$   
 $\{x=1\}$ 

Mathematica:

In[4]:= 
$$f[x_]$$
 :=  $Exp[-x^2 + 2x]$   
In[5]:=  $Solve[f'[x] == 0 && y == f[x], Reals]$   
Out[5]=  $\{\{x \to 1, y \to e\}\}$ 



#### Section E: Exam 2 Questions (22 Marks)

#### **INSTRUCTION:**



- Regular: 22 Marks. 5 Minutes Reading. 33 Minutes Writing.
- Extension: 22 Marks. 5 Minutes Reading. 22 Minutes Writing.

Question 10 (1 mark)

Consider a function  $f(x) = \sin(x)$ .

The tangent of f(x) at  $x = \frac{\pi}{3}$  is given by:

**A.** 
$$y = \frac{\sqrt{3}}{2}x + \frac{\sqrt{3}}{2} - \frac{\pi}{6}$$

**B.** 
$$y = \frac{1}{2}x + \frac{\sqrt{3}}{2} - \frac{\pi}{6}$$

C. 
$$y = \frac{1}{2}x + \frac{\sqrt{3}}{2}$$

**D.** 
$$y = \frac{1}{2}x + \frac{1}{2} + \frac{\pi}{3}$$

Question 11 (1 mark)

Consider the graph of  $f: R \to R$ ,  $f(x) = -x^2 - x + 12$ . Find the tangent to the graph of f which is parallel to the line connecting the negative x-intercept with the y-intercept.

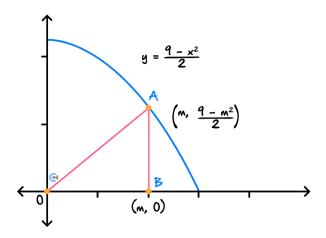
**A.** 
$$y = 3x + 12$$

**B.** 
$$y = 3x + 16$$

C. 
$$y = -4x + 3$$

**D.** 
$$y = -3x + 13$$




Question 12 (1 mark)

The minimum value of the function  $h: [0,2] \to R, h(x) = (x-2)e^{2x}$  is:

- **A.**  $-e^3$
- **B.**  $-\frac{e^3}{2}$
- C.  $-e^2$
- **D.**  $-\frac{e^2}{2}$

Question 13 (1 mark)

A right-angled triangle, OAB, is formed using the horizontal axis and the point  $A\left(m, \frac{9-m^2}{2}\right)$ , where  $m \in (0,3)$ , on the parabola  $y = \frac{9-x^2}{2}$ , as shown below. The maximum area of the triangle OAB is:



- **A.**  $3\sqrt{3}$
- **B.**  $3\sqrt{\frac{3}{2}}$
- C.  $\frac{3\sqrt{3}}{2}$
- **D.**  $6\sqrt{3}$

Question 14 (1 mark)

Consider an equation  $\sin(x^2) - 1 = 0$ .

Given that  $x_0 = 2$ , the value of  $x_3$  correct to two decimal places using the Newton's method is equal to:

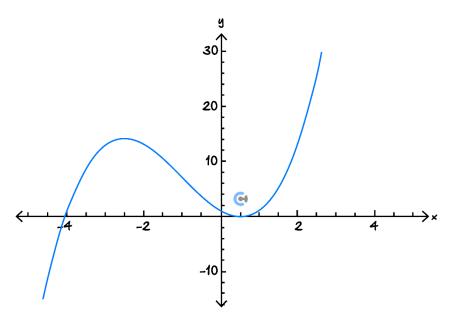
- **A.** 1.33
- **B.** 1.27
- **C.** 1.26
- **D.** 1.25

Question 15 (1 mark)

The normal line to the function  $f(x) = x^2 - 4$  which goes through the origin could be:

- **A.** y = 2x 3
- **B.** y = x
- C.  $y = -\frac{\sqrt{14}}{14}x$
- **D.**  $y = -\frac{\sqrt{2}}{6}x + 1$

Question 16 (1 mark)


The tangent to the graph of  $y = 2x^3 - ax^2 + 4$  at x = 2 passes through the origin. The value of a is:

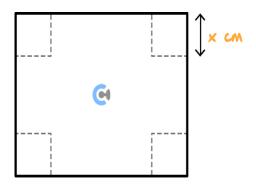
- **A.** 5
- **B.** −5
- C. -7
- **D.** 7



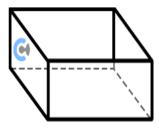
Question 17 (1 mark)

Part of the graph of a polynomial function f is shown below. The graph has turning points at (-2.53, 14.13) and (0.53, -0.13) and a point of inflection at (-1, 7).




f'(x) is strictly decreasing for:

- **A.**  $x \in (-\infty, -1]$
- **B.**  $x \in (-\infty, -1)$
- **C.**  $x \in [-2.53, 0.53]$
- **D.**  $x \in (-\infty, -2.53] \cup [0.53, \infty)$




Question 18 (1 mark)

Alicia has a rectangular sheet of cardboard, 15 cm long and 8 cm wide. She cuts squares of side length x cm from each of the corners of the cardboard, as shown in the diagram below.



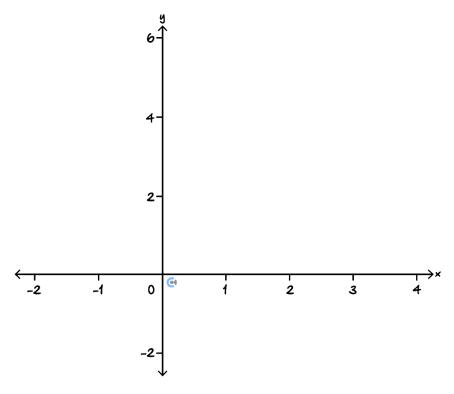
Alicia turns up the sides to form an open box as shown below.



The value of x for which the volume of the box is a maximum is:

- **A.**  $\frac{5}{3}$
- **B.** 3
- C.  $\frac{5}{6}$
- **D.** 4






**Question 19** (13 marks)

The function f is defined as follows:

$$f:[0,5] \to R, f(x) = -e^x + 2x + 2$$

**a.** Sketch the graph for f(x) on the axes below. Label all the intercepts and stationary points correct to two decimal places. (2 marks)



**b.** Find the tangent of the graph f at  $x = \frac{3}{2}$ . (2 marks)

|  | <br> |  |
|--|------|--|
|  |      |  |
|  |      |  |
|  |      |  |

c. Sketch the tangent found in part b., on the set of axes given in part a. Label all the axes intercepts. (2 marks)

**d.** Newton's method is used to find an approximate x-intercept of f.

**i.** Find the value of  $x_1$ , if  $x = \frac{3}{2}$ . (1 mark)

ii. State the possible value(s) of  $x_0$  such that  $x_1$  equals to the value found in **part d.** Give your answer correct to two decimal places. (2 marks)

iii. State an inappropriate choice for  $x_0$ , and explain why this choice is not appropriate for Newton's method. (1 mark)

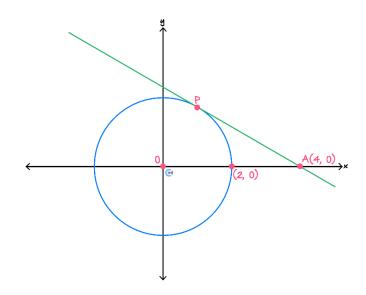


#### VCE Methods ¾ Questions? Message +61 440 138 726

|    | A tangent is drawn to $f$ at $x = a$ , where $a \in [0,5]$ . Find the intersection point of this tangent and the tanger drawn to $f$ at $x = \frac{3}{2}$ , if the two tangents make an angle of $60^{\circ}$ . Give your answer correct to two decimal place (3 marks) |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                                                                                                                         |
|    |                                                                                                                                                                                                                                                                         |
|    |                                                                                                                                                                                                                                                                         |
|    |                                                                                                                                                                                                                                                                         |
| Sp | pace for Personal Notes                                                                                                                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                         |
|    |                                                                                                                                                                                                                                                                         |
|    |                                                                                                                                                                                                                                                                         |
|    |                                                                                                                                                                                                                                                                         |



#### Section F: Extension Exam 1 (10 Marks)


#### **INSTRUCTION:**



- Regular: Skip
- Extension: 10 Marks. 5 Minutes Reading. 15 Minutes Writing.

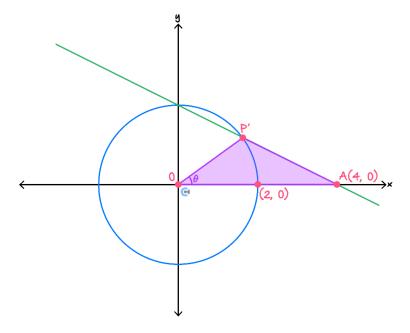
Question 20 (10 marks)

Consider the circle C, with the equation  $x^2 + y^2 = 4$  and the tangent to the circle at the point P, shown in the diagram below.



**a.** The top half of the circle  $x^2 + y^2 = 4$ , is given by the function  $f: [-2,2] \to R$ ,  $f(x) = \sqrt{4 - x^2}$ .

Use this to show that the equation of the line that passes through the points *A* and *P* is given by  $y = -\frac{1}{\sqrt{3}}x + \frac{4}{\sqrt{3}}$ . (2 marks)


| <br> |  |
|------|--|
|      |  |
|      |  |



|     | Find the equations of two lines that are tangent to the circle $C$ , and make an angle of $60^{\circ}$ with the line passing through $A$ and $P$ . (2 marks)                                                       |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     |                                                                                                                                                                                                                    |  |  |  |
| _   |                                                                                                                                                                                                                    |  |  |  |
|     |                                                                                                                                                                                                                    |  |  |  |
|     |                                                                                                                                                                                                                    |  |  |  |
| _   |                                                                                                                                                                                                                    |  |  |  |
|     | $\mathbb{R}^2 \to \mathbb{R}^2$ , $T(x,y) = (x,qy)$ , where $q \in \mathbb{R} \setminus \{0\}$ , and let the graph of the function $g$ be the transformation at that passes through points $A$ and $P$ under $T$ . |  |  |  |
| i.  | Find the values of $q$ for which the graph of $g$ intersects with the unit circle at least once. (1 mark)                                                                                                          |  |  |  |
|     |                                                                                                                                                                                                                    |  |  |  |
|     |                                                                                                                                                                                                                    |  |  |  |
| ii. | Let the graph of $g$ intersect the circle $C$ twice.                                                                                                                                                               |  |  |  |
|     | Find the values of $q$ for which the coordinates of the points of intersection have only positive values. (1 mark)                                                                                                 |  |  |  |
|     |                                                                                                                                                                                                                    |  |  |  |
|     |                                                                                                                                                                                                                    |  |  |  |
|     |                                                                                                                                                                                                                    |  |  |  |
|     |                                                                                                                                                                                                                    |  |  |  |
|     |                                                                                                                                                                                                                    |  |  |  |
|     |                                                                                                                                                                                                                    |  |  |  |

## **C**ONTOUREDUCATION

**d.** For  $0 < q \le 1$ , let P' be the point of intersection of the graph of g with the circle C, where P' is always the point of intersection that is closest to A, as shown in the diagram below.



Let h be the function that gives the area of the triangle OAP' in terms of  $\theta$ .

i. Define the function h. (2 marks)

|  | <br>- |  |
|--|-------|--|
|  |       |  |
|  |       |  |
|  |       |  |

\_\_\_\_\_

ii. Determine the maximum possible area of the triangle OAP'. (2 marks)



#### Section G: Extension Exam 2 (16 Marks)

#### **INSTRUCTION:**

- Regular: Skip
- Extension: 16 Marks. 5 Minutes Reading. 24 Minutes Writing.

#### Question 21 (1 mark)

A function g(x) is differentiable for all  $x \in \mathbb{R}$ . The tangent line to g(x) at x = a is given by :

$$y = 2x - 3$$
.

If g(x) = g'(x) for all x, what is g(3)?

- A.  $3\sqrt{e}$
- **B.**  $\frac{3}{e^2}$
- C.  $2\sqrt{e}$
- $\mathbf{D.} \ \frac{2}{e}$

#### Question 22 (1 mark)

Let h(x) be a differentiable function satisfying the equation:

$$h\big(h(x)\big) = x^2 + 2x.$$

Given that h(1) = 3 and h'(1) = 2, what is h'(3)?

- **A.** 1
- **B.** 2
- C.  $\frac{1}{4}$
- **D.**  $\frac{1}{2}$

Question 23 (1 mark)

A function f(x) satisfies the equation:

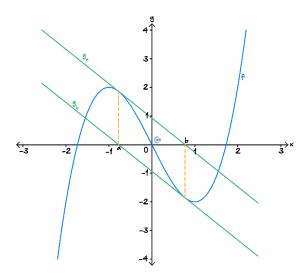
$$f'(x) = f(x)(1 - f(x)).$$

If  $f(0) = \frac{1}{2}$ , which of the following statements is necessarily true?

- **A.** f(x) is always decreasing for all  $x \in R$ .
- **B.** f(x) is always concave up.
- C. f(x) has a horizontal asymptote as  $x \to \infty$ .
- **D.** f(x) has exactly two inflection points.

Question 24 (13 marks)

Let  $f : \mathbb{R} \to \mathbb{R}$ ,  $f(x) = x^3 - 3x$ .


Let  $g_a : \mathbb{R} \to \mathbb{R}$  be the function representing the tangent to the graph of f at x = a, where  $a \in \mathbb{R}$ .

Let (b,0) be the *x*-intercept of the graph of  $g_a$ .

**a.** Show that  $b = \frac{2a^3}{3(a^2-1)}$ . (2 marks)

**b.** State the values of a for which b does not exist and state the nature of the graph of  $g_a$  at these points. (2 marks)

The coordinates (b,0) are the horizontal axes intercept of  $g_a$ . Let  $g_b$ , be the function representing the tangent to the graph of f at x = b, as shown in the graph below.



c.

i. Find the values of a for which the graphs of  $g_a$  and  $g_b$ , where b exists, are parallel and where  $b \neq a$ . (3 marks)

| i.   | State the values for $x_0$ , which when used in Newton's method to find roots of $f$ , will result in an oscillating sequence. (1 mark) |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
|      |                                                                                                                                         |  |  |
| iii. | Let $p : \mathbb{R} \to \mathbb{R}$ , $p(x) = x^3 - wx$ , where $w > 0$ . Newton's method is used to find the roots of $p$ .            |  |  |
|      | Find all initial guesses $x_0$ , in terms of $w$ , which will not converge to a root of $p$ . (2 marks)                                 |  |  |
|      |                                                                                                                                         |  |  |
|      |                                                                                                                                         |  |  |
|      |                                                                                                                                         |  |  |
|      |                                                                                                                                         |  |  |
|      |                                                                                                                                         |  |  |
|      |                                                                                                                                         |  |  |
|      |                                                                                                                                         |  |  |
|      |                                                                                                                                         |  |  |



#### VCE Methods ¾ Questions? Message +61 440 138 726

|    | Two parallel tangents are drawn to the graph of $f$ . It is known that the <b>minimum</b> distance between the two               |
|----|----------------------------------------------------------------------------------------------------------------------------------|
|    | tangent lines is $\frac{54}{\sqrt{241}}$ . Determine possible <b>rational</b> x-values that the tangents are drawn at. (3 marks) |
|    | V241                                                                                                                             |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    | <del></del>                                                                                                                      |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
| ρā | ace for Personal Notes                                                                                                           |
| •  |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |



Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

#### VCE Mathematical Methods 34

## Free 1-on-1 Support

#### Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

| 1-on-1 Video Consults                                                                                                                                             | <u>Text-Based Support</u>                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Book via bit.ly/contour-methods-consult-2025 (or QR code below).</li> <li>One active booking at a time (must attend before booking the next).</li> </ul> | <ul> <li>Message <u>+61 440 138 726</u> with questions.</li> <li>Save the contact as "Contour Methods".</li> </ul> |

Booking Link for Consults bit.ly/contour-methods-consult-2025



Number for Text-Based Support +61 440 138 726

