

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Differentiation Exam Skills [0.11]

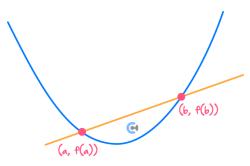
Workshop Solutions

Error Logbook:

New Ideas/Concepts	Didn't Read Question
Pg / Q #:	Pg / Q #:
Algebraic/Arithmetic/ Calculator Input Mistake	Working Out Not Detailed Enough
Pg / Q #:	Pg / Q #:

Section A: Recap

Average Rate of Change

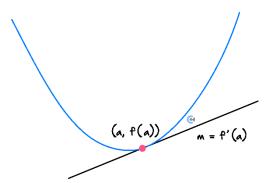


The average rate of change of a function f(x) over $x \in [a, b]$ is given by:

Average rate of change =
$$\frac{f(b) - f(a)}{b - a}$$

It is the gradient of the line joining the two points.

Instantaneous Rate of Change



Instantaneous rate of change is a gradient of a graph at a single point/moment.

Instantaneous rate of change = f'(x)

- **Differentiation** is the process of finding the derivative of a function.
- First principles derivative definition:

$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$$

Alternative Notation for Derivative

$$f'(x) = \frac{dy}{dx}$$

Definition

Derivatives of Functions

The derivatives of many of the standard functions are in the summary table below:

f(x)	f'(x)
χ^n	$n \times x^{n-1}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$\sec^2(x)$
e^x	e ^x
$\log_e(x)$	$\frac{1}{x}$

The Product Rule

The derivative of $h(x) = f(x) \times g(x)$ is given by:

$$h'(x) = f'(x) \cdot g(x) + g'(x) \cdot f(x)$$

Or, in another form:

$$\frac{d}{dx}(u \cdot v) = u'v + v'u$$

CONTOUREDUCATION

The Ouotient Rule

The derivative of a $h(x) = \frac{f(x)}{g(x)}$ is given by:

$$h'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$$

Or, written in another form:

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - v'u}{v^2}$$

• Always differentiate the top function first.

Definition

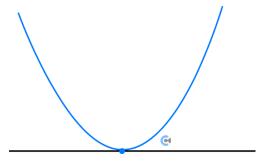
The Chain Rule

$$y = f(g(x))$$

$$\frac{dy}{dx} = f'(g(x))g'(x)$$

➤ The process for finding derivatives of composite functions.

Stationary Points



The point where the gradient of the function is zero.

$$f'(x) = 0, \frac{dy}{dx} = 0$$

Calculator Commands: Finding Derivatives

Mathematica

TI

Shift Minus

$$\frac{d}{dx}(f(x))$$

Casio

Math 2

$$\frac{d}{dx}(f(x))$$

Types of Stationary Points

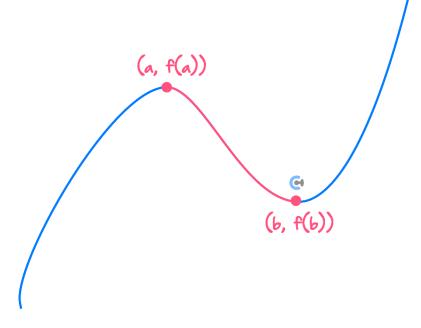
Local Maximum	Local Minimum Stationary Point of Inflection	
+	- +	- 0 - + 0 +

- Sign test.
- We can identify the nature of a stationary point by using the sign table.

x	Less than a	а	Bigger than a
f'(x)	Negative	0	Positive
Shape	∩- Decreasing curve	Stationary Point	U- Increasing curve

Find the gradient of the neighbouring points.

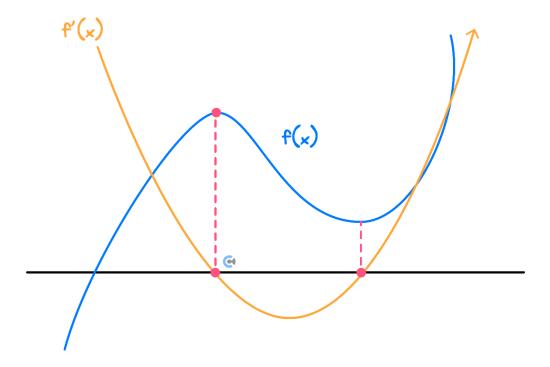
Strictly Increasing and Strictly Decreasing Functions



Strictly Increasing: $x \in (-\infty, a] \cup [b, \infty)$

Strictly Decreasing: $x \in [a, b]$

- Steps:
 - **1.** Find the turning points.
 - **2.** Consider the sign of the derivative between/outside the turning points.



f(x)	f'(x)
Stationary Point	x-intercepts
Increasing	Positive
Decreasing	Negative

y value of f'(x) = Gradient of f(x)

Steps

- 1. Plot *x*-intercept at the same *x* value as the stationary point of the original.
- 2. Consider the trend of the original function and sketch the derivative.
 - ▶ Original is increasing \rightarrow Derivative is above the x-axis.
 - ▶ Original is decreasing \rightarrow Derivative is below the x-axis.

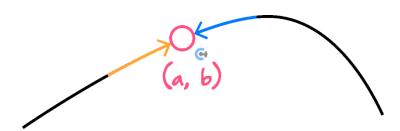
Limits

$$\lim_{x\to a} f(x) = L$$

The function f(x) approaches L as x approaches a."

Limit is the value that a function (y-value) approaches as the x-value approaches α value.

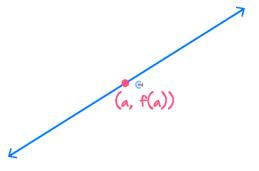
Validity of Limits



$$\lim_{x \to a} f(x) \text{ exists if } \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

Limit is defined when the left limit equals the right limit.

Continuity



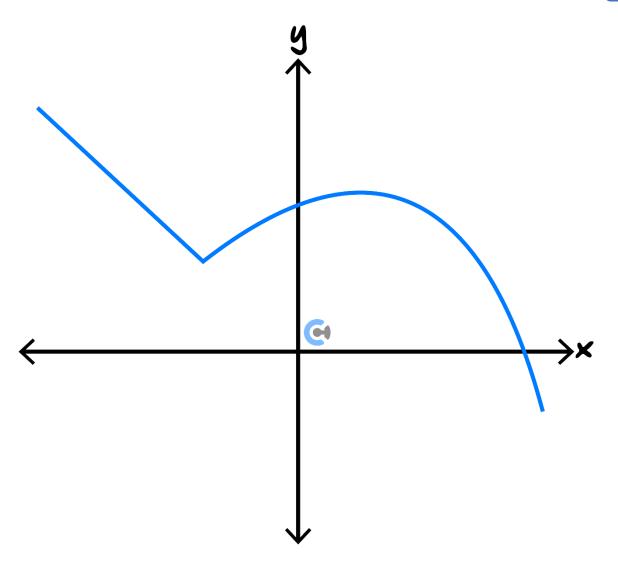
- A function f is said to be continuous at a point x = a if:
 - 1. f(x) is defined at x = a.
 - 2. $\lim_{x\to a} f(x)$ exists.
 - $3. \quad \lim_{x \to a} f(x) = f(a).$

<u>Differentiability</u>

(a, f(a))

- A function f is said to be differentiable at a point x = a if:
 - 1. f(x) is continuous at x = a.
 - 2. $\lim_{x\to a} f'(x)$ exists.
 - Limit exists when the left and right limits are the same.
 - Gradient on the LHS and RHS must be the same.
- We cannot differentiate:
 - 1. Discontinuous points.
 - **2.** Sharp points.
 - **3.** Endpoints.

Finding the Derivative of Hybrid Functions



- 1. Simply derive each function.
- **2.** Reject the values for x that are not differentiable from the domain.

Second Derivatives

- The derivative of the derivative.
- To get the second derivative, we can differentiate the original function twice.

$$\frac{d^2y}{dx^2} = f''(x)$$

Concavity

Concave up is when the gradient is increasing.

$$f''(x) > 0 \rightarrow \text{Concave Up}$$

Concave down is when the gradient is decreasing.

$$f''(x) < 0 \rightarrow \text{Concave Down}$$

Zero concavity is when the gradient is neither increasing nor decreasing.

$$f''(x) = 0 \rightarrow \mathsf{Zero} \ \mathsf{Concavity}$$

Concave up

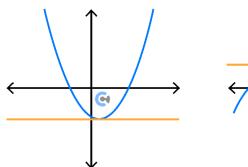
Bends upwards

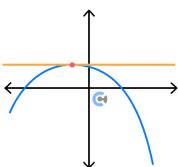
f" > 0

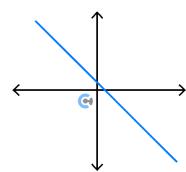
Concave down

Bends downwards

No bending



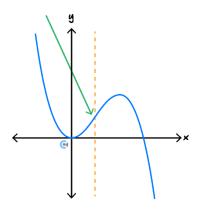




• Concavity is also linked to how the curve is bent.

Points of Inflection

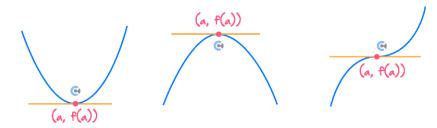
A point at which a curve **changes concavity** is called a **point of inflection**.



$$f''(x)=0$$

Simply, it is when the bending changes.

The Second Derivative Test



- Suppose that f'(a) = 0 and hence, f has a stationary point at x = a. The second derivative test states:
 - Concave up gives us a local minimum.

$$f''(x) > 0 \rightarrow \text{Local Minimum}$$

Concave down gives us a local maximum.

$$f''(x) < 0 \rightarrow \text{Local Maximum}$$

Zero concavity gives us a stationary point of inflection.

$$f''(x) = 0 \rightarrow \text{Stationary Point of Inflection}$$

Joining Smoothly

- Let two different curves be defined as f(x) and g(x). For these two curves to join smoothly at x = a, they have to satisfy:
 - (a) = g(a)
 - f'(a) = g'(a)
- In other words, the function must be **continuous** and **differentiable** at that point!

Definition

Steps for Finding Strictly Increasing/Decreasing Regions

- 1. Plot the graph on CAS.
- 2. Find stationary points.
- 3. Use a graph to determine which regions are increasing/decreasing.

Section B: Warmup

Question 1

a. Let $g(x) = e^{\sin(x)}$. Find g'(x).

Solution: $g'(x) = \cos(x)e^{\sin(x)}$

b. Let h(x) be a differentiable function. Find the derivative of $x^2h(x)$, with respect to x.

Solution: Use the product rule.

$$\frac{d}{dx}\left(x^2h(x)\right) = 2xh(x) + x^2h'(x).$$

	G 11 11				1
c.	Consider the	he fun	ction f	given	by:

$$f(x) = \begin{cases} 2 - ax & x < 1\\ ax^2 + bx + 4 & x \ge 1 \end{cases}$$

Find the integer values of a and b such that the graph of f joins smoothly at x = 1.

Solution: Let g(x) = 2 - ax then g'(x) = -a. Also let $h(x) = ax^2 + bx + 4$, then h'(x) = 2ax + b. Now $g(1) = h(1) \implies 2 - a = a + b + 4 \implies 2a + b = -2 \implies b = -2 - 2a$.

Also $g'(1) = h'(1) \implies -a = 2a + b \implies b = -3a$. So we solve $-3a = -2 - 2a \implies a = 2$ then b = -6.

a = 2, b = -6.

Section C: Exam 1 Questions (19 Marks)

INSTRUCTION:

- Regular: 19 Marks. 25 Minutes Writing.
- Extension: 19 Marks. 5 Minutes Reading. 19 Minutes Writing.

Question 2 (4 marks)

a. Let
$$y = \frac{\sin(x)}{x^2+4}$$
.

Find $\frac{dy}{dx}$. (2 marks)

Solution:
$$\frac{dy}{dx} = \frac{4\cos(x) + x^2\cos(x) - 2x\sin(x)}{(x^2 + 4)^2} = \frac{\cos(x)}{x^2 + 4} - \frac{2x\sin(x)}{(x^2 + 4)^2}$$

b. Let $f(x) = x^2 e^{7x}$. Evaluate f'(1). (2 marks)

Solution: $f'(x) = 2xe^{7x} + 7x^2e^{7x}$.
$f'(1) = 2e^7 + 7e^7 = 9e^7$

Question 3 (4 marks)

Let
$$f: [-\pi, \pi] \to \mathbb{R}$$
, $f(x) = \cos(2x) + 1$.

a. Calculate the average rate of change of f between $x = -\frac{\pi}{3}$ and $x = \frac{\pi}{4}$. (2 marks)

Solution: $f\left(-\frac{\pi}{3}\right) = -\frac{1}{2} + 1 = \frac{1}{2} \text{ and } f\left(\frac{\pi}{4} = 1\right).$ Average rate of change $=\frac{1 - 1/2}{\pi/4 + \pi/3} = \frac{1/2}{7\pi/12} = \frac{6}{7\pi}$

b. Find the angle that a tangent to f makes with the positive x-axis when $x = \frac{\pi}{3}$. (2 marks)

Solution: $f'(x) = -2\sin(2x) \implies f'\left(\frac{\pi}{3}\right) = -\sqrt{3}$. Note that $\tan(120^\circ) = -\sqrt{3}$. So angle is 120° .

Question 4 (7 marks)

Let
$$f: [-2,1] \to \mathbb{R}, f(x) = (x+1)^2(x-1)$$
.

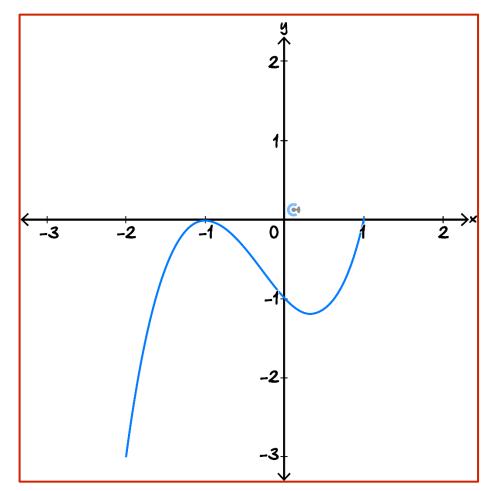
a. Show that
$$f(x) = x^3 + x^2 - x - 1$$
. (1 mark)

Solution:
$$f(x) = (x^2 + 2x + 1)(x - 1) = (x^2 + 2x + 1)(x - 1) = x^3 + 2x^2 + x - x^2 - 2x - 1 = x^3 + x^2 - x - 1.$$

b. Find the x-values for which the graph of y = f(x) has stationary points. (2 marks)

Solution: $f'(x) = 0$	$\Rightarrow 3x^2 + 2x - 1 = 0 \implies$	$(3x-1)(x+1) = 0 \implies$	$x = -1, \frac{1}{3}$
-----------------------	--	----------------------------	-----------------------

c. Hence, sketch the graph of y = f(x) on the axes below. Label all axes intercepts, stationary points and endpoints with coordinates. (2 marks)



d. The gradient of f at x = a is equal to the average rate of change of f on the interval $x \in [-2,0]$. Determine the possible value(s) of a. (2 marks)

Solution: Average rate of change $=\frac{-1-(-3)}{2}=1$. So we solve f'(x)=1.

$$3x^2 + 2x - 1 = 1$$

$$3x^2 + 2x - 2 = 0$$

$$x = \frac{-2 \pm \sqrt{4 + 24}}{6} = \frac{-2 \pm 2\sqrt{7}}{6} = \frac{-1 \pm \sqrt{7}}{3}$$

Therefore $a = \frac{-1 \pm \sqrt{7}}{3}$.

Question 5 (4 marks)

Consider the function h, where:

$$h(x) = \begin{cases} -x^2 + 2ax + 1 & x < 1\\ a(x - b)^2 + a & x \ge 1 \end{cases}$$

Find the values of a and b such that the graph of y = f(x) joins smoothly at x = 1.

Solution: Let $f(x) = -x^2 + 2ax + 1$ and let $g(x) = a(x - b)^2 + a$. We have f(1) = -1 + 2a + 1 = 2a and $g(1) = a(1 - b)^2 + a$. Also $f'(x) = -2x + 2a \implies f'(1) = 2a - 2$ and $g'(x) = 2ax - 2abx \implies g'(1) = 2a - 2ab$. Then $2a - 2 = 2a - 2ab \implies ab = 1 \implies b = \frac{1}{a}$. Then we have

 $a = \frac{1}{2}$

$$2a = a\left(1 - \frac{1}{a}\right)^2 + a$$

$$2a = a\left(1 - \frac{2}{a} + \frac{1}{a^2}\right) + a$$

$$2a = a - 2 + \frac{1}{a} + a$$

$$\frac{1}{a} = 2$$

So $a = \frac{1}{2}$ and b = 2.

Section D: Tech Active Exam Skills

Calculator Commands: Finding Derivatives

Mathematica

► TI

Shift Minus

$$\frac{d}{dx}(f(x))$$

Casio

Math 2

$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x))$$

Calculator Commands: Finding Second Derivatives

Mathematica

$$D[f[x], \{x, 2\}]$$

► TI

Shift Minus

$$\frac{d^2}{dx^2}(f(x))$$

Casio

Math 2

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}(f(x))$$

CONTOUREDUCATION

(AS

Calculator Commands: Stationary Point

- ALWAYS sketch the graph first to get an idea of the nature of the stationary point.
- The turning points for a function f(x) can be found by solving f'(x) = 0 and substituting the result into f.
- **Example:** Find the turning point for $f(x) = e^{-x^2 + 2x}$.
- TI:

Define
$$f(x) = e^{-x^2 + 2 \cdot x}$$

Solve $\left(\frac{d}{dx}(f(x)) = 0, x\right)$
 $x=1$

> Casio:

f(1)

define
$$f(x) = e^{-x^2+2x}$$

done
 $solve(\frac{d}{dx}(f(x))=0,x)$
 $\{x=1\}$
 $f(1)$

Mathematica:

In[4]:=
$$f[x_{-}] := Exp[-x^2 + 2x]$$

In[5]:= $Solve[f'[x] == 0 && y == f[x], Reals]$
Out[5]= $\{\{x \to 1, y \to e\}\}$

Calculator Commands: Using Sliders/Manipulate on CAS

Mathematica

• NOTE: The function must be typed out instead of using its saved name.

TI-Nspire

 $\int f1(x)=function$ with unknown

-5.00000 5.00000

Casio Classpad

Calculator Commands: Joining Smoothly

Mathematica

$$f[x_{-}] := One Function$$

$$g[x_{-}] := Another Function$$

$$g[x_{-}] := G[x value] = g[x value] & f'[x value] = g'[x value]$$

> TI and Casio

• Define each branch as f(x) and g(x).

 \bullet TI: Define its derivative as df(x) and dg(x)

Casio: Define them as different names

Solve f(a) = g(a) and df(a) = dg(a) simultaneously.

Section E: Exam 2 Questions (22 Marks)

INSTRUCTION:

- Regular: 22 Marks. 28 Minutes Writing.
- Extension: 22 Marks. 5 Minutes Reading. 22 Minutes Writing.

Question 6 (1 mark)

For the curve with equation $y = -x^3 - x^2 + 2x + 2$, the subset of \mathbb{R} for which the gradient of the curve is positive is closest to:

- A. $(-\infty, -1.215)$
- **B.** (-1.215, 0.548)
- C. $(0.548, \infty)$
- **D.** (-1.000, 1.414)

Question 7 (1 mark)

If $y = \frac{\tan x}{x}$, then $\frac{dy}{dx}$ is:

- $\mathbf{A.} \ \frac{1}{\cos^2 x}$
- $\mathbf{B.} \quad \frac{\tan x \frac{x}{\cos^2 x}}{x^2}$
- $\mathbf{C.} \quad \frac{\frac{x}{\cos^2 x} \tan x}{x^2}$
- $\mathbf{D.} \ \frac{x}{\cos^2 x} \frac{\tan x}{x}$

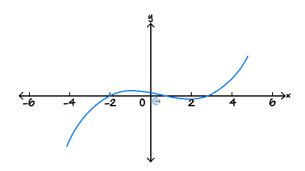
Question 8 (1 mark)

Let $h(x) = g(x)e^{f(x^2)}$ be a differentiable function. Then h'(x) is equal to:

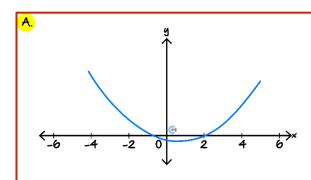
- **A.** $2e^{f(x^2)}g(x)f'(x^2) + e^{f(x^2)}g(x)$
- **B.** $2xe^{f(x^2)}g(x)f'(x^2) + e^{f(x^2)}g'(x)$
- C. $2x^{2e^{f(x^2)}}g'(x)f'(x^2) + e^{f(x^2)}g(x)$
- **D.** $x^2 e^{f(x^2)} g(x) f'(x^2) + e^{f(x^2)} g'(x)$

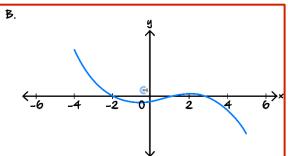
Question 9 (1 mark)

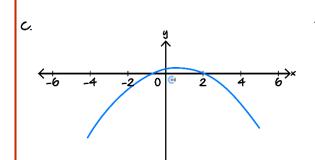
The graph of the function with equation y = f(x) is shown below:

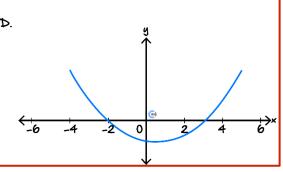


Which one of the following is most likely to be the graph of the derivative function with equation y = f'(x)?









Question 10 (1 mark)

If $y = e^{-x} - 1$, then the rate of change of y with respect to x, when x = 0 is:

- A. -e
- **B.** -2
- \mathbf{C} . -1
- **D.** 0

Question 11 (1 mark)

Let f be a one-to-one differentiable function such that f(3) = 5, f(5) = 8, f'(3) = 2, and f'(5) = 3.

The function g is differentiable and $g(x) = f^{-1}(x)$ for all x.

g'(5) is equal to:

A. $\frac{1}{2}$

- **B.** 2
- C. $\frac{1}{8}$
- **D.** $\frac{1}{3}$

Question 12 (1 mark)

A continuous function f has the following properties:

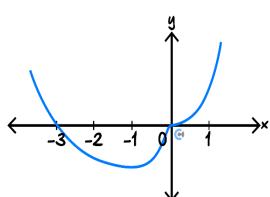
$$f(0) = 0$$
 $f'(0) = 0$
 $f(-3) = 0$ $f'(-1) = 0$

$$f'(x) > 0$$
 for $x \in (-\infty, -1)$

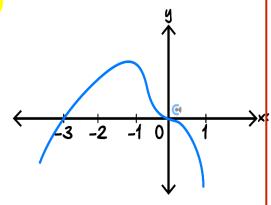
$$f'(x) < 0 \text{ for } x \in (-1,0) \cup (0,\infty)$$

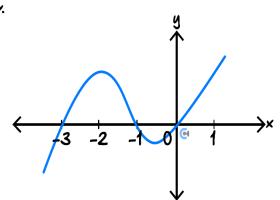
Which one of the following is most likely to represent the graph of f?

A.

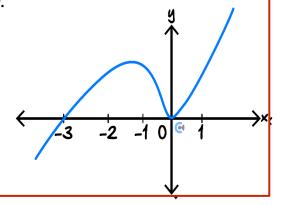


B.





D.



Question 13 (15 marks)

Let
$$f : \mathbb{R} \to \mathbb{R}$$
, $f(x) = (x - 1)^2(x - 4)$.

a. Find f'(x). (1 mark)

Solution:
$$f'(x) = 3(x-3)(x-1) = 3x^2 - 12x + 9$$

b. For what values of x is f(x) strictly decreasing? (1 mark)

Solution:
$$x \in [1, 3]$$

c.

i. Find the gradient of the line segment joining the points on the graph of y = f(x) where x = 0 and x = 4. (1 mark)

Solution:
$$f(0) = -4$$
 and $f(4) = 0$. Gradient $= \frac{4+0}{4} = 1$.

Midpoint (2, -2).

ii. Show that the midpoint of the line segment in part c.i. also lies on the graph of y = f(x). (2 marks)

Solution: Line has equation y = x - 4. Midpoint when $x = 2 \implies y = -2$.

Then f(2) = -2 so the midpoint lies on the graph of y = f(x)

iii. Find the values of x for which the tangent to the graph of y = f(x) is equal to the gradient of the line segment joining the points on the graph where x = 0 and x = 4. (2 marks)

Solution: We require $f'(x) = 1 \implies x = \frac{2}{3}(3 - \sqrt{3})$ or $x = \frac{2}{3}(3 + \sqrt{3})$

Let $g : \mathbb{R} \to \mathbb{R}$, $g(x) = (x - a)^2(x - 4)$, where $a \in R$.

d.

i. State the value of α for which g(x) has a stationary point of inflection. (1 mark)

Solution: a = 4.

ii. Find the coordinates for the stationary points of g, in terms of a. (2 marks)

Solution: We solve $g'(x) = 0 \implies x = a, \frac{a+8}{3}$. Then g(a) = 0 and $g\left(\frac{a+8}{3}\right) = \frac{4}{27}(a-4)^3$. So stationary points (a,0) and $\left(\frac{a+8}{3}, \frac{4}{27}(a-4)^3\right)$

e. Find the values of a for which the gradient of g(x) when $x = \frac{10+a}{3}$ is negative. (1 mark)

Solution: We solve $g'\left(\frac{10+a}{3}\right) = -\frac{4}{3}(a-5) < 0 \implies a > 5$

- **f.** Suppose the tangent to the graph of y = g(x) at $x = \frac{10+a}{3}$ has a positive gradient.
 - i. Find the coordinates of another point where the tangent to the graph of y = g(x) is parallel to the tangent at $x = \frac{10+a}{3}$. (2 marks)

Solution: We solve
$$g'\left(\frac{10+a}{3}\right) = g'(x) \implies x = \frac{3a-2}{3}$$
.
So coordinate $\left(\frac{3a-2}{3}, \frac{4}{27}(3a-14)\right)$

ii. Find the value(s) of a for which the points that these parallel tangents are drawn at have the same y value. (2 marks)

Solution: We solve $g\left(\frac{10+a}{3}\right) = \frac{4}{27}(3a-14)$.

This yields $a=6,3\pm\sqrt{3}$. We reject a=6 because a<5 for tangent to be positive. Thus $a=3\pm\sqrt{3}$

Section F: Extension Exam 1 (9 Marks)

INSTRUCTION:

- Regular: Skip
- > Extension: 9 Marks. 12 Minutes Writing.

Question 14 (9 marks)

Consider the function $f: [0,4] \to \mathbb{R}, f(x) = \frac{\sqrt{x}(4-x)}{2}$.

a.

i. For $x \in (0, 4)$, show that the gradient of the tangent to the graph of f is $\frac{4-3x}{4\sqrt{x}}$. (1 mark)

Solution: $f(x) = 2\sqrt{x} - \frac{1}{2}x^{3/2}$ $\implies f'(x) = \frac{1}{\sqrt{x}} - \frac{3}{4}x^{1/2} = \frac{4}{4\sqrt{x}} - \frac{3\sqrt{x} \times \sqrt{x}}{4\sqrt{x}} = \frac{4 - 3x}{4\sqrt{x}}$

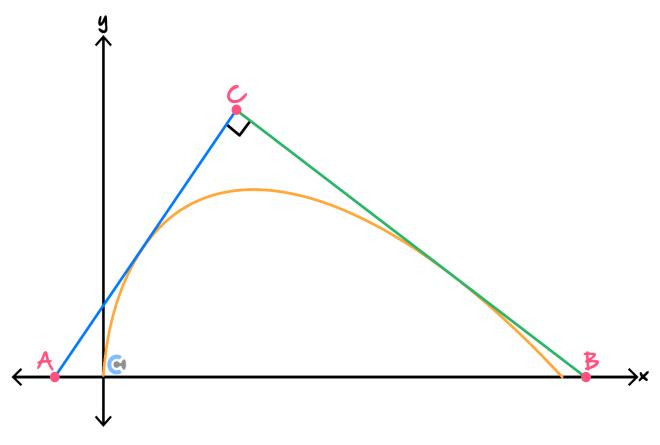
ii. Hence, find the coordinates of any stationary points of f. (2 marks)

Solution: Solve $f'(x) = 0 \implies 4 - 3x = 0 \implies x = \frac{4}{3}$.

Then $f\left(\frac{4}{3}\right) = \frac{1}{2} \times \frac{2}{\sqrt{3}} \left(\frac{12}{3} - \frac{4}{3}\right) = \frac{1}{\sqrt{3}} \times \frac{8}{3} = \frac{8}{3\sqrt{3}} = \frac{8\sqrt{3}}{9}$.

Stationary point at $\left(\frac{4}{3}, \frac{8\sqrt{3}}{9}\right)$

The edges of the **right-angled** triangle *ABC* are the line segments *AC* and *BC* which are tangent to the graph of f and the line segment *AB*, which is part of the horizontal axis as shown below. Let θ be the angle that *AC* makes with the positive direction of the horizontal axis, where $30^{\circ} \le \theta < 90^{\circ}$.



b. Find the equation of the line through B and C, in the form y = mx + c, for $\theta = 45^{\circ}$. (2 marks)

Solution: $\theta = 45^{\circ} \implies AC$ has gradient 1 and therefore BC must have gradient -1 .	
We solve $f'(x) = \frac{4-3x}{4\sqrt{x}} = -1 \implies 4-3x = -4\sqrt{x}$. Let $a = \sqrt{x}$. Then	
$4 - 3a^2 = -4a$	
$3a^2 - 4a - 4 = 0$	
(3a+2)(a-2) = 0	
$a = -\frac{2}{3}, 2$	
Only $a=2$ is valid. Therefore $x=4$.	
Only $a = 2$ is valid. Therefore $x = 4$. And so, $y = -x + 4$	

c. Find the coordinates of C when $\theta = 45^{\circ}$. (4 marks)

Solution: We now need to find the equation of line segment AC. We know it has gradient 1, so solve f'(x) = 1.

We solve $4-3x=4\sqrt{x}$. Let $a=\sqrt{x}$

$$4 - 3a^2 = 4a$$

$$3a^2 + 4a - 4 = 0$$

$$(3a - 2)(a + 2) = 0$$

$$a = -2, \frac{2}{3}$$

Only
$$a = \frac{2}{3}$$
 valid $\implies x = \frac{4}{9}$.
Now $f\left(\frac{4}{9}\right) = \frac{2\left(\frac{36}{9} - \frac{4}{9}\right)}{3 \times 2} = \frac{64}{54} = \frac{32}{27}$.

$$y - \frac{32}{27} = x - \frac{12}{27}$$

$$y = x + \frac{20}{27}.$$

Now we find C at the intersection of $y = x + \frac{20}{27}$ and y = -x + 4.

$$\implies 2x = \frac{108}{27} - \frac{20}{27} = \frac{88}{27} \implies x = \frac{44}{27} \implies y = \frac{64}{27}.$$

Thus $C\left(\frac{44}{27}, \frac{64}{27}\right)$

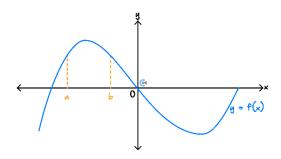
Section G: Extension Exam 2 (14 Marks)

INSTRUCTION:

- Regular: Skip
- Extension: 14 Marks. 17 Minutes Writing.

Question 15 (1 mark)

The graph of the function with equation y = f(x) is shown below:



Let g be the function such that g'(x) = f(x). On the interval (a, b), the graph of g will:

- **A.** Have a negative gradient.
- **B.** Have a positive gradient.
- **C.** Have a local minimum value.
- **D.** Have a local maximum value.

Question 16 (1 mark)

Consider the function $f: [1, \infty) \to \mathbb{R}$, $f(x) = x^4 + 4x^3 + 2(a-1)x^2 - 4(a+3)x - 6a - 6$, where $a \in \mathbb{R}$. The maximal set of values of a for which the inverse function f^{-1} exists is:

- A. $(-9, \infty)$
- **B.** $(-\infty, 1)$
- C. $(-8, \infty)$
- **D.** (-9,1)

Question 17 (1 mark)

Let p(x) be a degree seven polynomial with seven real roots. What is the minimum amount of real roots that q(x)can have if q'(x) = p(x)?

- **A.** 0
- **B.** 1
- **C.** 7
- **D.** 8

Question 18 (11 marks)

Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 3^{x+2} - 4$.

a. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x,ay+d) maps the graph of $y=3^x$ onto the graph of f.

State the values of a and d. (2 marks)

Solution: $9 \times 3^x = 3^{x+2}$.

So dilation by factor 9 from the x-axis and translation 4 units down.

Therefore a = 9 and d = -4

b. Find the rule and domain for f^{-1} , the inverse function of f. (2 marks)

Solution: $x = 3^{y+2} - 4 \implies \log_3(x+4) = y+2 \implies y = \log_3(x+4) - 2.$ Therefore $f^{-1}: (-4, \infty) \to \mathbb{R}, f^{-1}(x) = \log_3(x+4) - 2$.

c. Find the point(s) of intersection between f and f^{-1} . Give your answer correct to two decimal places where appropriate. (1 mark)

Solution: We solve $f(x) = f^{-1}(x) \implies x = -3.87, -1$. Thus points of intersection (-1, -1) and (-3.87, -3.87).

d. Find the gradient of f and the gradient of f^{-1} at x = -1. (2 marks)

Solution: $f'(-1) = 3\log_e(3)$ and $(f^{-1})'(-1) = \frac{1}{3\log_e(3)}$

e. The function f is mapped to the function g when it undergoes a dilation by a factor k from the x-axis, where k > 0. Find the value(s) of k such that g and g^{-1} intersect each other exactly once. Give your answer(s) correct to three decimal places. (2 marks)

Solution: g(x) = kf(x). We solve g(x) = x and g'(x) = 1 simultaneously. This yields k = 0.0454272, x = 0.728531 or k = 0.651434, x = -1.6955. Thus k = 0.045, 0.651.

Let $h(x) = 3^{x+2} - 4 - 3^{3x}$.

f. Find the exact values of a for which h(x) = a has two solutions, where $a \in \mathbb{R}$. (2 marks)

Solution: Find that h(x) has a local maximum at $\left(\frac{1}{2}, 6\sqrt{3} - 4\right)$, also $\lim_{x \to -\infty} h(x) = -4$.

Looking at the shape of the graph we see that $a \in (-4, 6\sqrt{3} - 4)$

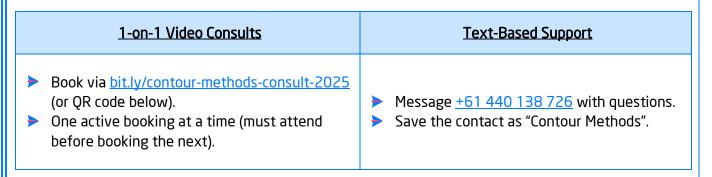
Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.



Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

