

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Differentiation Exam Skills [0.11]

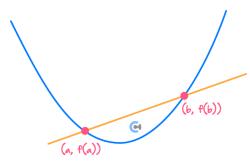
Workshop

Error Logbook:

Not knowing how to do the q		Algebraic/Calculator Mistakes	
Question #:	Page #:	Question #:	Page #:
Notes:		Notes:	
Not reading the que	estion/detail	Time management	
Question #:	Page #:	Question #:	Page #:
Notes:		Notes:	

Section A: Recap

Average Rate of Change

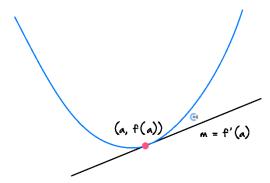


The average rate of change of a function f(x) over $x \in [a, b]$ is given by:

Average rate of change
$$=\frac{f(b)-f(a)}{b-a}$$

It is the gradient of the line joining the two points.

Instantaneous Rate of Change



Instantaneous rate of change is a gradient of a graph at a single point/moment.

Instantaneous rate of change = f'(x)

- **Differentiation** is the process of finding the derivative of a function.
- First principles derivative definition:

$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$$

Alternative Notation for Derivative

$$f'(x) = \frac{dy}{dx}$$

Derivatives of Functions Definition

The derivatives of many of the standard functions are in the summary table below:

f(x)	f'(x)
x^n	$n \times x^{n-1}$
sin(x)	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$\sec^2(x)$
e ^x	e^x
$\log_e(x)$	$\frac{1}{x}$

The Product Rule

The derivative of $h(x) = f(x) \times g(x)$ is given by:

$$h'(x) = f'(x) \cdot g(x) + g'(x) \cdot f(x)$$

Or, in another form:

$$\frac{d}{dx}(u \cdot v) = u'v + v'u$$

Definition

The Quotient Rule

The derivative of a $h(x) = \frac{f(x)}{g(x)}$ is given by:

$$h'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$$

Or, written in another form:

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - v'u}{v^2}$$

Always differentiate the top function first.

Definition

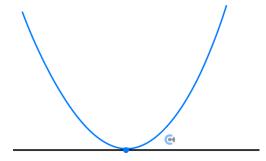
The Chain Rule

$$y = f(g(x))$$

$$\frac{dy}{dx} = f'(g(x))g'(x)$$

➤ The process for finding derivatives of **composite functions**.

Stationary Points



The point where the gradient of the function is zero.

$$f'(x) = 0, \frac{dy}{dx} = 0$$

Calculator Commands: Finding Derivatives

Mathematica

TI

Shift Minus

$$\frac{d}{dx}(f(x))$$

Casio

Math 2

$$\frac{d}{dx}(f(x))$$

Types of Stationary Points

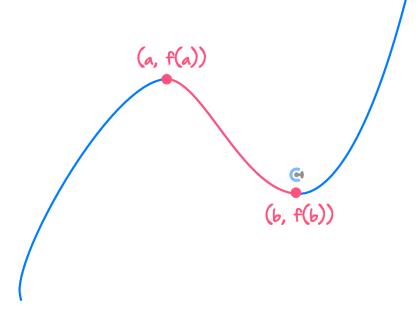
Local Maximum	Local Minimum	Stationary Point of Inflection
+ 0 -	- +	- 0 - + 0 +

- G Sign test.
- We can identify the nature of a stationary point by using the sign table.

x	Less than a	а	Bigger than a
f'(x)	Negative	0	Positive
Shape	∩ - Decreasing curve	Stationary point	∪ - Increasing curve

Find the gradient of the neighbouring points.

Strictly Increasing and Strictly Decreasing Functions

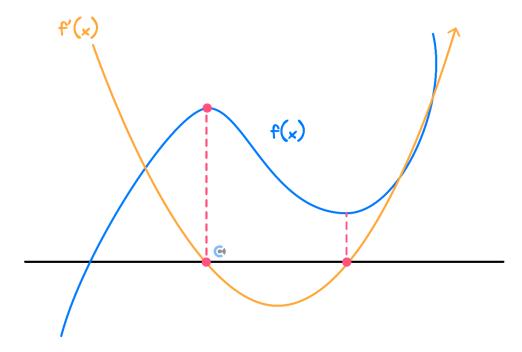


Strictly Increasing: $x \in (-\infty, a] \cup [b, \infty)$

Strictly Decreasing: $x \in [a, b]$

- Steps:
 - 1. Find the turning points.
 - **2.** Consider the sign of the derivative between/outside the turning points.





f(x)	f'(x)
Stationary Point	x-intercepts
Increasing	Positive
Decreasing	Negative

y-value of f'(x) = Gradient of f(x)

Steps

- 1. Plot x-intercept at the same x-value as the stationary point of the original.
- **2.** Consider the trend of the original function and sketch the derivative.
 - ightharpoonup Original is increasing ightharpoonup Derivative is above the x-axis.
 - ightharpoonup Original is decreasing ightharpoonup Derivative is below the x-axis.

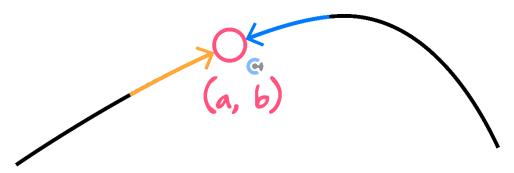
Limits

$$\lim_{x\to a} f(x) = L$$

"The function f(x) approaches L as x approaches a."

 \blacktriangleright Limit is the value that a function (y-value) approaches as the x-value approaches α value.

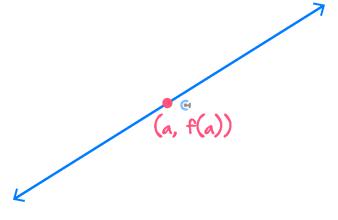
Validity of Limits



$$\lim_{x \to a} f(x) \text{ exists if } \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

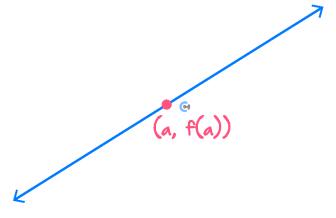
Limit is defined when the left limit equals the right limit.

Continuity



- A function f is said to be continuous at a point x = a if:
 - 1. f(x) is defined at x = a.
 - 2. $\lim_{x\to a} f(x)$ exists.
 - $3. \quad \lim_{x \to a} f(x) = f(a).$

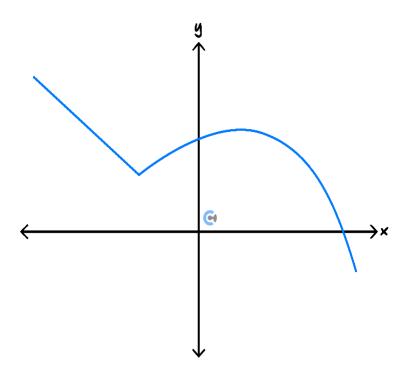
Differentiability



- A function f is said to be differentiable at a point x = a if:
 - 1. f(x) is continuous at x = a.
 - 2. $\lim_{x\to a} f'(x)$ exists.
 - Limit exists when the left and right limits are the same.
 - Gradient on the LHS and RHS must be the same.

- We cannot differentiate:
 - 1. Discontinuous points.
 - 2. Sharp points.
 - **3.** Endpoints.

Finding the Derivative of Hybrid Functions



- 1. Simply derive each function.
- **2.** Reject the values for *x* that are not differentiable from the domain.

Second Derivatives

- The derivative of the derivative.
- To get the second derivative, we can differentiate the original function twice.

$$\frac{d^2y}{dx^2} = f''(x)$$

Concavity

Concave up is when the gradient is increasing.

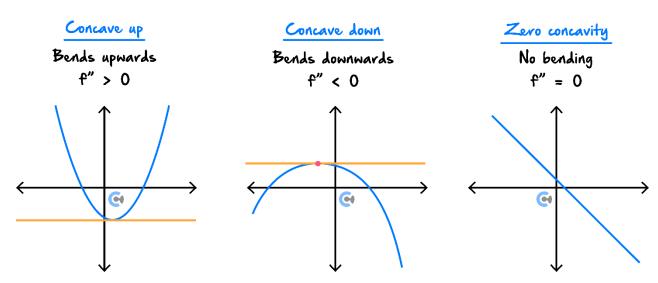
$$f''(x) > 0 \rightarrow \text{Concave Up}$$

Concave down is when the gradient is decreasing.

$$f''(x) < 0 \rightarrow \text{Concave Down}$$

Zero concavity is when the gradient is neither increasing nor decreasing.

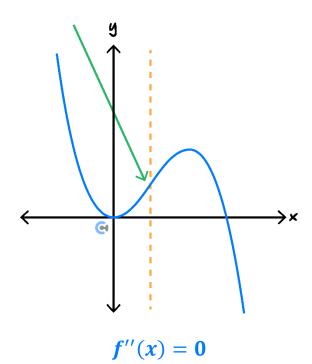
$$f''(x) = 0 \rightarrow \mathsf{Zero} \ \mathsf{Concavity}$$



• Concavity is also linked to how the curve is bent.

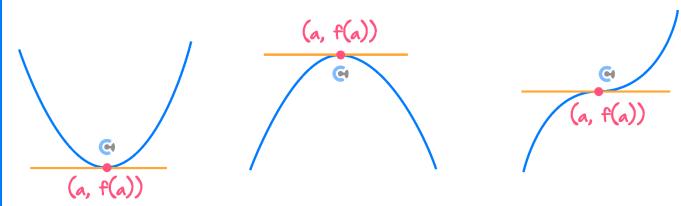
Points of Inflection

A point at which a curve **changes concavity** is called a **point of inflection**.



G Simply, it is when the bending changes.

The Second Derivative Test



- Suppose that f'(a) = 0 and hence, f has a stationary point at x = a. The second derivative test states:
 - Concave up gives us a local minimum.

$$f''(x) > 0 \rightarrow \text{Local Minimum}$$

• Concave down gives us a local maximum.

$$f''(x) < 0 \rightarrow \text{Local Maximum}$$

© Zero concavity gives us a stationary point of inflection.

$$f''(x) = 0 \rightarrow \text{Stationary Point of Inflection}$$

Definition

Joining Smoothly

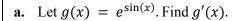
- Let two different curves be defined as f(x) and g(x). For these two curves to join smoothly at x = a, they have to satisfy:
 - (a) = g(a)
 - f'(a) = g'(a)
- In other words, the function must be **continuous** and **differentiable** at that point!

Steps for Finding Strictly Increasing/Decreasing Regions

- 1. Plot the graph on CAS.
- **2.** Find stationary points.
- 3. Use a graph to determine which regions are increasing/decreasing.

Section B: Warmup

Question 1



 $g'(x) = \cos(x)e^{\sin(x)}$

b. Let h(x) be a differitable function. Find the derivative of $x^2h(x)$, with respect to x.

Use the product rule.

 $\frac{d}{dx}\left(x^2h(x)\right) = 2xh(x) + x^2h'(x).$

	c.	Consider the function	f	given	by:
--	----	-----------------------	---	-------	-----

$$f(x) = \begin{cases} 2 - ax & x < 1 \\ ax^2 + bx + 4 & x \ge 1 \end{cases}$$

Find the integer values of a and b such that the graph of f joins smoothly at x = 1.

Solution: Let g(x) = 2 - ax then g'(x) = -a. Also let $h(x) = ax^2 + bx + 4$, then h'(x) = 2ax + b.

Now $g(1) = h(1) \implies 2 - a = a + b + 4 \implies 2a + b = -2 \implies b = -2 - 2a$.

Also $g'(1) = h'(1) \implies -a = 2a + b \implies b = -3a$.

So we solve $-3a = -2 - 2a \implies a = 2$ then b = -6.

a = 2, b = -6.

Space for	Personal	Notes
-----------	----------	-------

Section C: Exam 1 Questions (19 Marks)

INSTRUCTION: 19 Marks. 28 Minutes Writing.

Question 2 (4 marks)

a. Let
$$y = \frac{\sin(x)}{x^2 + 4}$$
.

Find $\frac{dy}{dx}$. (2 marks)

$$\frac{dy}{dx} = \frac{Cn(x1\cdot(x^2+4) - sin(x1-2x))}{(x^2+4)^2}$$

$$= (x^2+4) \cos(x) - 2x \sin(x)$$

b. Let
$$f(x) = x^2 e^{7x}$$
. Evaluate $f'(1)$. (2 marks)

$$\int (x) = 2xe^{3x} + x^2 - e^{3x} - 7$$

Question 3 (4 marks)

Let
$$f : [-\pi, \pi] \to \mathbb{R}, f(x) = \cos(2x) + 1.$$

a. Calculate the average rate of change of f between $x = -\frac{\pi}{3}$ and $x = \frac{\pi}{4}$. (2 marks)

f(要1-f(-多) 1/2	f(至1一f(-至)
T-(-4) = 77/12	$= \left[\left(\cos \left(\frac{\pi}{2} \right) + 1 \right] - \left[\cos \left(-\frac{2\pi}{3} \right) + 1 \right] \right]$
	= (-\frac{1}{2} \pm 1 - \frac{1}{2} - \frac{1}{2}
77(

b. Find the angle that a tangent to f makes with the positive x-axis when $x = \frac{\pi}{3}$. (2 marks)

f'(xl= -2sin(2x)	
V	tan(61=-13
f '(号)= 一)siu(智)	
_	6-3,3.
$=-2 \times \frac{13}{2}$	
= -[
	_ (

Question 4 (8 marks)

Let
$$f: [-2,1] \to \mathbb{R}$$
, $f(x) = (x + 1)^2(x - 1)$.

a. Show that
$$f(x) = x^3 + x^2 - x - 1$$
. (1 mark)

$$f(x) = (x+1)^{2}(x-1)$$

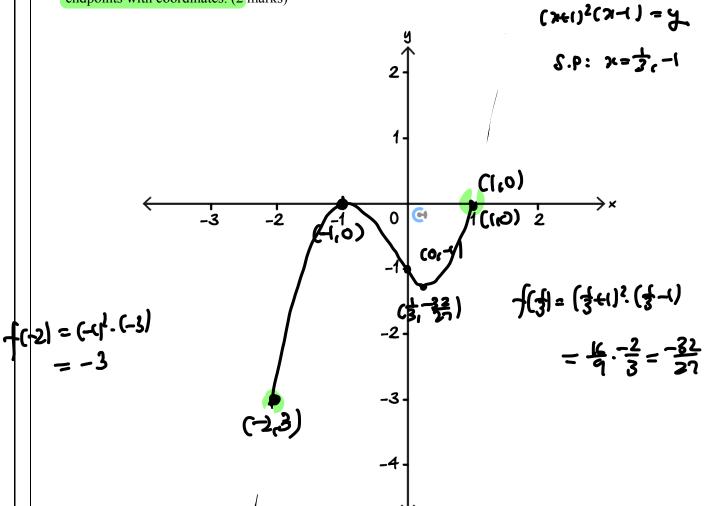
$$= (x+1)(x+1)(x-1)$$

$$= x^{2}-x+x^{2}-1 = x^{3}+x^{2}-x-1$$

b. Find the x-values for which the graph of y = f(x) has stationary points. (2 marks)

$f(\lambda) = 3\lambda^{2} + 2\lambda - 1 = 0$	
(311 -1)(x+1)=0	
x= 1/3, -1	
•	

c. Hence, sketch the graph of y = f(x) on the axes below. Label all axes intercepts, stationary points, and endpoints with coordinates. (2 marks)



d. The gradient of f at x = a is equal to the average rate of change of f on the interval $x \in [-2, 0]$. Determine the possible value(s) of a. (2 marks)

$f'(a) = \frac{f(0) - f(-2)}{\sigma - (-2)}$	f'(x1 = 3x2+2x-1
0-(-2)	'
$3a^2+2a-1=1$	fa)-f(-2)= -1 - [-3]
	= 2
3a2+2a-2 = 0	
$a = \frac{-2 \pm \sqrt[3]{4 \cdot 4 \cdot 3 \cdot (-2)}}{\sqrt{2}}$	1. f(0) -f(-2) = 2 = 1
	0-0-21 2
= 3	

e. The function f is mapped to the function g according to $g(x) = 2f\left(\frac{1}{3}(x+2)\right)$. State the x-values for the stationary points of g. (1 mark)

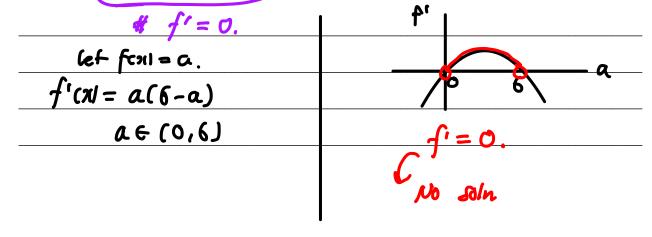
$f: (-1,0) \times (\frac{1}{3}, -\frac{32}{27})$	Crawforde: Oil 2 from 2
΄ ,	Dil 3 from y
$(-1,0)$ d $(\frac{1}{3},\frac{-\frac{69}{27}}{27})$	2 left
(-3,0) & (1, -64)	x=-S,-1
(-5, a) & (-1, -64)	

Question 5 (3 marks)

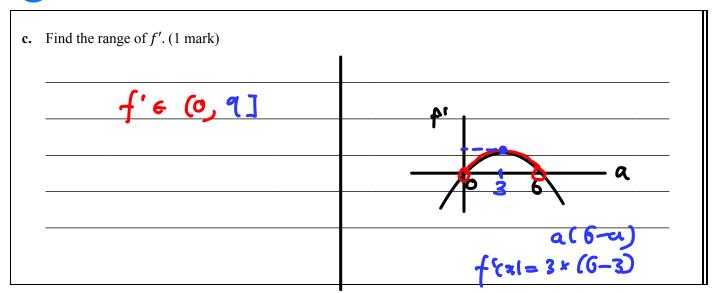
A differentiable function $f : \mathbb{R} \to \mathbb{R}$ has the following two properties:

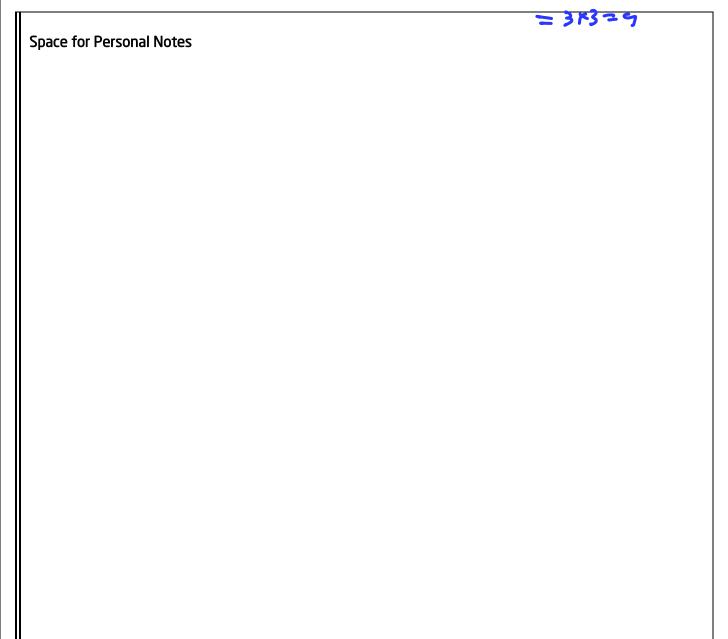
- f'(x) = f(x) (6 f(x))
- The range of f is (0,6).
- **a.** Find f'(0) if f(0) = 2. (1 mark)

b. Determine the number of stationary points of the graph of f and justify your answer. (1 mark)



: Zero Stady Point





Section D: Tech Active Exam Skills

Calculator Commands: Finding Derivatives

Mathematica

D[f[x], x]

Shift Minus

$$\frac{d}{dx}(f(x))$$

Casio

Math 2

$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x))$$

Calculator Commands: Finding Second Derivatives

Mathematica

: D[f[x], {x, 2}]

► TI

Shift Minus

$$\frac{d^2}{dx^2}(f(x))$$

Casio

Math 2

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}(f(x))$$

Calculator Commands: Stationary Point

- ALWAYS sketch the graph first to get an idea of the nature of the stationary point.
- The turning points for a function f(x) can be found by solving f'(x) = 0 and subbing the result into f.
- **Example:** Find the turning point for $f(x) = e^{-x^2 + 2x}$.
- **►** TI:

Define
$$f(x) = e^{-x^2 + 2 \cdot x}$$

$$solve\left(\frac{d}{dx}(f(x)) = 0, x\right)$$
 $f(1)$

Done

$$x = 1$$

Casio:

define
$$f(x) = e^{-x^2+2x}$$

done
 $solve(\frac{d}{dx}(f(x))=0,x)$
 $\{x=1\}$

Mathematica:

In[4]:=
$$f[x_]$$
 := $Exp[-x^2 + 2x]$
In[5]:= $Solve[f'[x] == 0 && y == f[x], Reals]$
Out[5]= $\{\{x \to 1, y \to e\}\}$

Calculator Commands: Using Sliders/Manipulate on CAS

Mathematica

• NOTE: The function must be typed out instead of using its saved name.

TI-Nspire

 $\int fI(x) = function with unknown$

-5.00000 5.00000

Casio Classpad

Calculator Commands: Joining Smoothly

Mathematica

$$f[x_{-}] := \text{One Function}$$

$$g[x_{-}] := \text{Another Function}$$

$$\text{Solve}[f[x \ value] == g[x \ value] \&\& f'[x \ value] == g'[x \ value]]$$

> TI and Casio

- Define each branch as f(x) and g(x).
- TI: Define its derivative as df(x) and dg(x).

Casio: Define them as different names.

Solve f(a) = g(a) and df(a) = dg(a) simultaneously.

Section E: Exam 2 Questions (22 Marks)

INSTRUCTION: 22 Marks. 32 Minutes Writing.

Question 6 (1 mark)

If
$$y = \frac{\tan x}{h(x)}$$
, then $\frac{dy}{dx}$ is:

$$\mathbf{A.} \ \frac{h(x)\sec^2(x) + \tan(x)h'(x)}{h(x)^2}$$

B.
$$\frac{h(x)\sec^2(x) + \tan(x)h'(x)}{h(x)^4}$$

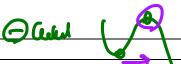
C.
$$\frac{h(x)\sec^2(x) - \tan(x)h'(x)}{h(x)^2}$$

$$\mathbf{D.} \ \frac{h'(x)\sec^2(x) - \tan(x)h(x)}{h(x)^2}$$

Question 7 (1 mark)

A cubic function has the rule y = f(x). The graph of the derivative function f'(x) crosses the x-axis at (2,0) and (-3,0). The maximum value of the derivative function is 10. The value of x for which the graph of y = f(x) has a local maximum is.

A.
$$-2$$



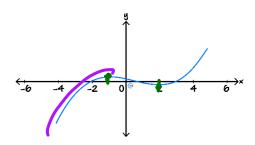
Question 8 (1 mark)

Let $h(x) = g(x)e^{f(x^2)}$ be a differentiable function. Then h'(x) is equal to:

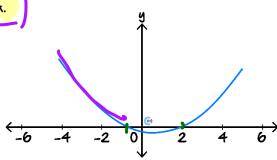
- **A.** $2e^{f(x^2)}g(x)f'(x^2) + e^{f(x^2)}g(x)$
- **B.** $2xe^{f(x^2)}g(x)f'(x^2) + e^{f(x^2)}g'(x)$
- C. $2x^2e^{f(x^2)}g'(x)f'(x^2) + e^{f(x^2)}g(x)$
- **D.** $x^2 e^{f(x^2)} g(x) f'(x^2) + e^{f(x^2)} g'(x)$

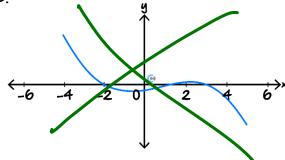
Question 9 (1 mark)

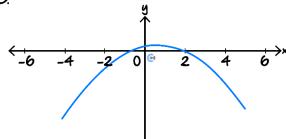
The graph of the function with the equation y = f(x) is shown below.



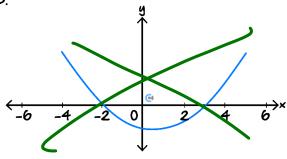
Which one of the following is most likely to be the graph of the derivative function with equation y = f'(x)?







D.



Question 10 (1 mark)

Consider the function h, where

$$h(x) = \begin{cases} -x^2 + 2ax + 1 & x < 1\\ a(x - b)^2 + a & x \ge 1 \end{cases}$$

The values of a and b such that the graph of y = f(x) joins smoothly at x = 1 are:

A. a = 2, b = 1

B. a = 1, b = 2

C. $a = \frac{1}{2}, b = 2$

f(11=g(1)

D. $a = 1, b = \frac{1}{2}$

Question 11 (1 mark)

Let f be a one-to-one differentiable function. The points (3,5) and (5,8) lie on the graph of f. It is known that fhas; a gradient of 2 when x = 3, a gradient of 3, when x = 5 and a gradient of 7, when x = 8.

The function g is differentiable and $g(x) = f^{-1}(x)$ for all x.

g'(5) is equal to:

B. 2

C. $\frac{1}{8}$

D. $\frac{1}{3}$

Question 12 (1 mark)

A continuous function f has the following properties:

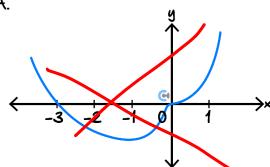
$$f(0) = 0$$

$$f(-3) = 0$$

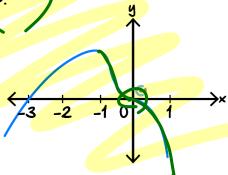
$$f'(0) = 0 f'(-1) = 0 f'(x) > 0 \text{ for } x \in (-\infty, -1) f'(x) < 0 \text{ for } x \in (-1, 0) \cup (0, \infty)$$

Which one of the following is most likely to represent the graph of *f*?

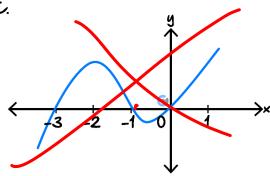
A.



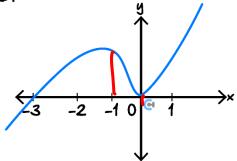
В.



C



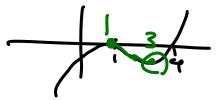
D



Question 13 (15 marks)

Let
$$f : \mathbb{R} \to \mathbb{R}$$
, $f(x) = (x - 1)^2(x - 4)$.

a. Find f'(x). (1 mark)

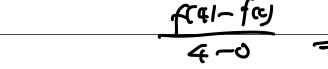


b. For what values of x is f(x) strictly decreasing? (1 mark)

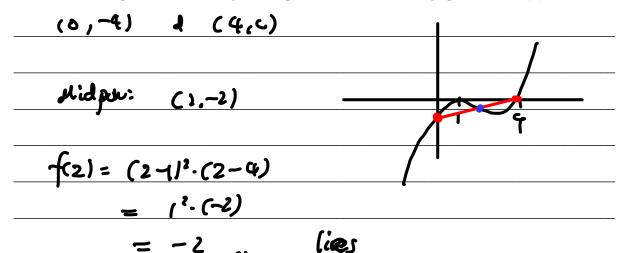
ne [1,3]

C.

i. Find the gradient of the line segment joining the points on the graph of y = f(x) where x = 0 and x = 4. (1 mark)



ii. Show that the midpoint of the line segment in **part c.i** also lies on the graph of y = f(x). (2 marks)



iii. Find the values of x for which the tangent to the graph of y = f(x) is equal to the gradient of the line segment joining the points on the graph where x = 0 and x = 4. (2 marks)

•

Let $g : \mathbb{R} \to \mathbb{R}$, $g(x) = (x - a)^2(x - 4)$, where $a \in \mathbb{R}$.

d.

i. State the value of a for which g(x) has a stationary point of inflection. (1 mark)

(x-u)= (x-4)

a = 4

ii. Find the coordinates for the stationary points of g, in terms of a. (2 marks)

gi(xl=0.

 $x=a, \frac{9+8}{3}$

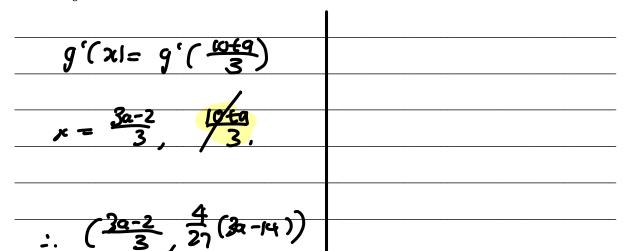
(a,0). (3, 4(a-4)3)

e. Find the values of a for which the gradient of g(x) when $x = \frac{10+a}{3}$ is negative. (1 mark)

9'(10+9) <0

a >5

- **f.** Suppose the tangent to the graph of y = g(x) at $x = \frac{10+a}{3}$ has a positive gradient. $\triangle < \sum_{x = a}^{n} (x)$
 - i. Find the coordinates of another point where the tangent to the graph of y = g(x) is parallel to the tangent at $x = \frac{10 + a}{3}$. (2 marks)



ii. Find the value(s) of a for which the points that these parallel tangents are drawn at have the same y-value. (2 marks)

$$f(\frac{10+9}{3}) = f(\frac{3a-2}{3})$$

$$a=6,3\pm 13$$

Section F: Extension Exam 1 (12 Marks)

INSTRUCTION: 12 Marks. 18 Minutes Writing.

Question 14 (9 marks)

Consider the function $f: [0,4] \to \mathbb{R}, f(x) = \frac{\sqrt{x}(4-x)}{2}$.

a.

i. For $x \in (0,4)$, show that the gradient of the tangent to the graph of f is $\frac{4-3x}{4\sqrt{x}}$. (1 mark)

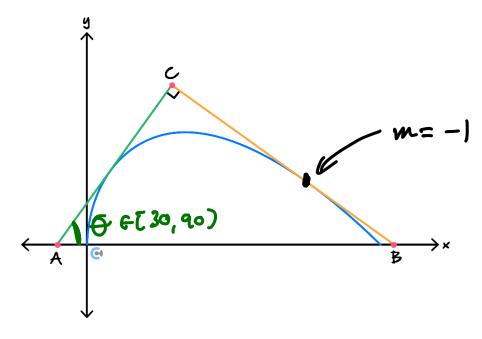
Bu	94	flen

ii. Hence, find the coordinates of any stationary points of f. (2 marks)

4-371 =0	
4/7	
<u> </u>	
	(4 , 8 [?)
x = 3.	(3, 9)

The edges of the **right-angled** triangle ABC are the line segments AC and BC which are tangent to the graph of f and the line segment AB, which is part of the horizontal axis, as shown below.

Let θ be the angle that AC makes with the positive direction of the horizontal axis, where $30^{\circ} \leq \theta < 90^{\circ}$.



b. Find the equation of the line through B and C, in the form y = mx + c, for $\theta = 45^{\circ}$. (2 marks)

	<u> </u>
MAC = ton (45)=1	
	$\frac{4-3x}{4Jy} = -1$
$M_{BC} = -1$	Check the styn
المونية من المونية الم المونية المونية الموني	4-31=-452
: 4=-x+C	(4-31)2= 16 7L
<u>Sub (4,5)</u>	9x2-24x+16= (6x
	9x1-4011 + 16=0
0=-4+C	(9x-4)(x-4)=0
C= 4	기 x = 축, x= 4 .
2.4=-2+4	4-31<0
<u>'</u>	4 < x

c. Find the coordinates of C when $\theta = 45^{\circ}$. (4 marks)

-Solution: We now need to find the equation of line segment AC. We know it has gradient 1, so solve f'(x) = 1.

We solve $4-3x=4\sqrt{x}$. Let $a=\sqrt{x}$

$$4 - 3a^2 = 4a$$

$$3a^2 + 4a - 4 = 0$$

$$(3a - 2)(a + 2) = 0$$

$$a = -2, \frac{2}{3}$$

Only
$$a = \frac{2}{3}$$
 valid $\implies x = \frac{4}{9}$.

Now
$$f\left(\frac{4}{9}\right) = \frac{2\left(\frac{36}{9} - \frac{4}{9}\right)}{3 \times 2} = \frac{64}{54} = \frac{32}{27}.$$

Then

$$y - \frac{32}{27} = x - \frac{12}{27}$$

$$y = x + \frac{20}{27}$$
.

Now we find C at the intersection of $y = x + \frac{20}{27}$ and y = -x + 4.

$$- \implies 2x = \frac{108}{27} - \frac{20}{27} = \frac{88}{27} \implies x = \frac{44}{27} \implies y = \frac{64}{27}.$$

Thus
$$C\left(\frac{44}{27}, \frac{64}{27}\right)$$

Question 15 (3 marks)

A triangle is formed in the first quadrant of the unit circle with vertices at O(0,0), C and B. The vertex C lies on the unit circle, and the vertex B lies directly under C, on the x-axis. Let θ be the angle that the line segment OC makes with the positive x-axis where $0 < \theta < \frac{\pi}{2}$.

Find the maximum area of the triangle and how that it is a maximum.

	l Control du Bu
1) "Area of the tright"	c: (cn (o), Jiu (o1)
A(61= \$.ca(613in(6)	Ca.(cv.
= = = dn (20)	
	A'CH = 1SinCH sinCH + 2 colling
2) "Domah": 6 € (0, 1)	= 3(co² (co) -sin² (co)/ =0
3) Find top d sadjust	Ca2(O) = Sin2(O)
<i>'</i>	/= ten 2(61,) + am
	for(61= ±1

Space for Personal Notes

4)
$$A(\frac{\pi}{4}) = \frac{1}{2} \cdot \text{ca}(\frac{\pi}{4}) \cdot \sin(\frac{\pi}{4})$$

=\frac{1}{2} \sigma(\frac{\pi}{4})^2 = \frac{1}{4}.

Mov: $f'(\vec{z})$: $A'(\vec{z})$:

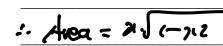
(-n' a) 470

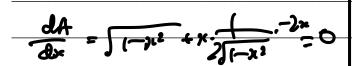
Question 15 (3 marks)

fifandlu llethid.

A triangle is formed in the first quadrant of the unit circle with vertices at O(0,0), C and B. The vertex C lies on the unit circle, and the vertex B lies directly under C, on the x-axis. Let θ be the angle that the line segment OC makes with the positive x-axis where $0 < \theta < \frac{\pi}{2}$.

Find the maximum area of the triangle and show that it is a maximum.





$$\frac{(-\lambda^2 - \lambda^2)}{(-\lambda^2 - \lambda^2)}$$

$$\chi = \sqrt{2}$$
 $\omega_0 \approx 200$ for $0600, \frac{\pi}{2}$

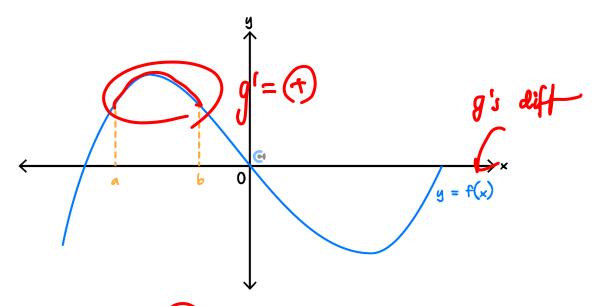
Thou it is max
$$A'(\frac{1}{2}) = \int (-\frac{1}{2})^{-\frac{1}{2}} - \frac{1}{1(-\frac{1}{2})^{2}} = \frac{1}{2} - \frac{1}{2} - \frac{3}{2}$$

Section G: Extension Exam 2 (17 Marks)

INSTRUCTION: 17 Marks. 24 Minutes Writing.

Question 16 (1 mark)

The graph of the function with equation y = f(x) is shown below.



Let g be the function such that g'(x) = f(x)

On the interval (a, b), the graph of g will:

- **A.** Have a negative gradient.
- **B.** Have a positive gradient.
- **C.** Have a local minimum value.
- **D.** Have a local maximum value.

Question 17 (1 mark)

The tangent to the graph of $y = \log_e(x)$ at the point $(a, \log_e(a))$ crosses the x-axis at the point (b, 0) where b < 0. Which of the following is **false**?

- **A.** The gradient of the tangent is positive
- tayouth (loge (M, M, a)
- and !

B.(a > e)

- (۵٬۵) طبع
- 1 = (ap(a)-

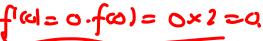
- **D.** a > 0
- (6,0):6=0
- a= e

1= loge (a)

Question 18 (1 mark)

A function f(x) satisfies f'(x) = xf(x) for all $x \in \mathbb{R}$ with f(0) = 2. Which one of the following statements is false?

- **A.** f(x) is increasing for x > 0.
- **B.** f(x) has a local maximum at x = 1
- C. f(x) satisfies $f(x) = Ce^{x^2/2}$ for some constant C.
- **D.** f(x) grows faster than any polynomial function as $x \to \infty$.



) f"(x) = 1-f(x) + x-f'(x)

Question 19 (1 mark)

f''(c) = f(c) + 0 = 2 = 0

Let p(x) be a degree seven polynomial with seven real roots. What is the minimum amount of real roots that q(x) can have if q'(x) = p(x)?

- **A.** 0
- q = deg 7
- **B.** 1
- 9 = deg 8:
- **C.** 7
- **D.** 8

Question 20 (13 marks)

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3^{x+2} - 4$.

No travelch

a. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x,y) + d maps the graph of $y = 3^x$ onto the graph of f.

State the values of a and d. (2 marks)

b. Find the rule and domain for f^{-1} , the inverse function of f. (2 marks)

c. Find the gradient of f and the gradient of f^{-1} at x = -1. (2 marks)

"Wer ag seen

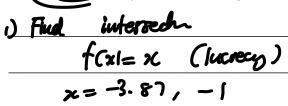
roudom+ eary

(1)= 3 (oge (3)

and responded.

d. The graphs of f and f^{-1} intersect each other at two points. Let θ_1 be the angle that f and f^{-1} make at their first point of intersection and let θ_2 be the angle that f and f^{-1} make at their second point of intersection.

Fin $(\theta_1 - \theta_2)$ ive your answer in degrees correct to two decimal places. (3 marks)

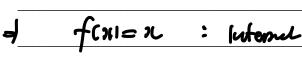


17.76

The function f is mapped to the function g when it undergoes a dilation by factor k from the x-axis, where k > 0. 2 week

e. Find the value(s) of k such that g and g^{-1} intersect each other exactly once. Give your answer(s) correct to

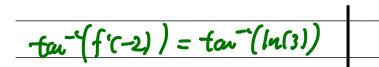
three decima	al places. (2 mar	ks)	l de la col
fou	interet	ysz	& largor



$$f'(x) = | : | \text{suterns}$$

$$x = 0.729$$
 -1.696
 $R = 0.045, 0.651$

f. Let $p \in (-2, \infty)$. The tangent drawn to the graph of f at x = p, nakes an angle of φ with the positive x-axis. State the range of values that φ can take. Give your answer in degrees. (2 marks)



Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-methods-consult-2025

