

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾
Functions & Relations [0.1]

Workshop

Section A: Recap

Sub-Section: Maximal Domains

Starting with a domain!

Maximal Domain

- **Definition**: The largest possible set of input values (elements of the domain) for which the function is well-defined.
- Three Important Rules:

<u>Functions</u>	<u>Maximal Domain</u>
$\sqrt{\mathbf{z}}$	
$\log(z)$	
$\frac{1}{z}$	

Steps

- 1. Find the restriction of the inside.
- **2.** Sketch the graph if needed.
- 3. Solve for domain.

Sub-Section: Domain of Sum, Difference and Product of Functions

What about a domain of the sum of two functions?

Definition

Sums, Differences and Products of Functions

Rules:

$$(f+g)(x) = \underline{\hspace{1cm}}$$

$$(f-g)(x) = \underline{\hspace{1cm}}$$

$$(f \times g)(x) = \underline{\hspace{1cm}}$$

ldea:

Domain of sum or product of two functions = _____ of the two domains

- Steps:
 - 1. Find the domain of each function.
 - 2. Find the intersection (draw a number line if needed).

Sub-Section: Basics of Composition

What was the "composition" of functions?

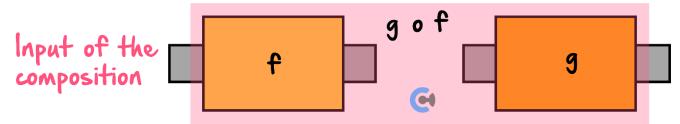
Composite Functions

- **Definition**: A ______ of functions.
- Representation of the above:

$$y =$$

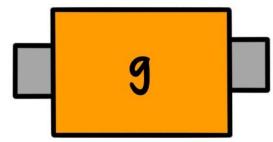
<u>Sub-Section</u>: Domain of Composite Functions

How did we find the domain of a composite function?



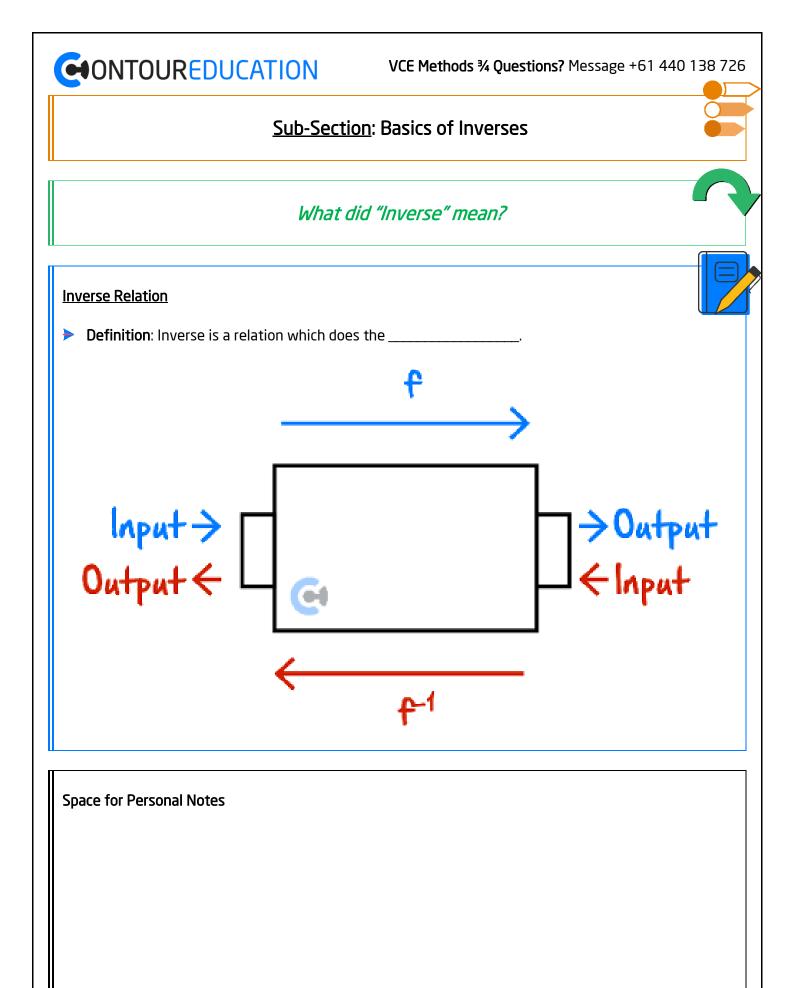
Domain of Composite = Domain of Inside

Sub-Section: Range of Composite Functions



Range of Composite \subseteq Range of the Outside

Finding the range of composition function: Use the domain and the rule, just like another function.



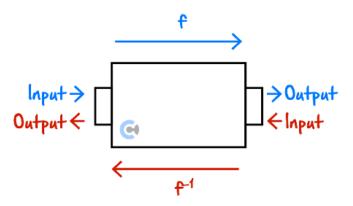
VCE Methods ¾ Questions? Message +61 440 138 726

Sub-Section: Swapping x and y

Is there a better way of solving for an inverse relation?

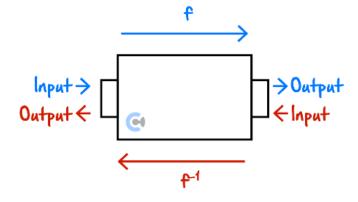
Solving for an Inverse Relation

 \blacktriangleright Swap x and y.



NOTE: f(x) = y.

Domain and Range of Inverse Functions



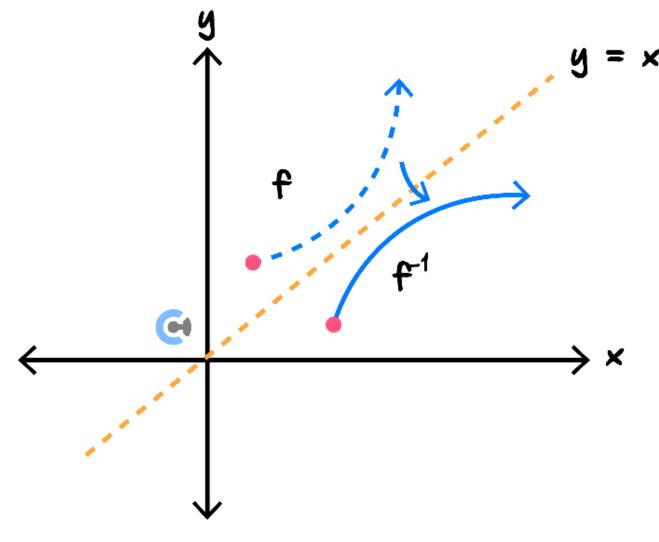
$$Dom f^{-1} =$$

$$Ran f^{-1} = \underline{\hspace{1cm}}$$

Sub-Section: Symmetry Around y = x

Why does this happen?

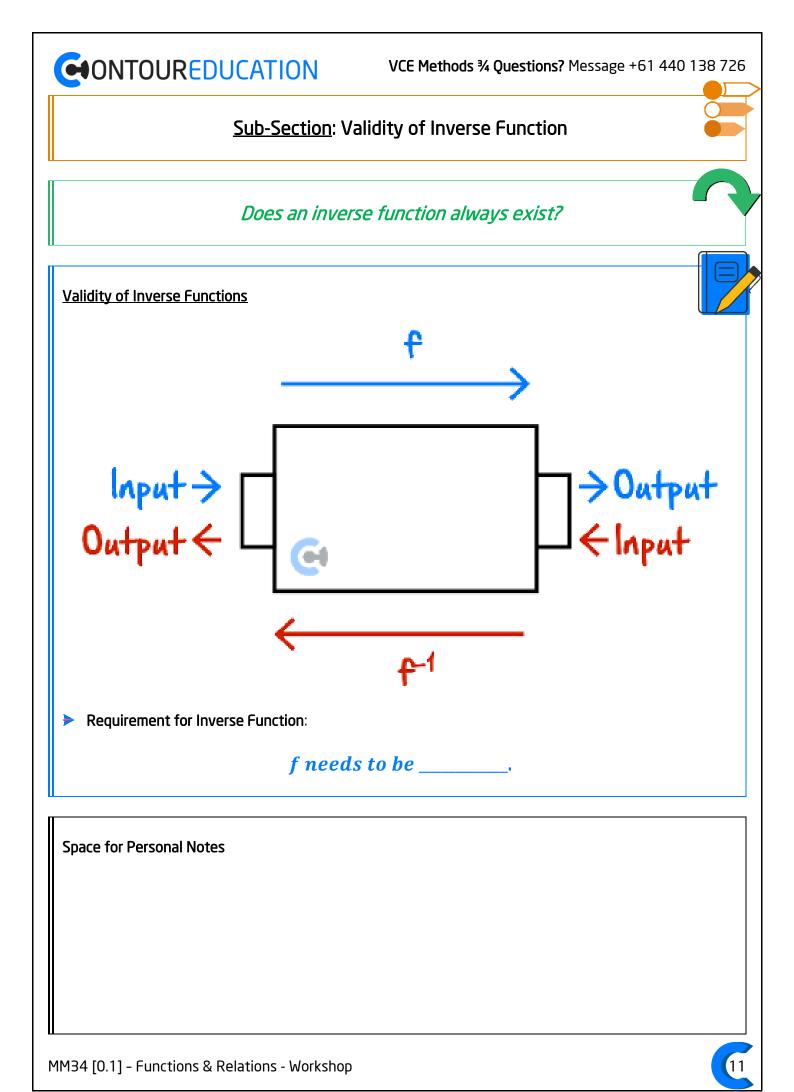
Symmetry of Inverse Functions



Inverse functions are always symmetrical around y = x.

Space for Personal Notes

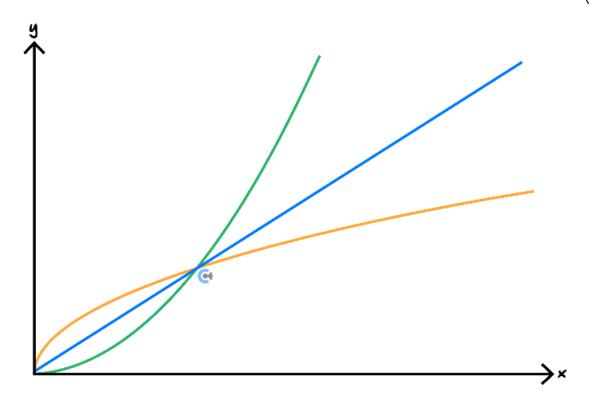
10



Sub-Section: Intersection Between Inverses

Where do inverses meet?

Intersection Between a Function and its Inverse



> Equate with _____ instead.

$$f(x) = x \mathsf{OR} f^{-1}(x) = x$$

➤ We cannot do this when the function is ______ function.

NOTE: This only works for an increasing function.

Sub-Section: Composition of Inverses

Composition of Inverse Functions

$$f \circ f^{-1}(x) = \underline{\hspace{1cm}}, \qquad for \ all \ x \in \underline{\hspace{1cm}}$$

$$f^{-1} \circ f(x) = \underline{\hspace{1cm}}, \quad for all \ x \in \underline{\hspace{1cm}}$$

NOTE: Domain = Domain of Inside.

Section B: Warm Up (5 Marks)

INSTRUCTION: 5 Marks. 8 Minutes Writing.

Question 1 (5 marks)

Consider the function $f(x) = \sqrt{x+2}$, where f is defined over its maximal domain.

a. State the maximal domain of $h(x) = f(x) + \frac{1}{f(x)}$. (1 mark)

b. Define the inverse function f^{-1} . (2 marks)

c. Find the point of intersection between f(x) and $f^{-1}(x)$. (2 marks)

d. Find the rule and domain for $f^{-1}(f(x))$.

e. Let $h(x) = x^2 - 11$, explain why the composition f(h(x)) is not valid.

Section C: Exam 1 (20 Marks)

INSTRUCTION: 20 Marks. 26 Minutes Writing.

Question 2 (5 marks)		
Let $f(x) = \sqrt{2x+6} + 4$, where f is defined over its maximal domain.		
a. State the maximal domain of f . (1 mark)		
b. Define the inverse function f^{-1} . (2 marks)		
a. Find the point of intersection between $f(x)$ and $f^{-1}(x)$ (2 months)		
c. Find the point of intersection between $f(x)$ and $f^{-1}(x)$. (2 marks)		

Question 3 (8 marks)

Consider the functions, $f:(0,\infty)\to R$, $f(x)=\log_3(x+1)$ and $g:[-3,\infty)\to R$, $g(x)=x^2+26$.

a. Find the rule for *h*, where h(x) = f(g(x)). (1 mark)

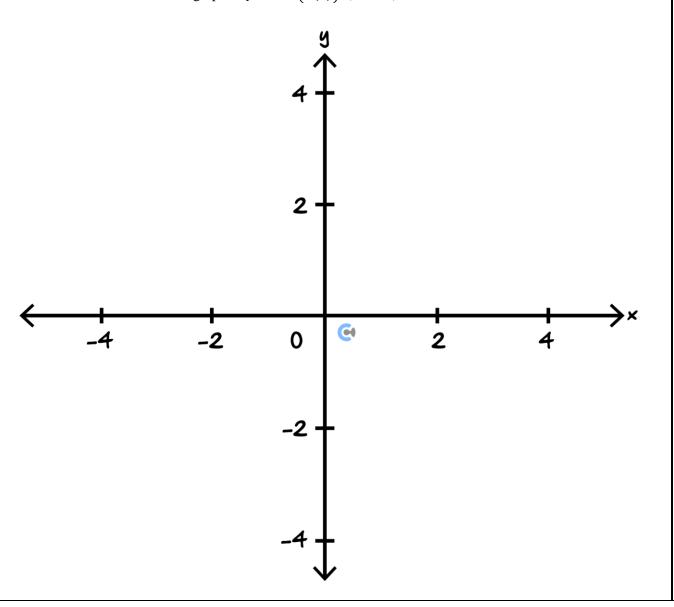
b. State the domain of h. (1 mark)

c. State the range of h. (2 marks)

Let $k: (-\infty, 0] \to R, k(x) = \log_2(x^2 + 16)$.

d. Define the function k^{-1} . (3 marks)

e. On the axes below, sketch the graph of $y = k^{-1}(k(x))$. (1 mark)



Question 4 (7 marks)

Let $f(x) = 2^{-x}$ and $g(x) = x^2 - 2x + 2$.

a.

i. Write down the rule for f(g(x)). (1 mark)

ii. Find the range of f(g(x)). (1 mark)

b.	Consider the function $h: (-\infty, a] \to \mathbb{R}, h(x) = f(g(x)).$	

Find the largest value of a such that h is a one-to-one function. (1 mark)

VCE Methods ¾ Questions? Message +61 440 138 726

c.	Define the inverse function, h^{-1} . (2 marks)
d.	Let $k: [b, \infty) \to \mathbb{R}, k(x) = g(f(x)).$
	Find the smallest value of b such that k^{-1} exists. (2 marks)
	Find the smallest value of b such that k^{-1} exists. (2 marks)
	Find the smallest value of b such that k^{-1} exists. (2 marks)
	Find the smallest value of b such that k^{-1} exists. (2 marks)
	Find the smallest value of b such that k^{-1} exists. (2 marks)
	Find the smallest value of b such that k^{-1} exists. (2 marks)
	Find the smallest value of b such that k^{-1} exists. (2 marks)

Section D: Technology Warmup

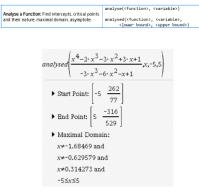
INSTRUCTION: 5 Minutes Writing.

Calculator Commands: Finding the domain and range

- **▶** TI
 - domain (f(x), x), f Min and Fmax

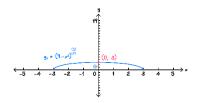
Define $f(x) = \sqrt{9-x^2}$	Done
domain(f(x),x)	-3≤x≤3
fMin(f(x),x)	x=-3 or x=3
fMax(f(x),x)	χ=0
/ (3)	0
/ (0)	3

► TI-UDF



Casio Classpad

Graph the function and use G-Solve to find min and max values for the range.



Mathematica

In[127]:=
$$f[x_{]} := \sqrt{9 - x^2}$$

In[128]:= FunctionDomain[f[x], x]
Out[128]= $-3 \le x \le 3$
In[129]:= FunctionRange[f[x], x, y]
Out[129]= $0 \le y \le 3$

Mathematica UDF :

 \bullet Finfo [f [x], {x, x min, x max}, y]

Returns useful information about a function, including derivative, domain, range, period, horizontal intercepts, vertical intercepts, stationary points, inflexion points, left and sided asymptotes, oblique asymptotes and vertical asymptotes.

Calculator Commands: Finding the composite function

► TI

Define $f(x) = \ln(x)$	Done
Define $g(x)=x^2+3$	Done
A(g(x))	$\ln(x^2+3)$

CASIO:

define
$$f(x) = \ln(x)$$
 done define $g(x) = x^2+3$ done $f(g(x))$ $\ln(x^2+3)$

Mathematica

In[141]:=
$$f[x_{-}] := Log[x]$$

In[142]:= $g[x_{-}] := x^2 + 3$
In[143]:= $f[g[x]]$
Out[143]= $Log[3 + x^2]$

Calculator Commands: Finding the inverse function

► TI

Define
$$f(x)=x^2+4\cdot x+9$$
 Done
solve $(f(y)=x,y)$ $y=-(\sqrt{x-5}+2)$ or $y=\sqrt{x-5}-2$

CASIO:

Mathematica

```
\begin{split} &\inf[154] \coloneqq f[x_{\_}] \ \coloneqq x ^2 + 4 \ x + 9 \\ &\inf[155] \coloneqq Solve[f[y] \ \leftrightharpoons x, \ y] \\ &\operatorname{Out}[155] \leftrightharpoons \left\{ \left\{ y \to -2 - \sqrt{-5 + x} \right. \right\}, \left\{ y \to -2 + \sqrt{-5 + x} \right. \right\} \right\} \end{split}
```

NOTE: It doesn't tell us which branch is correct.

Question 5 Tech-Active.

Let $f(x) = \sqrt{x-2}$ and g(x) = 3x + 4 be defined on their maximal domains.

Consider the function h(x) = f(g(x)).

a. Find the rule for h(x).

b. Find the domain of h(x).

c. Define h^{-1} , the inverse function of h.

Section E: Exam 2 (24 Marks)

INSTRUCTION: 24 Marks. 30 Minutes Writing.

Question 6 (1 mark)

The graph of $y = x^2 - 2ax$ has a range of $[-16, \infty)$, where a is a positive constant. The value of a is:

- **A.** 2
- **B.** 4
- **C.** 8
- **D.** 16

Question 7 (1 mark)

The domain of the inverse of $\{(1, -4), (2, -3), (3, -2), (4, -1)\}$ is D. Which of the following statements is true?

- **A.** *D* is $\{x: -1 < x < 4\}$
- **B.** *D* is $\{x: 1 < x < 4\}$
- **C.** *D* is $\{-4, -3, -2, -1\}$
- **D.** *D* is {1,2,3,4}

Question 8 (1 mark)

The functions f and g are such that $f(x) = x^2 + 1$ and $g(x) = \frac{3}{2} - x$. The value of $f\left(g\left(\frac{3}{2}\right)\right)$ is:

- **A.** $\frac{1}{4}$
- **B.** 2
- **C.** 1
- **D.** $-\frac{1}{4}$

Question 9 (1 mark)

The domain of the composite function $(f \circ g)$ where $f(x) = \frac{1}{x-1}$ and $g(x) = \frac{6}{5-x}$ is:

- **A.** *R*
- **B.** $R \setminus \{-1\}$
- C. $R \setminus \{5\}$
- **D.** $R \setminus \{-1, 5\}$

Question 10 (1 mark)

Which of the following functions does not have an inverse function?

- **A.** $f: R \to R, f(x) = 2x 7$
- **B.** $f:[0,\infty) \to R, f(x) = x^2 + 3$
- **C.** $h: R \to R, h(x) = x^3$
- **D.** $g:[0,\infty) \to R, g(x) = (x-1)^2 + 4$

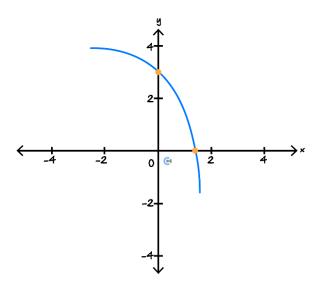
Question 11 (1 mark)

The function f and its inverse f^{-1} are one-to-one for all values of x. If f(a) = b, f(b) = c, f(c) = d, then $f^{-1}(c)$ is equal to:

- **A.** *a*
- **B.** *b*
- **C.** *c*
- **D.** *d*

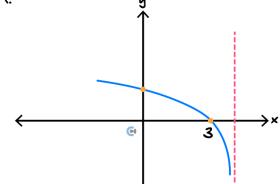
Question 12 (1 mark)

The graph of the function $f(x) = 4 - e^x$ is given below.

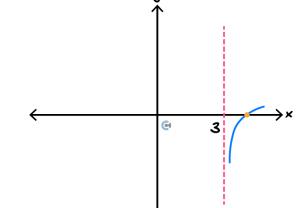


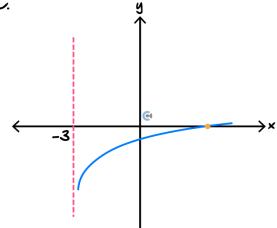
Which of the following will represent the inverse function f^{-1} ?

A.

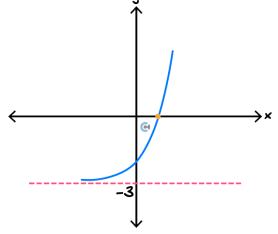


₿.





D.



Question 13 (8 marks)

Let
$$f: [0, \infty) \to R$$
, $f(x) = \sqrt{x}$ and $g(x) = f(x) \times (f(x) - 6)$.

Let $h: [s, \infty) \to R$, h(x) = g(x).

a. Find the minimum value of s for which the inverse function $h^{-1}(x)$ to exist. (1 mark)

b. Show that the rule of the inverse function can be written as $h^{-1}(x) = x + 18 + 6\sqrt{9 + x}$. (2 marks)

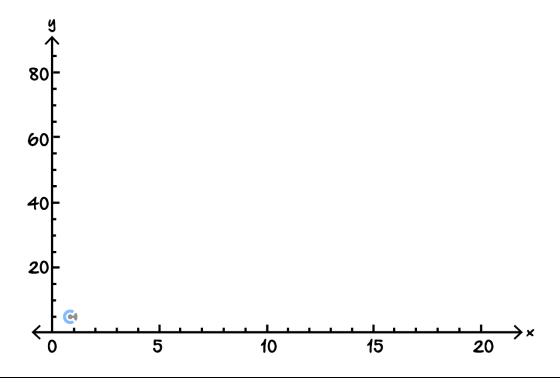
c. State the domain and range of the inverse function $h^{-1}(x)$. (1 mark)

d. Let $d(x) = h^{-1}(x) - h(x)$.

i. Find the maximal domain of d. (1 mark)

ii. Find the rule of the function d(x). (1 mark)

e. Sketch the graph of the function y = d(x) on the axes below. Label the endpoint with coordinates. (2 marks)



Question 14 (9 marks)

The price of a certain rare mineral is modelled by the function:

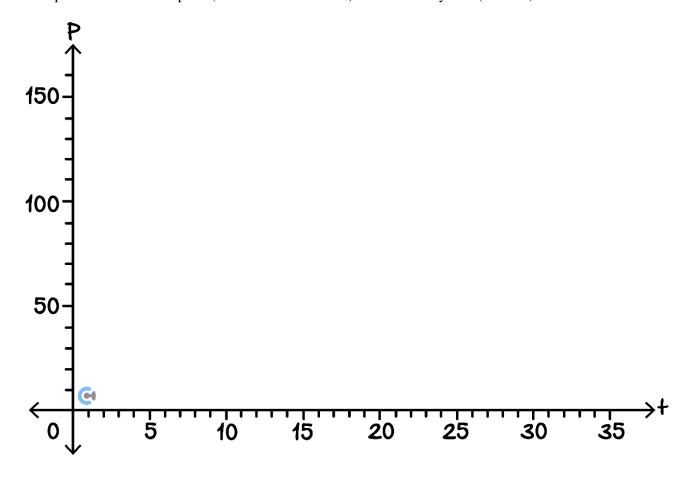
$$P(t) = at^2 + bt + c, t \ge 0.$$

Where P represents the cost of the mineral in thousands of dollars and t represents the time elapsed since the start of the year in months.

Jenny expects the price to drop from \$35000 to \$ $\frac{115000}{4}$ in 5 months, however, in the long term, she expects the stock price to be \$30000 in 10 months.

a. Solve for values a, b and c which satisfy Jenny's expectations. (2 marks)

b. Graph the mineral stock price (in thousands of dollars) for the first 3 years. (2 marks)



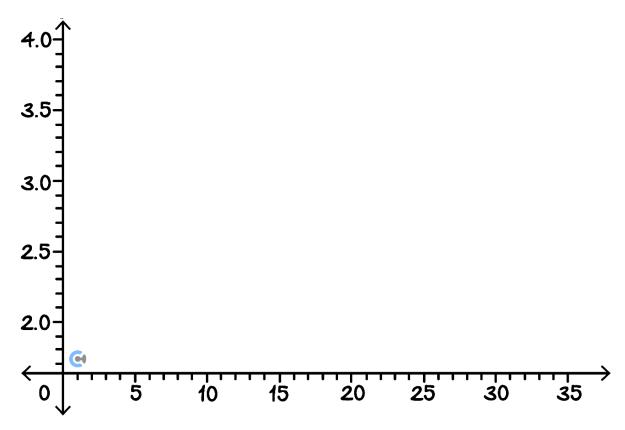
As the mineral is very rare, its market price changes often and can be sold for a profit. However, due to fees associated with selling the mineral, the profit earned on the mineral follows the following model.

$$M(t) = \log_e \left(70 - \frac{P(t)}{2} \right)$$

Where M is the profit earned in thousands of dollars and P is the corresponding market price for the mineral at that moment in time. (2 marks)

c. When can't Jenny sell her stock for profit? Give your answer in terms of both stock price and months, correct to three decimal places. (2 marks)

d. On the axes below sketch the graph of y = M(t). (2 marks)



VCE Methods ¾ Questions? Message +61 440 138 726

e.	Find the maximum profit that Jenny can make correct to the nearest dollar. (1 mark)	
••	That the maximum profit that termy can make correct to the nearest doma. (1 mark)	
Spa	ace for Personal Notes	

Section F: Extension Exam 1 (15 Marks)

Let's take a <u>BREAK</u> (Extension Stream)!

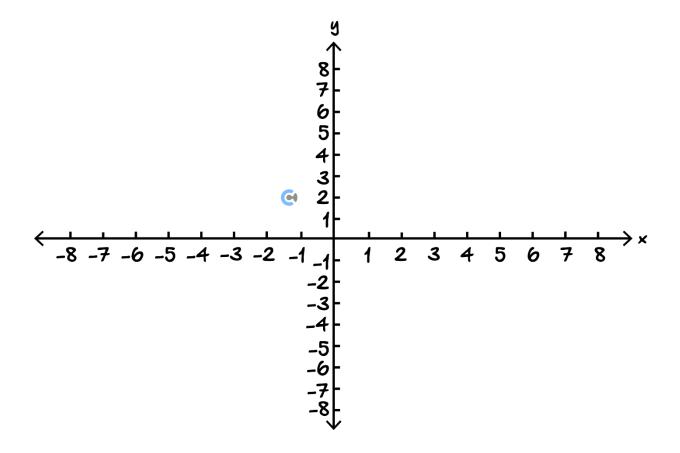
INSTRUCTION: 15 Marks. 20 Minutes Writing.

Question 15 (9 marks)

Let $f(x) = \frac{x+1}{x-3}$ be defined on its maximal domain.

a. Write f(x) in the form $A + \frac{B}{x-3}$ for integers A and B. (1 mark)

b. Sketch the graph of y = f(x) on the axes below. Label the coordinates of all axes intercepts and the equations of any asymptotes. (2 marks)

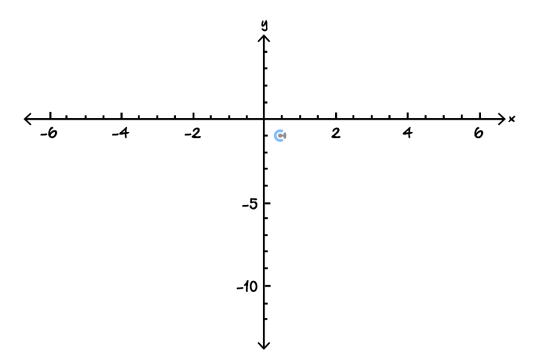


c. Find the maximal domain of $g(x) = \sqrt{\frac{x+1}{x-3}} + \log_2(-x^2 + x + 12)$. (2 marks)

l.	Define h^{-1} , the inverse function of h . (2 marks)
•	Find the smallest value of a such that h and h^{-1} never intersect. (2 marks)
•	
•	Find the smallest value of a such that h and h^{-1} never intersect. (2 marks)
	Find the smallest value of a such that h and h^{-1} never intersect. (2 marks)
	Find the smallest value of a such that h and h^{-1} never intersect. (2 marks)
•	Find the smallest value of a such that h and h^{-1} never intersect. (2 marks)
•	Find the smallest value of a such that h and h^{-1} never intersect. (2 marks)

Question 16 (6 marks)		
Consider the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3 - 2^x$.		
a.	State the range of f . (1 mark)	
b.	Define f^{-1} , the inverse function of f . (2 marks)	
c.	Find a point of intersection of f and f^{-1} with integer coordinates. (1 mark)	

d. Determine the total number of points of intersection of f and f^{-1} . Justify your answer. (2 marks)



Section G: Extension Exam 2 (16 Marks)

INSTRUCTION: 16 Marks. 20 Minutes Writing.

Question 17 (1 mark)

If $h: (1,3] \to \mathbb{R}$, where $h(x) = (x-1)^2(x+3)$ and $f: [-1,3) \to \mathbb{R}$, where f(x) = 1-x, then $g = h \times f$ is defined by:

- **A.** $g:(1,3) \to \mathbb{R}$, where $h(x) = -(x-1)^3(x+3)$
- **B.** $g:(1,3] \to \mathbb{R}$, where $h(x) = -(x-1)^3(x+3)$
- C. $g:(1,3) \to \mathbb{R}$, where $h(x) = -(x-1)(x+3)^2$
- **D.** $g: [-1,3] \to \mathbb{R}$, where $h(x) = -(x-1)^3(x+3)$

Question 18 (1 mark)

Consider $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 2 and $g: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$, $g(x) = \frac{1}{(x+1)^2}$, then the range of f(g(x)) is:

- **A.** $\mathbb{R}\setminus\{-1\}$
- **B.** $(1, \infty)$
- C. $(2, \infty)$
- **D.** $\mathbb{R}\setminus\{0\}$

Question 19 (1 mark)

The functions f and g are such that f(x) = 2x - 1 and $g(x - 1) = \sqrt{2x}$.

Then f(g(x)) is given by:

- **A.** $2\sqrt{2x} 1$
- **B.** $2\sqrt{2x} + 1$
- **C.** $\sqrt{2\sqrt{2}x+1}$
- **D.** $2\sqrt{2}(\sqrt{x+1}) 1$

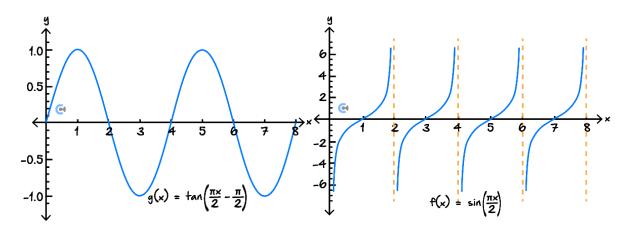
Question 20 (1 mark)

Consider the function $f: [-2, \infty) - \mathbb{R}$, $f(x) = x^2 + 4x + 1$. The function h = f o f^{-1} is defined by:

- **A.** $h: [0, \infty) \mathbb{R}, h(x) = x$
- **B.** $h: [-2, \infty) \mathbb{R}, h(x) = x$
- **C.** $h: [-3, \infty) \mathbb{R}, h(x) = x$
- **D.** $h: [-\infty, 2) \mathbb{R}, h(x) = x$

Question 21 (1 mark)

Consider the graphs of two circular functions f and g, shown on the axes below.



For the interval $x \in [0,4]$, the number of x-intercepts on the graph of $h(x) = f(x) \times g(x)$ is:

- **A.** 4
- **B.** 6
- **C.** 8
- **D.** 9

Question 22 (11 mark)

Let $f(x) = x^2 + \frac{1}{x^2} + 2$ and $g(x) = x^2$ be functions defined on their maximal domains.

a. Define the function h such that $f = g \circ h$. (2 marks)

b.	Find the maximum value of h and the x -value where this occurs when $x > 0$. (2 marks)
C.	Hence, state the range of f . (1 mark)

d. Consider the functions $k:[1,\infty)\to\mathbb{R}, k(x)=f(x)$ and $p:[a,0)\to\mathbb{R}, p(x)=f(x)$, where a is a real number.

i. Find the smallest value of a such that p^{-1} exists. (1 mark)

ii. Show that the inverse function, $k^{-1}(x)$, satisfies the equation. (2 marks)

 $[k^{-1}(x)]^2 = \frac{\left(\sqrt{x} \pm \sqrt{x-4}\right)^2}{4}$

iii. Hence, define k^{-1} . (1 mark)

VCE Methods 3/4 Questions? Message +61 440 138 726

Suppose now that $f(x) = x^2 + \frac{1}{x^2} + 2$ is defined on some arbitrary domain $D \subseteq \mathbb{R} \setminus \{0\}$ where it is one-to-one.		
e.	Write down a piecewise definition for the rule of $f^{-1}(x)$ that depends on the domain D. (2 marks)	
		

Space for Personal Notes

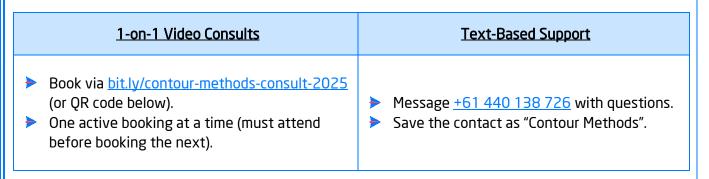
Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.



Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

