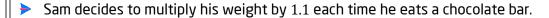

Website: contoureducation.com.au | Phone: 1800 888 300

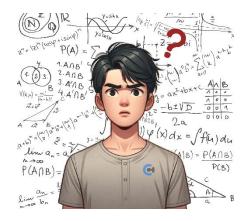
Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Exponentials [5.1]

Workbook

Outline:




Section A: Basics of Exponentials

Sub-Section: Introduction to Exponentials

Context: Sam's Problem

- Sam, over easter, loses control and eats 100 chocolates.
- Now, Sam has a problem other than his weight.
- How does he multiply 1.1 hundred times?
- How does he represent that in a concise way?

Definition

Exponentials

$base \times \cdots \times base = base^{power}$

- Exponentiation is a ______.
- The power represents the ______

Question 1 Walkthrough.

Solve the following equation for x.

$$4^{x} = 64$$

NOTE: To solve the power, think about how many bases you need to get 64.

Question 2

Solve the following equations for x.

a.
$$3^x = 9$$

b.
$$2^{2x+1} = 8$$

<u>Discussion:</u> If a positive power represents the number of bases multiplied, what does a negative power mean?

Question 3 Walkthrough.

Evaluate the following.

 3^{-3}

Question 4

Evaluate the following.

a. 2^{-4}

b. 5^{-2}

<u>Discussion:</u> How many a's are we multiplying for $a^x \times a^y$?

Question 5 Walkthrough.

Evaluate the following.

$$2^{-3} \times 2^{5}$$

Question 6

Evaluate the following.

a. $3^{-5} \times 3^2$

b. $3^2 \times 3^{-4}$

NOTE: The base must be the same for this to work.

<u>Discussion:</u> How many a's are we multiplying for $(a^x)^y$?

Question 7 Walkthrough.

Simplify the following.

 $(x^3)^2$

Question 8

Simplify the following.

a. $(x^2)^4$

b. $(x^{a+1})^2$

<u>Discussion:</u> If a^3 triples the number of a's multiplied, what does $a^{\frac{1}{3}}$ do?

Question	9	Walkthrough.
Outsuon	,	vv aikun vuzn.

Simplify the following.

 $8^{\frac{1}{3}}$

$\Omega_{11}c$	estion	10

Simplify the following.

a. $27^{\frac{1}{3}}$

b. $8^{\frac{2}{3}}$

Question 11 Extension.

a. Evaluate:

$$\frac{125^{-\frac{2}{3}}\times\ 27^{\frac{1}{3}}\times\ 2^{-2}}{2^{-5}}+\ 5^{-2}$$

b. Solve the following equation for x.

$$2^{3x+2} = 32 \times 4^x$$

Sub-Section: Index Law

Let's summarise everything!

Index Laws

All the rules explored above are called ______.

$$a^x \times a^y = a^{x+y}$$

$$\frac{a^x}{a^y} = a^{x-y}$$

$$(a^x)^y = a^{xy}$$

$$a^0 = 1$$

$$(\boldsymbol{a} \times \boldsymbol{b})^{x} = \boldsymbol{a}^{x} \times \boldsymbol{b}^{x}$$

$$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

$$a^{-x}=\frac{1}{a^x}$$

$$a^{\frac{1}{x}} = \sqrt[x]{a}$$

<u>Discussion:</u> Any question with the above rule? We can try proving together.

Let's mix them all!

Question 12 Walkthrough.

Simplify the following expressions.

 $\mathbf{a.} \quad \frac{4^x}{8^{3x}}$

Question 13

Simplify the following expressions.

$$\mathbf{a.} \quad \frac{b^x}{b^{2x-1}}$$

b.
$$\frac{3^x \times 9^{x-5}}{3^2}$$

Question 14 Extension.

Simplify the following expression.

$$\frac{3^{2x+1} \times 27^{x-2}}{9^x \times 81}$$

Sub-Section: Inequalities

Question 15

Solve the following inequalities for x.

a.
$$2^x > 8$$

b.
$$3^{2x-1} < 27$$

<u>Discussion:</u> If the base is less than 1, does multiplying more of the base increase the number?

Question 16 Walkthrough.

Solve the following inequalities for x.

$$\left(\frac{1}{3}\right)^x > \frac{1}{9}$$

NOTE: If the base is less than 1, always flip the inequality sign.

Question 17

Solve the following inequalities for x.

 $\mathbf{a.} \quad \left(\frac{1}{2}\right)^{\chi} \ge \frac{1}{8}$

b. $\left(\frac{1}{3}\right)^x < 9$

Question 18 Extension.

Solve the following inequality for x.

$$2^{-x^2 + 3x} > 1$$

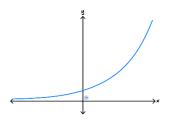
In summary!

Inequalities for Exponentials

For
$$a^x < a^y$$

Flip the inequality sign when base is less than 1.

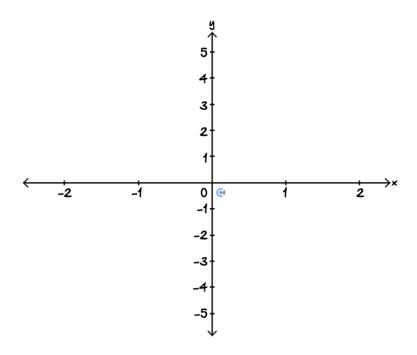
If
$$a > 1$$
 then $x < y$.


If
$$0 < a < 1$$
 then $x > y$.

Section B: Graphs of Exponentials

Sub-Section: Graphs of Exponentials

Exponential Functions

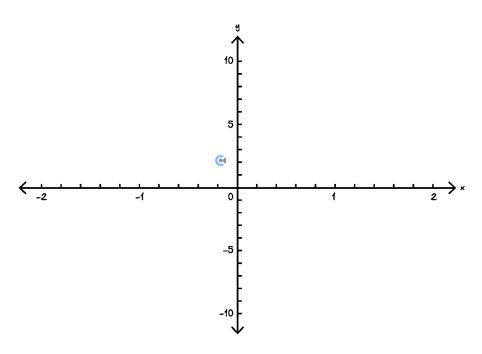

a^x where a > 1

- Domain of the exponential function is _____.
- Range of the exponential function is ______.

Question 19 Walkthrough.

Sketch the graph of the following function, labelling all key features including axes intercepts and asymptotes.

$$y = 2^x$$



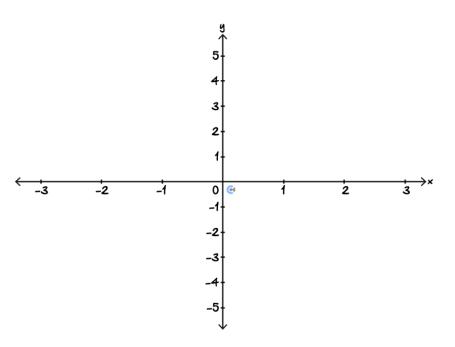
CONTOUREDUCATION

Question 20

Sketch the graph of the following function, labelling all key features including axes intercepts and asymptotes.

$$y = -3^x$$

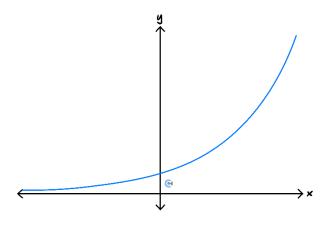
<u>Discussion:</u> What would the graph look like if the base was less than 1? For example: $\left(\frac{1}{2}\right)^x$?



Question 21

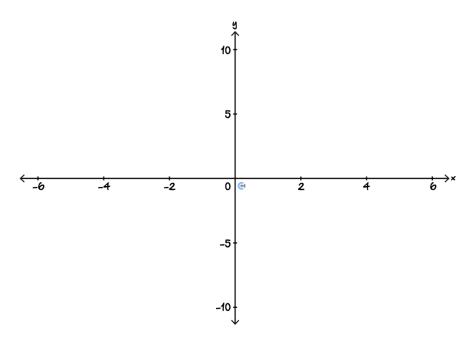
Sketch the graph of the following function, labelling all key features including axes intercepts and asymptotes.

$$y = \left(\frac{1}{2}\right)^x$$


Let's take a look at more difficult graphs now!

Graphs of Transformed Exponential Functions

$$y = a base^{b(x-h)} + k$$

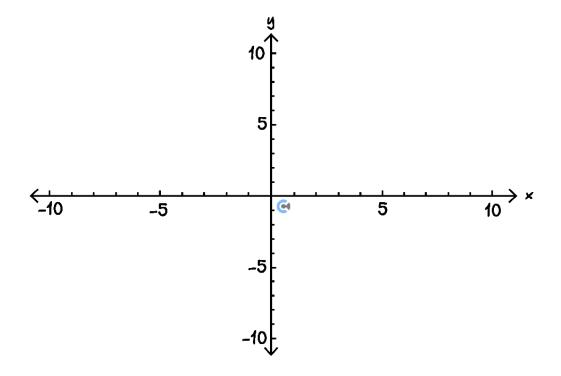

- The horizontal asymptote is always given by _____
- > Steps to take when sketching an exponential:
 - 1. Find corresponding asymptotes.
 - **2.** Plot x and y-intercepts (if they exist).
 - **3.** Sketch the curve.

Question 22 Walkthrough.

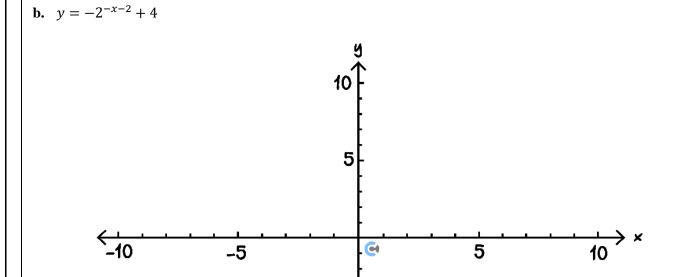
Sketch the graph of the following function, labelling all key features, including axes intercepts and asymptotes.

$$y = \frac{1}{2} \times 4^{x-1} - 8$$

NOTE: Graphing is easy if you strictly follow the steps!

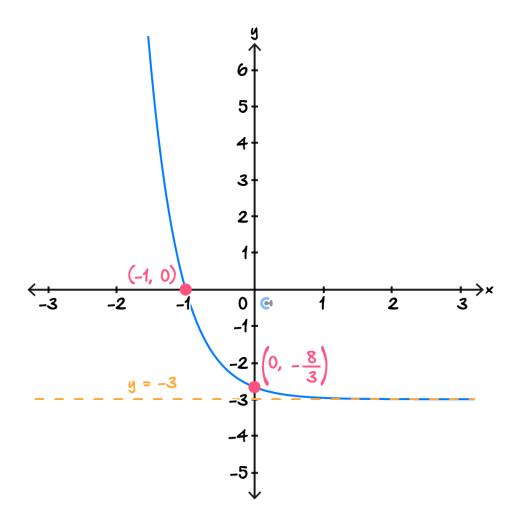


Your turn!


Question 23

Sketch the graphs of the following functions, labelling all key features including axes intercepts and asymptotes.

a.
$$y = 3^{x-1} - 9$$



-5

Question 24 Extension.

Find a rule of the form $y = a^{bx+1} - d$, where a, b, d > 0, for the graph shown below.

Section C: Hidden Quadratics

Sub-Section: Understanding Hidden Quadratics

What is a hidden quadratic?

Hidden Quadratics

$$af(x)^2 + bf(x) + c = 0$$
Let $A = f(x)$

Question 25 Walkthrough.

Consider the following equation:

$$(x^2)^2 + 2x^2 + 1 = 0$$

Convert the equation to be a quadratic of A by appropriate substitution of A.

NOTE: Look for something and it squared!

Your turn!

Question 26

Convert the following equation to be a quadratic of A by appropriate substitution of A.

$$x - 5\sqrt{x} + 3 = 0$$

Sub-Section: Hidden Quadratics for Exponentials

Hidden Quadratics for Exponentials

$$a \times exp^2 + b \times exp + c = 0$$

Let
$$A = exp$$
 where $A > 0$

Look for "same base and double power" pattern.

<u>Discussion:</u> Why does *A* have to be bigger than 0? HINT: Recall the graph of exponentials!

Question 27

Convert the following into a quadratic equation of *A*. You do not need to solve.

$$3^{2x} - 3 \times 3^x + 5 = 0$$

<u>Discussion:</u> What pattern does the exponentials need to have?

Your turn!

Question 28

Convert the following into a quadratic equation of *a*. You do **not** need to solve.

a.
$$4^{2x} - 7 \times 4^x + 8 = 0$$

b.
$$4^x + 2^{x+1} - 3 = 0$$

NOTE: Look for the same base, double power!

Let's now solve them!

Question 29 Walkthrough.

Solve the following equation for x.

$$2^{2x+1} - 12 \times 2^x + 16 = 0$$

<u>Discussion:</u> In the above question, both our *A* values were positive. What happens if one is negative or zero?

Your turn!

Question 30

Solve the following equations.

a.
$$3^{2x} - 4 \times 3^x + 3 = 0$$

b.
$$2^{2x} - 3 \times 2^{x+1} - 16 = 0$$

c.
$$4^x - 2^{x+1} - 8 = 0$$

NOTE: You must show the process of rejecting your *A* value for the marking scheme!

Question 31 Extension.

Solve the following equations.

a.
$$3^{2x} + 2 \times 3^x - 15 = 0$$

b.
$$2^{2x} - 5 \times 2^{x+1} + 16 = 0$$

Cheat Sheet

[5.1.1] - Basics of exponentials

Exponentials

$$base \times \cdots \times base = base^{power}$$

- Exponentiation is a stacked multiplication.
- The power represents the number of bases we are multiplying.
- Index Laws

$$a^x \times a^y = a^{x+y}$$

$$\frac{a^x}{a^y} = a^{x-y}$$

$$(a^x)^y = a^{xy}$$

$$a^0 = 1$$

$$(\mathbf{a} \times \mathbf{b})^x = \mathbf{a}^x \times \mathbf{b}^x$$

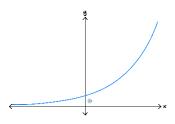
$$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

$$a^{-x} = \frac{1}{a^x}$$

$$a^{\frac{1}{x}} = \sqrt[x]{a}$$

Inequalities for Exponentials

For
$$a^x < a^y$$


Flip the inequality sign when base is less than 1.

If
$$a > 1$$
 then $x < y$.

If
$$0 < a < 1$$
 then $x > y$.

[5.1.2] - Graph exponentials

Exponential Functions

 a^x where a > 1

- \bigcirc Domain of the exponential function is R.
- \bigcirc Range of the exponential function is R^+ .

Graphs of Exponential Functions

$$y = a base^{b(x-h)} + k$$

- **G** The horizontal asymptote is always given by y = k
- Steps to take when sketching an exponential:
 - 1. Find corresponding asymptotes.
 - **2.** Plot *x* and *y*-intercepts (if they exist).
 - **3.** Sketch the curve.
 - **4.** Always follow these steps as they minimise potential mistakes.

[5.1.3] - Solve hidden quadratics of exponentials

Hidden Quadratics

$$af(x)^2 + bf(x) + c = 0$$

Let
$$A = f(x)$$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

