

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Graphs of Circular Function [4.4]

Workbook

Outline:

Solving Trigonometric Equations

Pg 2-7

Recap of Particular & General Solutions

Graphs of Sine and Cosine

Pg 8-19

- Understanding the Shape
- Graphing Sine and Cosine Functions
- Finding the Rule

Graphs of Tangent

Pg 20-25

- Understanding Tangent Graphs
- Graphing Tangent Functions

Fraction of Period

Pg 26-27

Fraction of Period

Learning Objectives:

MM12 [4.4.1] - Graph Sine, Cosine and Tangent Functions

MM12 [4.4.2] - Fraction of Periods

Section A: Solving Trigonometric Equations

Sub-Section: Recap of Particular & General Solutions

REMINDER: Particular Solutions

- Solving trigonometric equations for finite solutions.
- Steps:
 - 1. Make the trigonometric function the subject.
 - **2.** Find the necessary angle for one period.
 - **3.** Solve for *x* by equating the necessary angles to the inside of the trigonometric functions.
 - **4.** Add and subtract the period to find all other solutions in the domain.

REMINDER: General Solutions

0

- Finding infinitely many solutions to a trigonometric equation.
- Steps:
 - 1. Make the trigonometric function the subject.
 - 2. Find the necessary angle for one period.
 - **3.** Solve for *x* by equating the necessary angles to the inside of the trigonometric functions.
 - **4.** Add period $\cdot n$ where $n \in \mathbb{Z}$.

Question 1 Walkthrough.

Find the solutions to the following equation:

$$2\sin\left(2x + \frac{\pi}{6}\right) + 1 = 0 \text{ for } x \in [0, 2\pi]$$

Λ.,	estion	2
w	estion	L

Find the solutions to the following equation:

$$\sqrt{2}\cos\left(2x - \frac{\pi}{2}\right) - 1 = 0 \text{ for } x \in [0, 2\pi]$$

Question 3 Walkthrough.

Find the general solutions to the following equation:

$$2\cos\left(3x - \frac{\pi}{6}\right) = 2$$

Λ.	iestion	1
w	iestion	4

Find the general solutions to the following equation:

$$4\sin\left(2x + \frac{\pi}{3}\right) + 2 = 0$$

Question 5

Find the general solutions to the following equation:

$$3\tan\left(2x + \frac{\pi}{6}\right) - 3\sqrt{3} = 0$$

NOTE: The period of tan is $\frac{\pi}{n}$.

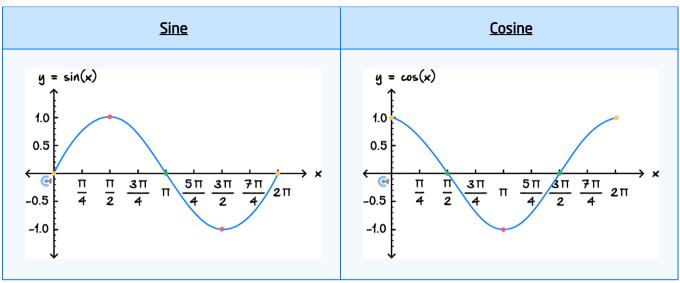
Section B: Graphs of Sine and Cosine

Sub-Section: Understanding the Shape

What does a sine and cosine graph look like?

Exploration: Graph of Sine and Cosine

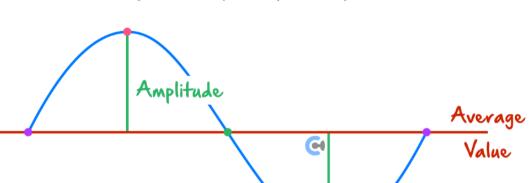
Scan the following QR code on your device!



Sine and Cosine Graphs

<u>Discussion:</u> Is cos(x) an even function or an odd function. What about sin(x)?

<u>Discussion:</u> What does $\sin\left(\frac{\pi}{2} + x\right)$ equal to? So, how can we translate sin function to cosine function?


Sub-Section: Graphing Sine and Cosine Functions

For $y = A\sin/\cos(nx + b) + k$

Amplitude, Period and Average Value

Consider the sign of our graph

Amplitude =
$$|A|$$

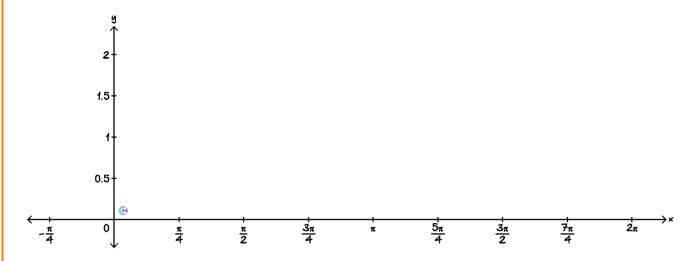
$$\mathsf{Period} = \frac{2\pi}{|n|}$$

Average Value = k

Question 6

Identify the amplitude, period and average value of the following functions:

$$\mathbf{a.} \quad f(x) = 2\sin\left(\frac{\pi}{6} - 3x\right) + 3$$


b.
$$g(x) = -5\cos(2x+7) - 2$$

Exploration: Graphing of sin and cos Functions

Let's sketch $\sin(2x + \pi) + 1$ on the axes below!

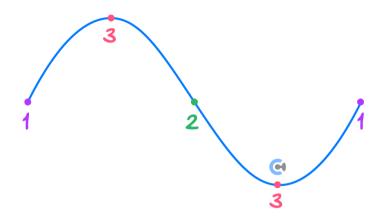
1. Identify Amplitude, Period, Mean Value and Positive/Negative Shape.

2. Create a "mini-version" of the graph you are about to draw.

3. Start plotting the function from when the angle = 0. Why?

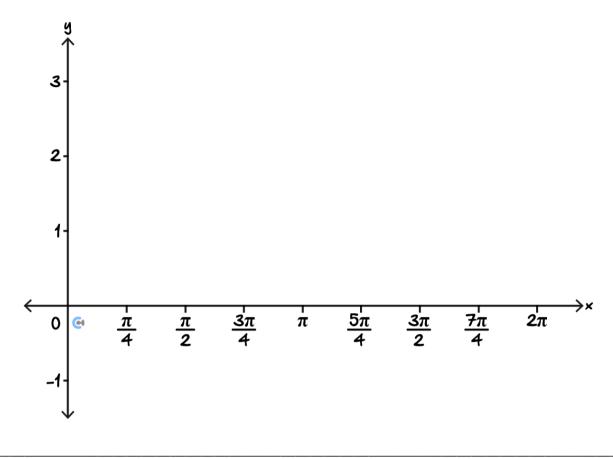
> It allows us to always sketch the graph from the _____

4. Draw the start and end of the periods, and plot the halves (turning points).


5. Find any x-intercepts.

6. Join all the points!

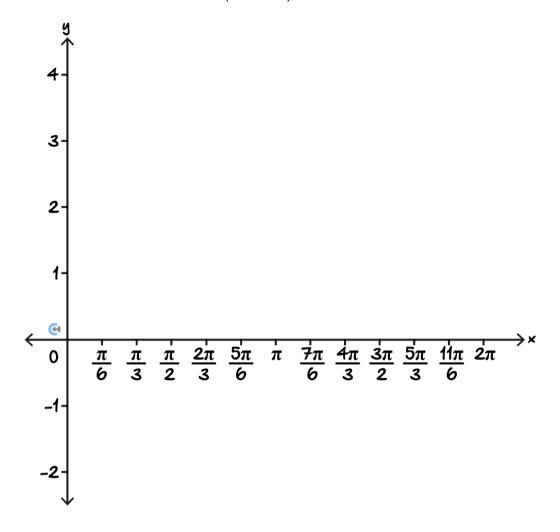
Graphing of sin and cos Functions


- 1. Identify Amplitude, Period, Mean Value and Positive/Negative Shape.
- 2. Create a "mini-version" of the graph you are about to draw.
- **3.** Start plotting the function from when the angle = 0.
- **4.** Draw the start and end of the periods, and plot the halves (turning points).
- **5.** Find any x-intercepts.
- **6.** Join all the points!

Question 7 Walkthrough.

Sketch the graph of $f(x) = \sin(2x) + 1$ for $x \in [0, 2\pi]$ on the axes below, labelling all intercepts and endpoints with their coordinates.

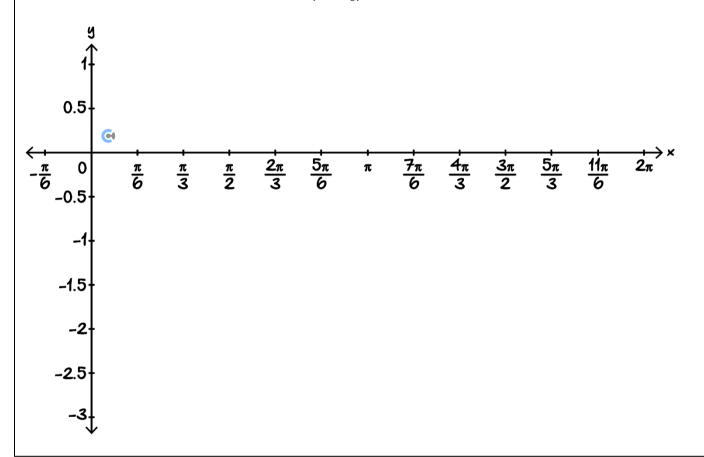
Active Recall: Graphing of sin and cos Functions


- 1. Identify: _____
- 2. Create a "mini-version" of the graph you are about to draw.
- **3.** Start plotting the function from when the angle = _____.
- 4. Draw the start and end of the periods, and plot the halves (turning points).
- **5.** Find any ______.
- **6.** Join all the points!

Question 8

Sketch the following on the axes below, labelling all intercepts, endpoints, and turning points with their coordinates.

$$y = -2\sin\left(2\left(x - \frac{\pi}{3}\right)\right) + 1 \text{ for } x \in [0, 2\pi]$$



Question 9

Sketch the following on the axes below, labelling all intercepts, endpoints, and turning points with their coordinates.

$$y = 2\cos\left(2x + \frac{\pi}{3}\right) - 1 \text{ for } x \in [0, 2\pi]$$

Sub-Section: Finding the Rule

Finding the Rule

Amplitude (A) =
$$\frac{max - min}{2}$$

Average (
$$k$$
) = $\frac{max + min}{2}$

Question 10 Walkthrough.

A function with rule $y = A \sin(nt) + b$ where A > 0 has a range [-5,3] and period 6. Find A, n and b.

TIP: Graphing helps!

Active Recall: Finding the Rule

Your turn!

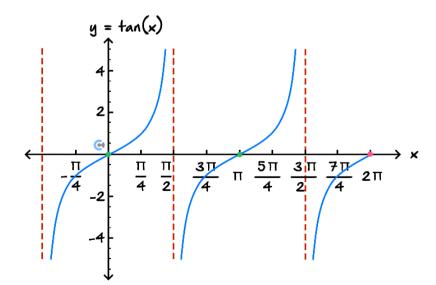
0	1	1
Question		ı

A function with rule $y = A\cos(nt + \pi) + b$ where A < 0 has a range [-6.8] and period 3. Find A, n and b.

Section C: Graphs of Tangent

Sub-Section: Understanding Tangent Graphs

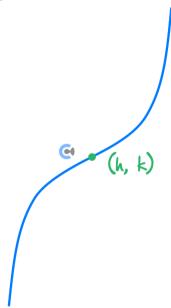
What does the tangent graph look like?


Exploration: Graph of Tangents

Scan the QR code below on your device!

Definition

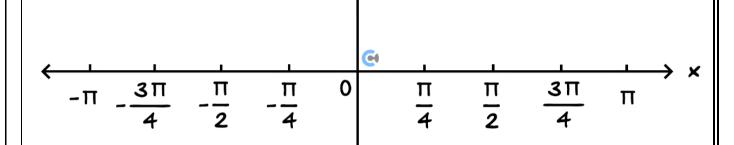
Graph of Tangent


Sub-Section: Graphing Tangent Functions

Steps for Sketching tan Functions

- 1. Identify:
- 2. Find the vertical asymptotes by solving for angle $=\frac{\pi}{2}$.
- **3.** Find other vertical asymptotes within the domain by adding the period to answer from the previous step.
 - Ge For instance, for $\tan \left(2x \frac{\pi}{3}\right)$, solve $2x \frac{\pi}{3} = \frac{\pi}{2}$ for x.
- **4.** Plot the inflection point (h, k). (Midpoint of the two vertical asymptotes.)
 - \checkmark x-value of inflection point = x-value which makes angle = 0.
 - \bigcirc y-value of inflection point = vertical translation of the function.

eg:
$$tan(x-h)+k$$



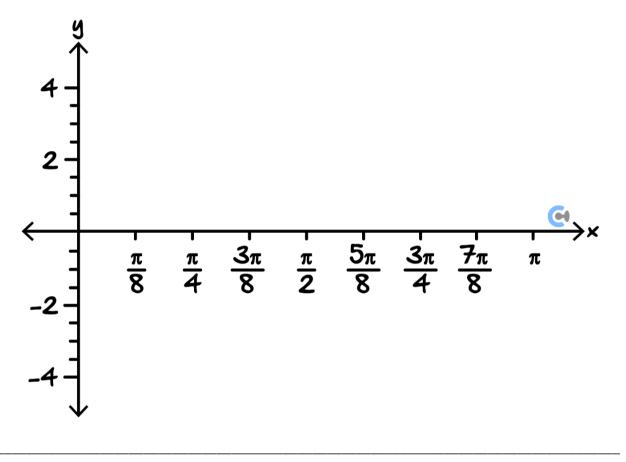
- **5.** Find any x-intercepts.
- **6.** Sketch a "cubic-like" shape.

Question 12 Walkthrough.

Sketch the graph of $y = 3 \tan(2x)$ for $x \in [-\pi, \pi]$.

Active Recall: Steps for Sketching tan Functions

- 1. Identify:
 - \bigcirc The period = _____.
- **2.** Find the vertical asymptotes by solving for angle = _____.
- 3. Find other vertical asymptotes within the domain by adding the period to answer from the previous step.
- **4.** Plot the inflection point (h, k). (Midpoint of the two ______.)
 - \checkmark x-value of inflection point = x-value which makes angle = 0.
 - \bigcirc y-value of inflection point = vertical translation of the function.
- 5. Find any ______.
- **6.** Sketch a ______ shape.

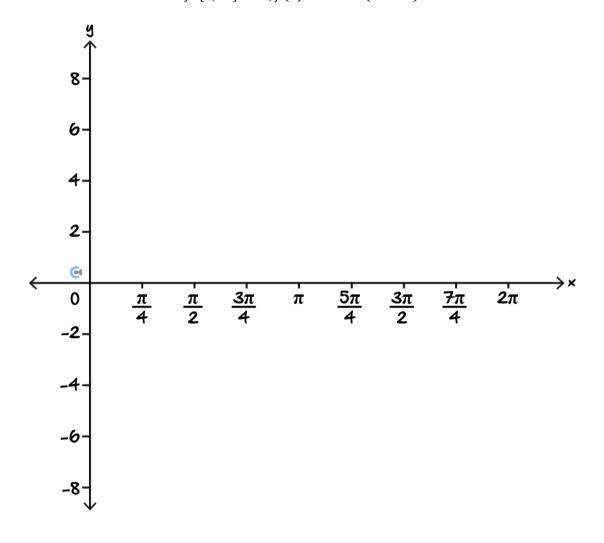


Your turn!

Question 13

Sketch the following on the axes below, labelling all intercepts and points of inflection with coordinates and all asymptotes with their equations.

$$y = \tan\left(2x + \frac{\pi}{2}\right) + 1 \text{ for } x \in (0, \pi)$$



Question 14

Sketch the following on the axes below, labelling all intercepts, points of inflection, and endpoints with their coordinates, and all asymptotes with their equations.

$$f: [0,2\pi] \to \mathbb{R}, f(x) = -2\tan(\pi + 2x) + 2$$

Section D: Fraction of Period

Sub-Section: Fraction of Period

Definition: Fraction of Period

$$Fraction of Period = \frac{Duration}{Period}$$

$$\%$$
 of $Period = \frac{Duration}{Period} \times 100\%$

Question 15 Walkthrough.

The population of dogs in a certain household is modelled by P(t).

$$P(t) = 4 - 2\cos\left(\frac{\pi}{4}t\right)$$

Where P(t) is the number of dogs t years since 2024. Find the fraction of time where the population is above 5.

NOTE: Always sketch the function to find the duration!

Active Recall: Fraction of Period

Fraction of Period =_____

% of Period = _____ × 100%

Question 16

The population of cats in a certain household is modelled by P(t).

$$P(t) = 10 - 4\sin\left(\frac{\pi}{6}t + \frac{\pi}{2}\right)$$

Where P(t) is the number of cats t years since 2024.

Find the fraction of time where the population is above 8.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

