

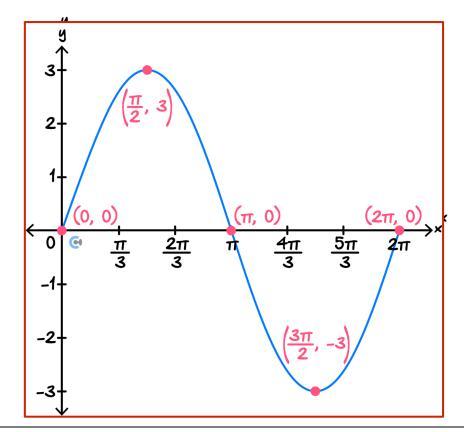
Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Graphs of Circular Function [4.4]

Homework Solutions

Admin Info & Homework Outline:


Student Name	
Questions You Need Help For	
Basics	Pg 2 - Pg 8
Problem Solving	Pg 9 - Pg 15
Exam 1	Pg 16 - Pg 19
Exam 2	Pg 20 - Pg 24

Section A: Basics

Question 1					
Consider the function $f(x) = 3\sin(x)$.					
a.	State the amplitude of f .				
	Amplitude = $ coefficient\ of\ sin = 3$				
b.	b. State the range of f .				
	[-3,3]				

c. Sketch the graph of y = f(x) for $x \in [0,2\pi]$ on the axes below, labelling axes intercepts and turning points with their coordinates.

Question 2

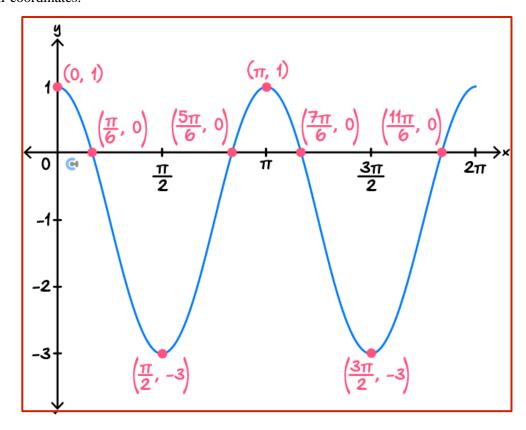
Consider the function $f(x) = 2\cos(2x) - 1$.

a. State the amplitude of f.

2

b. State the period of f.

Period = $\frac{2\pi}{coefficient\ of\ x} = \frac{2\pi}{2} = \pi$


c. State the average value of f.

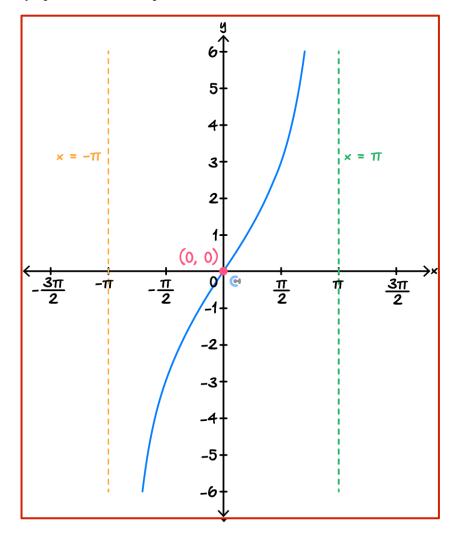
Average value =
$$vertical\ translation = -1$$

d. State the maximum value of f.

Maximum value = $vertical\ translation + amplitude = -1 + 2 = 1$

e. Sketch the graph of y = f(x) for $x \in [0,2\pi]$ on the axes below, labelling axes intercepts and turning points with their coordinates.

Consider the function $f(x) = 3\tan\left(\frac{x}{2}\right)$.


a. State the range of f.

 $(-\infty, \infty)$ which can also be written as \mathbb{R} .

b. State the period of f.

Period = $\frac{\pi}{coefficient\ of\ x} = \frac{\pi}{\frac{1}{2}} = 2\pi$

c. Sketch the graph of y = f(x) for $x \in (-\pi, \pi)$ on the axes below, labelling axis intercepts with their coordinates and asymptotes with their equations.

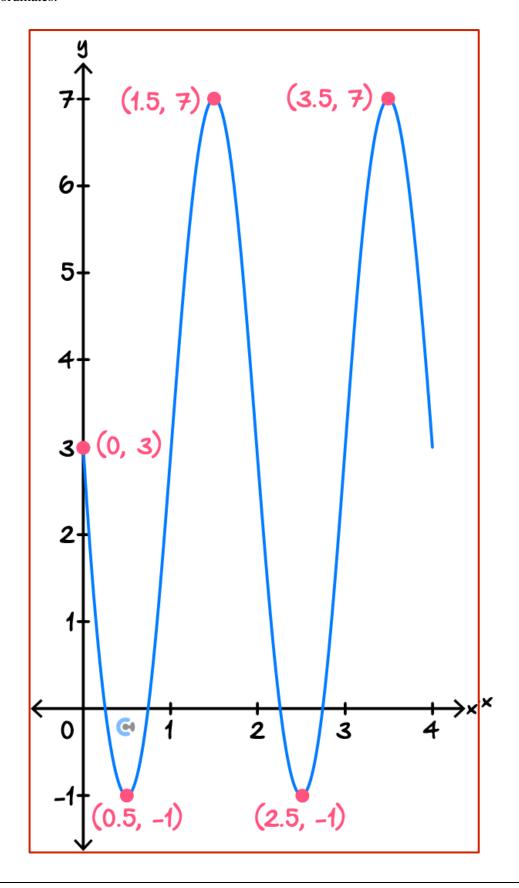
Consider the function $f(x) = -4\sin(\pi x) + 3$.

a. State the amplitude of f.

4 – remember that amplitude is always positive.

b. State the period of f.

Period = $\frac{2\pi}{\pi} = 2$


c. State the minimum value of f.

-1

d. State the average value of f.

3

e. Sketch the graph of y = f(x) for $x \in [0,4]$ on the axes below, labelling y-intercepts and turning points with their coordinates.

The function $f(x) = a\cos(bx) + c$, where $a, b \in \mathbb{R}^+$ and $c \in \mathbb{R}$, has the following properties:

- ➤ Maximum value = 5
- \blacktriangleright Minimum value = -1
- Period = π

Find a, b and c.

$$-b:$$

$$- \text{Period} = \frac{2\pi}{b} = \pi \quad \text{average} \quad \text{value} = \frac{\text{max+min}}{2} = c$$

$$\therefore b = 2 \qquad \therefore c = \frac{S + (-1)}{2} = 2 \qquad \therefore a = \frac{S - (-1)}{2} = 3$$

$$\therefore a = 3, b = 2, c = 2$$

Question 6

Which of the following is true for $f(x) = \sin(x)$?

- **A.** Amplitude of 2 and period π .
- **B.** Range = [0,1].
- C. f(x) has no turning points.
- **D.** Average value = 0.

Section B: Problem Solving

Question 7

Consider the functions $f(x) = \sin(x)$ and $g(x) = 2\sin\left(x - \frac{\pi}{3}\right) + 1$.

a. Describe a series of transformations that map the function of f(x) onto the function g(x).

Dilation by a factor of 2 from the x-axis, followed by,

Translation of $\frac{\pi}{3}$ units to the right, followed by

Translation of 1 unit upwards.

NOTE: Translations can be in any order, but dilations must come before the translation up.

b. Hence, or otherwise, state the amplitude, period, range and average value of g.

Amplitude: 2, Period: 2π , Range: [-1,3], Average value: 1

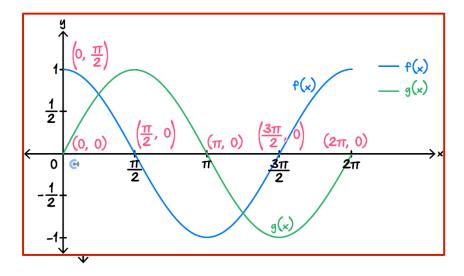
A circular function f(x) has the following characteristics:

- Amplitude: 3
- Average value: 2
- Period: π
- \rightarrow Has a maximum occurring at x = 0
- **a.** Write a possible rule for f(x) in the form $f(x) = a\cos(bx) + c$, where $a, b \in \mathbb{R} \setminus \{0\}$ and $c \in \mathbb{R}$.

$$f(x) = 3\cos(2x) + 2$$

b. Convert the rule from **part a.** into an equivalent form in terms of sine.

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)$$
Let $\theta = 2x$


$$f(x) = 3\cos(\theta) + 2 = 3\sin\left(\frac{\pi}{2} - \theta\right) + 2 = 3\sin\left(\frac{\pi}{2} - 2x\right) + 2$$

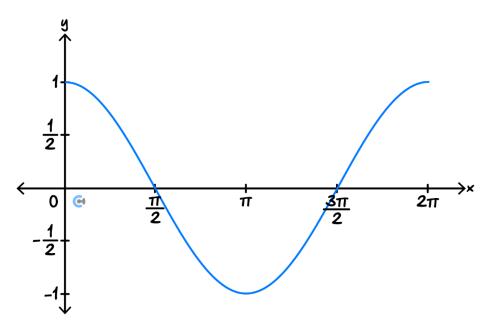
CONTOUREDUCATION

Question 9

Let $f(x) = \cos(x)$ and $g(x) = \sin(x)$.

a. Sketch the graphs of f(x) and g(x) for $x \in [0,2\pi]$ on the axes below, labelling axes intercepts with their coordinates.

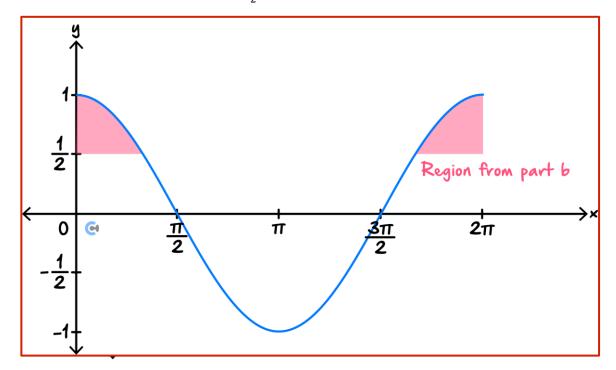
b. Hence, state a single transformation that maps the graph of f(x) onto the graph of g(x).


Translate $\frac{\pi}{2}$ units to the right.

c. Hence, state the equation of the relationship shown in part b.

 $\sin(x) = \cos\left(x - \frac{\pi}{2}\right)$

Let $f: [0,2\pi] \to \mathbb{R}$, $f(x) = \cos(x)$. The graph of f(x) is shown below.



a. Solve the equation $f(x) = \frac{1}{2}$ for x.

	•
. 1	
$\cos(x) = \frac{1}{2}, x \in [0,2\pi]$	
π 5π	
$x=\frac{1}{3},\frac{1}{3}$	

CONTOUREDUCATION

b. Shade the part of the graph where $f(x) \ge \frac{1}{2}$ on the graph below.

c. Hence, find the values of x for which $f(x) \ge \frac{1}{2}$ and find the fraction of the period for which this occurs.

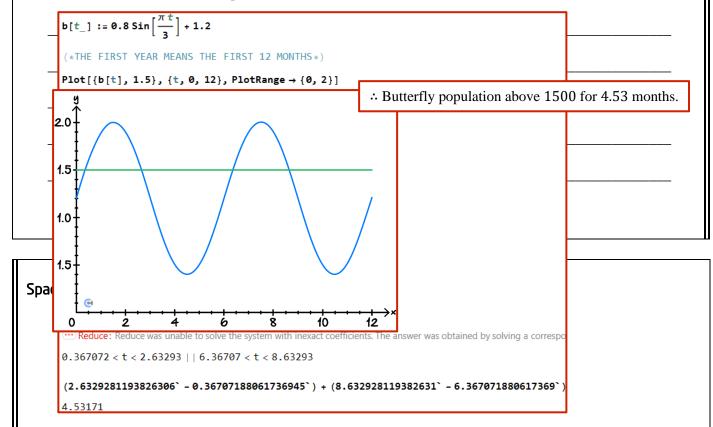
$$x \in \left[0, \frac{\pi}{3}\right] \cup \left[\frac{5\pi}{3}, 2\pi\right]$$
Fraction of period =
$$\frac{\text{size of intervals that meet condition}}{\text{period}}$$

$$= \frac{\left(\frac{\pi}{3} - 0\right) + \left(2\pi - \frac{5\pi}{3}\right)}{2\pi}$$

$$= \frac{1}{3} \text{ of the period}$$

Question 11 Tech-Active.

A population of endangered butterflies on an island follows a predictable pattern and is modelled by the function:


$$b: [0, \infty) \to \mathbb{R}, b(t) = 0.8 \sin\left(\frac{\pi t}{3}\right) + 1.2$$

where b is the population of the butterflies measured in thousands and t is the number of months since the butterflies were brought to the island.

a. Find the maximum and minimum population of butterflies on the island.

Maximum = $(1.2 + 0.8) \times 1000 = 2000$ butterflies Minimum = $(1.2 - 0.8) \times 1000 = 400$ butterflies NOTE: Units are necessary.

b. Find the total amount of time in the first year where the butterfly population is above 1500. Give your answer in months correct to 2 decimal places.

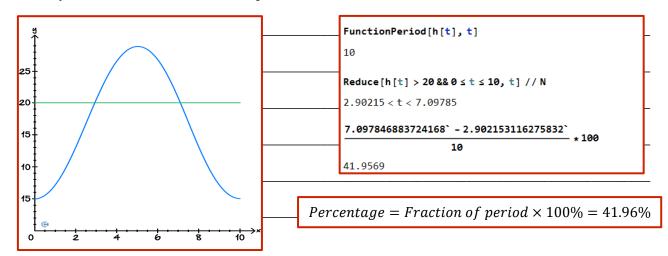
Question 12 Tech-Active.

The height of a Ferris wheel carriage during one ride is modelled by the function:

$$h: [0,10] \to \mathbb{R}, h(t) = -12\cos\left(\frac{\pi t}{5}\right) + 17$$

where h is the height of the carriage in metres above the ground and t is the time in minutes from when the carriage departs the boarding platform.

a. Find the height of the boarding platform above the ground.


$$17 - 12 = 5 m - \text{units necessary}$$

b. Find the height of the Ferris wheel, given that the bottom of the Ferris wheel lies on the ground.

$$17 + 12 = 29 m - units necessary$$

It is possible to get an aesthetic view of the nearby harbourfront if you are more than 20 metres above the ground on the Ferris wheel.

c. Find the percentage of total ride time during a ride where riders have an aesthetic view of the harbourfront. Give your answer correct to 2 decimal places.

Section C: Exam 1 (18 Marks)

Question 13 (4 marks)

Consider the function $f(x) = 2\cos(x) + 1$.

a. State the amplitude, and average value of the function. (1 mark)

Amplitude = 2, Average value = 1
1A – both correct answers

b. Find the maximum and minimum values of f. (2 marks)

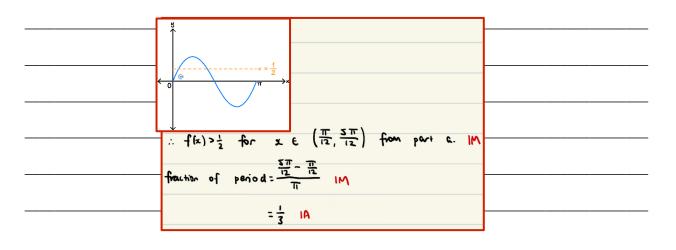
Minimum = 1 - 2 = -1 (1A) Maximum = 1 + 2 = 3 (1A)

c. Hence, state the range of f. (1 mark)

[-1,3] (1A)

Question 14 (5 marks)

Let $f(x) = \sin(2x)$.


a. Find the values of x where $f(x) = \frac{1}{2}$ in the interval $x \in [0, \pi]$. (2 marks)

 $2x = \frac{\pi}{6}, \frac{5\pi}{6}$ $x = \frac{\pi}{12}, \frac{5\pi}{12}$

1M – reference angles, 1A – correct answers

b. Find the maximum and minimum values of f. (3 marks)

Question 15 (2 marks)

The function $f(x) = \tan(kx)$, where $k \in \mathbb{R}$, completes one full period over the interval (0.4π) .

Find the value of k.

period =
$$4\pi - 0 = \frac{\pi}{k}$$
 IM

$$\therefore 4\pi = \frac{\pi}{k} \therefore k = \frac{1}{4} \text{ IA}$$

Question 16 (4 marks)

The graph of a circular function f(x) has the following features:

- Maximum value: 1
- ➤ Minimum value: -5
- Period: 3
- Minimum at x = 0

Find a rule for f(x). Express your answer in the form $f(x) = a\cos(bx) + c$, where $a, b \in \mathbb{R} \setminus \{0\}$ and $c \in \mathbb{R}$.

average value =
$$\frac{1+(-5)}{2}$$
 = -2 IM

$$f(0) = 0 \cos(0) + c = 0 + c = 0$$

$$\therefore c = \frac{1+(-5)}{2} = -2 \text{ IM}$$

$$\therefore a = -3, b = \frac{2\pi}{3}, c = -2$$

$$\therefore f(x) = -3\cos\left(\frac{2\pi}{3} + \frac{\pi}{3}\right) - 2 \text{ IA}$$

Question 17 (3 marks)

The function $T(t) = 2 \sin\left(\frac{\pi t}{6}\right) + 4$ models the temperature of a fridge in °C over time, measured in minutes.

a. Find the period of *T* in minutes. (1 mark)

 $Period = \frac{2\pi}{\frac{\pi}{6}} = 12 \text{ minutes} - 1\text{A (units not required)}$

b. Find the maximum temperature reached in the fridge in °C. (1 mark)

 $Max\ temp = 4 + 2 = 6^{\circ}C - 1A$ (units not required)

c. Find the percentage of time that the fridge spends above its average temperature. (1 mark)

By definition of an average, 50% of values will be above average and 50% will be below average.

50% - 1A

Section D: Exam 2 (24 Marks)

Question 18 (1 mark)

The function $f(x) = 23 \sin(2x) - \pi$ has a period of:

- A. $-\pi$
- **Β.** π
- **C.** 23
- $\mathbf{D.} \ \frac{\pi}{2}$

Question 19 (1 mark)

The graph of a circular function f(x) has the following features:

- Minimum value: 2
- Maximum value: 10
- Period: 1

A possible rule for f(x) is:

- **A.** $4\sin(x) + 6$
- **B.** $4\cos\left(\frac{x}{2\pi}\right) + 6$
- **C.** $4\sin(\pi x) + 6$
- **D.** $4\cos(2\pi x) + 6$

Question 20 (1 mark)

Let $f(x) = 6\sin\left(\frac{x}{2}\right) - 3$. The fraction of the period where f(x) < -1 is closest to:

- **A.** 0.608
- **B.** 0.764
- **C.** 0.108
- **D.** 0.392

Question 21 (1 mark)

The function $f(x) = a \sin(x) + b$ is greater than 2 for exactly π units per period. Which of the following are possible values of a and b?

- **A.** a = 2, b = 0
- **B.** a = 2, b = 2
- **C.** a = 3, b = 1
- **D.** a = 1, b = 1

Question 22 (9 marks)

Sam is bouncing on a trampoline at Bounce and Subu is trying to model his height above the ground. Subu models Sam's height above the ground using the function:

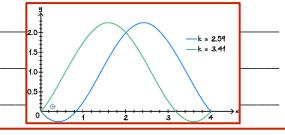
$$h(t) = \frac{5}{4}\sin\left(\frac{\pi}{2}(t+k)\right) + 1$$

where h is Sam's height above the ground measured in metres, t is the time in seconds since Sam started bouncing and $k \in \mathbb{R}$.

a. State the maximum height reached by Sam in metres. (1 mark)

$$1 + \frac{5}{4} = \frac{9}{4} m - 1A$$
 (correct answer, units not required)

CONTOUREDUCATION

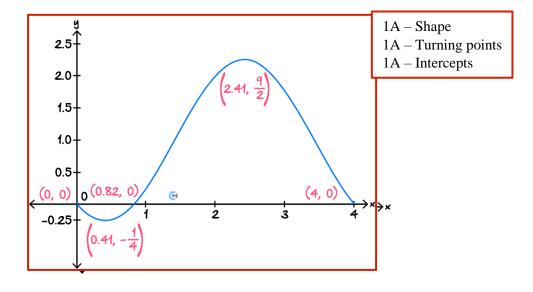

b. State Sam's average height above the ground when he is bouncing. (1 mark)

1 m - 1A (correct answer, units needed)

c. Given that Sam starts on ground level and has to press down on the trampoline to start his bounce, meaning that the graph of y = h(t) must fall below the t-axis immediately after t = 0, find a possible value of k if 0 < k < 4. Give your answer correct to 2 decimal places. (3 marks)

$$h[t_{-}] := \frac{5}{4} \sin \left[\frac{\pi}{2} (t + k) \right] + 1$$

Solve[$\{h[0] = 0, 0 \le k \le 4\}, k$] // N $\{\{k \to 3.40967\}, \{k \to 2.59033\}\}$



Solving for k gives 2 potential values, but Sam needs to press down on the trampoline, meaning that k must fall below 0 immediately after k = 0. Plotting k for both values of k shows that only $k \approx 2.59$ satisfies this second condition as shown below.

- 1M Statement saying "solve for k when h(0) = 0."
- 1M Both potential values of k.
- 1A Rejection of k = 3.41 to end up with k = 2.59.
- **d.** Hence, state an expression that gives all possible values of k. Give non-exact values correct to 2 decimal places. (1 mark)

 $k = 2.59 + 4n, n \in \mathbb{Z}$ — 1A (general solution)

e. Sketch one of Sam's bounces on the axes below, labelling axes intercepts and turning points with their coordinates. Give all non-exact values to 2 decimal places. (3 marks)

Question 23 (11 marks)

The water level on a beach rises and falls according to the function:

$$w(t) = 3\sin\left(\frac{\pi t}{6}\right) + 4$$

where w is the water level in metres and t is the time in hours after midnight.

The ocean conceals the entrance to a secret underwater cave which contains the secret to getting a raw 50 in Methods. The entrance to the cave is only accessible when the water level is below 1.5 m.

a. State the amplitude, period and average tide height. (2 marks)

Amplitude: 3 m, Period: 12 hours, Average height: 4 m

1A – amplitude and average

1A – period

b. Find the times in the day when the water level is exactly 1.5 m, correct to the nearest minute. (3 marks)

Solve $\left[3 \sin \left[\frac{\pi t}{6}\right] + 4 = 1.5 \& 0 \le t \le 24, t\right]$

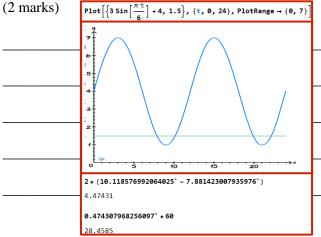
Solve: Solve was unable to solve the system with inexact coefficients. The answer

 $\{ \{t \rightarrow 7.88142 \}, \{t \rightarrow 10.1186 \}, \{t \rightarrow 19.8814 \}, \{t \rightarrow 22.1186 \} \}$

 $\{0.881423007935976$, 0.118576992064025} * 60

{52.8854, 7.11462}

Water level is 1.5 *m* at 7:53 AM, 10:07 AM, 7:53 PM, 10:07 PM


1M – Statement saying "solve for t when h(t) = 1.5"

1M - 4 solutions of t in decimals

1A – converting to hours and minutes

CONTOUREDUCATION

c. Hence, determine the total amount of time in a day that the cave is accessible, correct to the nearest minute.

The cave is accessible for 4 hours and 28 minutes per day.

1M – Correct interpretation of accessible time (correct expression)

1A – Correct answer in hours and minutes

- **d.** An optimal time to enter the cave is when the water level hits 1.5 m and continues falling.
 - i. State the first optimal time in a day, correct to the nearest minute. (1 mark)

7: 53 AM- 1A (found in **part b.**)

ii. A daring student knows that they need 130 minutes to be able to retrieve the secret to getting a 50 from the cave. Given that they enter at an optimal time, determine whether they have enough time, and state how much time they have to spare/how much more time they would require, correct to the nearest second. (3 marks)

```
(*time window for 1 opening*)
(10.118576992064025` - 7.881423007935976`)
2.23715
(*130 minutes = \frac{13}{6} hours*)
2.2371539841280486` - \frac{13}{6}
0.0704873
(*converting hours to minutes*)
0.07048731746138204` * 60
4.22924
(*converting decimals to seconds*)
```

There is enough time with 4 minutes and 14 seconds to spare.

 $1M-Finding \ the \ time \ window \ for \ 1 \ opening$

1M – Finding the amount of time leftover

1A – Final statement including the time in minutes and seconds

Space for Personal Notes

0.229239047682922` * 60

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

