

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Circular Function Exam Skills [4.3]

Workbook

Outline:

		Circular Functions Exam Skills	Pg 11-16
		Equivalent General SolutionsGeneral Solutions with Domain Rest	rictions
Recap of Particular and General		Hidden Quadratics	HICTIOHS
<u>Solutions</u>	Pg 2-8		
N	D - 0 10	Exam 1	Pg 17-19
Warmup Test	Pg 9-10	Technology Exam Skills	Pg 20-22
		Exam 2	Pg 23-31

Section A: Recap of Particular and General Solutions

If you were here last week, skip to Section B - Warmup Test.

Definition

Particular Solutions

- Solving trigonometric equations for finite solutions.
- Steps
 - 1. Make the trigonometric function the subject.
 - **2.** Find the necessary angle for one period.
 - **3.** Solve for *x* by equating the necessary angles to the inside of the trigonometric functions.
 - **4.** Add and subtract the period to find all other solutions in the domain.

Question 1 Walkthrough.

Solve the following equations for x over the domain specified.

$$2\sin(2x) + \sqrt{3} = 0$$
 for $x \in [0, 2\pi]$

Question 2

Solve the following equations for x over the domains specified.

a.
$$\sin(4x) = -1$$
 for $x \in [-\pi, \pi]$.

b.
$$2\cos\left(2x - \frac{\pi}{2}\right) + 1 = 0$$
 for $x \in [0, 2\pi]$.

Question 3

Solve the following equations for x over the domains specified.

$$\sqrt{3}\tan\left(x - \frac{\pi}{3}\right) - 1 = 0 \text{ for } x \in (0, 3\pi)$$

General Solutions

- Finding infinite solutions to a trigonometric equation.
- Steps
 - 1. Make the trigonometric function the subject.
 - **2.** Find the necessary angle for one period.
 - **3.** Solve for *x* by equating the necessary angles to the inside of the trigonometric functions.
 - **4.** Add Period $\cdot n$ where $n \in \mathbb{Z}$.

Question 4 Walkthrough.

Find the general solutions to the following equations:

$$2\sin\left(2x + \frac{\pi}{2}\right) - 1 = 0$$

Question 5

Find the general solutions to the following equations:

$$\mathbf{a.} \quad -2\sin\left(3x + \frac{\pi}{4}\right) = \sqrt{2}$$

$$\mathbf{b.} \quad 2\cos\left(2x + \frac{\pi}{6}\right) = 1$$

Question 6 Walkthrough.

Find the general solutions to the following equations:

$$\tan\left(\frac{1}{2}x - \pi\right) - \frac{1}{\sqrt{3}} = 0$$

NOTE: We only need to find one angle for tangents!

Question 7

Find the general solutions to the following equations:

$$\mathbf{a.} \quad 2\tan\left(2x - \frac{\pi}{4}\right) = 2$$

$$\mathbf{b.} \quad \sqrt{3}\tan\left(3x - \frac{\pi}{6}\right) = 1$$

Section B: Warmup Test (12 Marks)

Question 8 (6 marks)

Solve the following equations for x, over the stated domain.

a. $\tan\left(2x - \frac{\pi}{2}\right) = \frac{1}{\sqrt{3}}$, for $x \in [0, 2\pi]$. (3 marks)

·	 	

b. $2\sin\left(2x + \frac{\pi}{4}\right) + 1 = 0$, for $x \in [0, 2\pi]$. (3 marks)

· · · · · · · · · · · · · · · · · · ·	 	

VCE Methods ½ Questions? Message +61 440 138 726

Question 9 (6 marks)

Solve the following equations for x:

a. $2\cos\left(2x + \frac{\pi}{3}\right) + 1 = 0$. (3 marks)

b. $\sqrt{3} \tan \left(4x + \frac{\pi}{6}\right) - 3 = 0$. (3 marks)

Section C: Circular Functions Exam Skills

Sub-Section: Equivalent General Solutions

Let's review some important skills from last week!

Multiple Forms of a General Solution

$$a + Period \cdot n = b + Period \cdot n$$

If the difference of a and b is a multiple of period.

Question 10

Which one of the following is **not** the same as the rest?

A.
$$\frac{5\pi}{6} + \frac{\pi}{6}n, n \in \mathbb{Z}$$

B.
$$\frac{3\pi}{2} + \frac{\pi}{6}n, n \in Z$$

C.
$$-\frac{\pi}{2} + \frac{\pi}{6}n, n \in \mathbb{Z}$$

D.
$$\frac{5\pi}{4} + \frac{\pi}{6}n, n \in Z$$

$$\mathbf{E.} \quad \frac{5\pi}{6} - \frac{\pi}{6}n, n \in \mathbb{Z}$$

NOTE: Very important for multiple choice questions in VCAA exams!

Sub-Section: General Solutions with Domain Restrictions

Misconception

"When there is a domain restriction, we always get particular solutions."

TRUTH: If the domain restriction has either ∞ or $-\infty$, we can still have general solutions.

Question 11 Walkthrough.

Solve for the following trigonometric equation:

$$\sin\left(2x + \frac{\pi}{3}\right) = \frac{1}{2} \text{ for } x \ge 0$$

General Solution with Domain Restriction

E.G trig
$$\left(2x + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
 for $x \ge 0$

- We can have infinite solutions for the restricted domain.
- \blacktriangleright The value of n is also restricted.

Your turn!

Question 12

Solve for the following trigonometric equation:

$$\cos\left(2x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2} \text{ for } x < 0$$

.

Sub-Section: Hidden Quadratics

Let's have a look at hidden quadratics for circular functions!

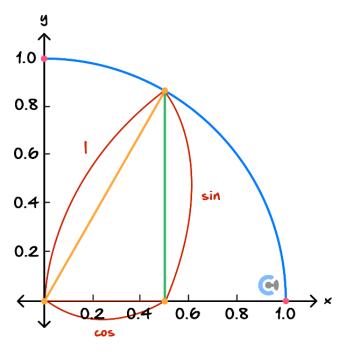
Hidden Quadratics

$$af(x)^2 + bf(x) + c = 0$$
Let $A = f(x)$

Question 13 Walkthrough.

Solve the following for the values of x:

$$\cos^2\left(x - \frac{\pi}{3}\right) + \cos\left(x - \frac{\pi}{3}\right) = 2, 0 \le x \le 3\pi$$



NOTE: \sin and \cos are between -1 and 1.

REMINDER: Pythagorean Identity

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

Can be used for finding one trigonometry function by using the other.

Your turn!

Question 14

Solve the following for the values of x:

$$2\sin^2(2x) + 3\cos(2x) = 2$$

TIP: $\sin^2(\theta) = 1 - \cos^2(\theta)$.

Section D: Exam 1 (14 Marks)

Question 15 (4 marks)
Solve the equation $2 \sin \left(2x + \frac{\pi}{3}\right) + 1 = 0$ for $x \ge 0$.
·

Qı	uestion 16 (4 marks)	
Co	onsider the function $f(x) = 2 \tan(3x) - 2$.	
a.	Find a general solution to $f(x) = 0$. (3 marks)	
b.	State an equivalent general solution to what you found in part a. (1 mark)	
		U
Sp	pace for Personal Notes	

Question 17 (6 marks)

Consider the function $f(x) = 3 \sin^2(2x) + 3 \cos(2x) - 3 \cos^2(2x)$.

a. Show that $f(x) = 3 + 3\cos(2x) - 6\cos^2(2x)$. (1 mark)

b. Solve the equation f(x) = 0 for $x \in [0, \pi]$. (3 marks)

c. Hence, write the general solution to f(x) = 0. (2 marks)

Section E: Technology Exam Skills

Calculator Commands: Degrees and Radians

▶ TI

Casio

• Change at the bottom of the screen.

Mathematica

• In radians by default.

♥ Write "Degree."

In[27]:= Sin[30 Degree]

Out[27]= $\frac{1}{2}$

Calculator Commands: Solving trigonometric functions.

▶ TI

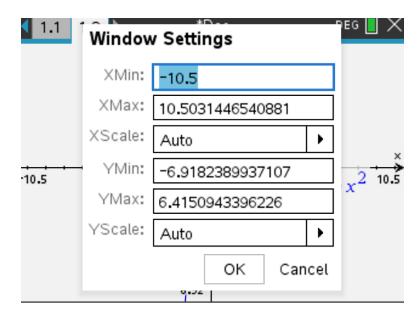
solve(trig(..) = a, x) | domain restriction

• | is under control equal.

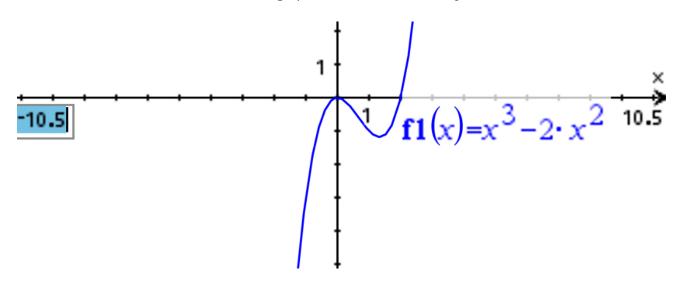
Casio

solve(trig(..) = a,x) | domain restriction

• | is under maths 3.


Mathematica

Solve[trig[] == a &&
domain restriction, x]

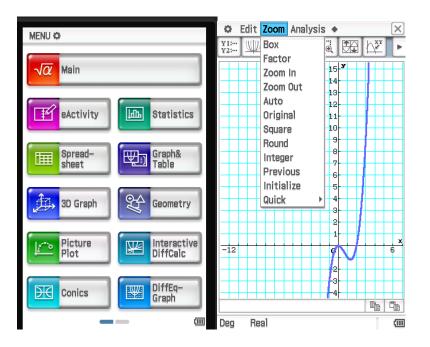


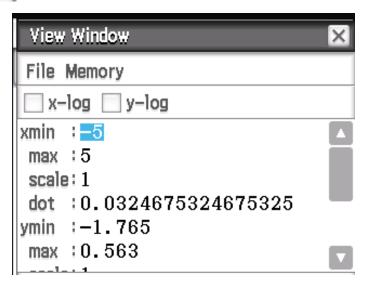
Calculator Commands: Graphing

- Open a graph page and plot your function.
- Zoom settings: Menu \rightarrow 4 (window / zoom) \rightarrow 1 enter your x and y-ranges.

Can also click the axis numbers on the graph and alter them directly.

- Menu \rightarrow 6 (Analyse) to find min / max x and y-intercepts.
- Restrict domain to 0 < x < 2, use the bar to get it from ctrl+ =




 $f1(x)=x^3-2x^2|0< x<2$

Casio: Click graph & table, and enter the function.

- Analysis → G-Solve to find intercepts.
- Use this button to set the view window.

Use | to restrict domain → find it in Math 3.

$$V_{y1=x^3-2\cdot x^2|0 \le x \le 2}$$

- **Mathematica:** Plot[function, $\{x, xmin, xmax\}$, PlotRange → $\{ymin, ymax\}$]
 - PlotRange is optional but can be used to make the scale appropriate for the question.

Section F: Exam 2 (32 Marks)

Question 18 (1 mark)

In a right-angled triangle, the two shorter side lengths are 5 cm and 12 cm. To the nearest degree, the smallest angle is:

- **A.** 22°
- **B.** 23°
- C. 24°
- **D.** 67°

Question 19 (1 mark)

The value of $\sin\left(\frac{5\pi}{6}\right)$ is equal to:

- $\mathbf{A} \cdot \sin\left(\frac{\pi}{6}\right)$
- **B.** $\sin\left(\frac{\pi}{3}\right)$
- C. $\sin\left(\frac{13\pi}{6}\right)$
- **D.** $-\sin\left(\frac{\pi}{3}\right)$

Question 20 (1 mark)

The value of $\cos\left(\frac{7\pi}{2} - \theta\right)$ is equal to:

- **A.** $cos(\theta)$
- **B.** $-\cos(\theta)$
- C. $sin(\theta)$
- **D.** $-\sin(\theta)$

Question 21 (1 mark)

The minimum value of $7 - 9\cos(3x)$ is:

- **A.** 2
- **B.** −5
- **C.** -2
- **D.** −16

Question 22 (1 mark)

If $tan(\theta) = \frac{3}{4}$, then $tan(\pi + \theta)$ is:

- **A.** $\frac{3}{4}$
- **B.** $-\frac{3}{4}$
- C. $\frac{4}{3}$
- **D.** $-\frac{4}{3}$

Question 23 (1 mark)

If $cos(x) = \frac{2}{3}$ and x is in the fourth quadrant, then sin(x) is equal to:

- **A.** $\frac{\sqrt{5}}{3}$
- **B.** $-\frac{\sqrt{5}}{3}$
- C. $\frac{\sqrt{5}}{2}$
- **D.** $-\frac{\sqrt{5}}{2}$

Question 24 (1 mark)

The number of solutions to the equation $\sin(x) = \frac{1}{2}$ in the interval $[0, 8\pi]$ is:

- **A.** 2
- **B.** 4
- **C.** 6
- **D.** 8

Question 25 (1 mark)

A general solution to the equation $\tan \left(3x - \frac{\pi}{3}\right) = \sqrt{3}$ for $x \ge 0$ is:

- **A.** $x = \frac{\pi}{9} + \frac{n\pi}{3}$, where $n \in \mathbb{Z}$ and $n \ge 0$.
- **B.** $x = \frac{\pi}{6} + \frac{n\pi}{3}$, where $n \in \mathbb{Z}$ and $n \ge 0$.
- C. $x = \frac{\pi}{3} + \frac{2n\pi}{3}$, where $n \in \mathbb{Z}$ and $n \ge 0$.
- **D.** $x = \frac{2\pi}{9} + \frac{n\pi}{3}$, where $n \in \mathbb{Z}$ and $n \ge 0$.

Question 26 (7 marks)

The Surf Life Saving HQ receives automatic tide alerts from a coastal sensor. The height of the tide (in metres), is modelled by the equation:

$$H(t) = 1.5 + \cos\left(\frac{\pi t}{6}\right)$$

where t is the time in hours after midnight, and H(t) is the height in metres above mean sea level.

A **red warning alert** is triggered **when the tide drops below 1 metre**, as this exposes shallow sandbars near the shoreline and makes it dangerous for vessels to operate.

- **a.** State the period of the tide function. (1 mark)
- **b.** Find the first two times after midnight when the tide height is exactly 1.2 metres. Give your answers correct to the nearest minute. (2 marks)

c. Write the general solution for t when H(t) = 1. (2 marks)

VCE Methods ½ Questions? Message +61 440 138 726

	For how more house in a 24 hour moried in the and along action 2 (2 months)	
a.	For how many hours in a 24-hour period is the red alert active? (2 marks)	
		_
		_
		_
		_
ر ا	age for Developal Notes	
2b	ace for Personal Notes	

Question 27 (7 marks)

A child builds a sandcastle at a position C on a beach. The waves wash up and down the beach in such a way that, after t minutes, the distance p metres from C to the edge of the water is given by:

$$p(t) = 2.5\sin(n\pi t) + 4$$

where n is a real constant.

C	`	•

b.	Over a period of 60 minutes, the child counts 48 complete wave cycles. Find the value of n . (2 marks)

c. Later in the day, the distance from the water's edge to the sandcastle is modelled by:

a. Calculate the closest distance the water gets to the sandcastle. (1 mark)

$$p_2(t) = a\sin(3\pi t) + 4$$

If the water just reaches the sandcastle, find the value of a. Hence, find how many times in 20 minutes the water reaches the sandcastle. (3 marks)

VCE Methods ½ Questions? Message +61 440 138 726

pace for Personal Notes		

Question 28 (10 marks)

A lost hiker walks in a circular pattern, trying to find a phone signal. Her position east of the rescue base, in kilometres, is modelled by:

$$x(t) = 3\sin\left(\frac{\pi t}{4}\right)$$

where x(t) is the displacement east of the base, and t is the time in hours after she started walking.

a.	What is the maximum distance east she travels, and how long does it take to reach this point for the first time?
	(2 marks)

b.	Find all values of $t \in [0, 8]$ for which her eastward position is exactly 1.5 km. (2 marks)

c.	The function $x(t)$ can also be expressed in the form $x(t) = x(t)$	3 cos	$\left(\frac{\pi}{t}(t-a)\right)$), where a	∈ [0,8].
C.	The function $\chi(t)$ can also be expressed in the form $\chi(t)$	5 605	(4 (* ")	j, where a	c [0,0].

Find the value of a. (2 marks)

VCE Methods ½ Questions? Message +61 440 138 726

d.	Write the general solution for when she is $1.5 \ km$ east of the base. (2 marks)
e .	The rescue helicopter can only pick her up when she is between 2 km and 3 km east of the base. For how long, during each 8-hour cycle, is she in the pickup zone? Give your answer correct to two decimal places. (2 marks)
Sp	ace for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	Text-Based Support
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

