

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Circular Function II [4.2]

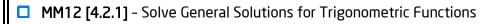
Workbook

Outline:

Particular and General Solutions

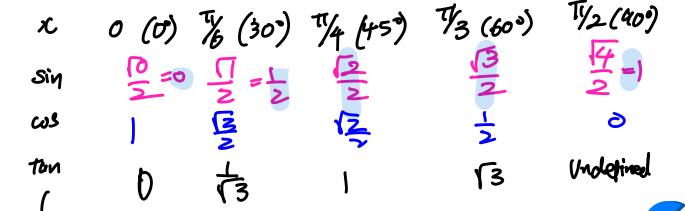
Recap of Particular Solutions

- General Solutions
- Equivalent General Solutions


Pg 2-14

Advanced Trigonometric Algebra

Pg 15-2


- General Solutions with Domain Restrictions
- Hidden Quadratics

Learning Objectives:

MM12 [4.2.2] - Solve Hidden Quadratic Equations for Trigonometric Functions

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

Mock Exams Term 1 Info Sheet

Purpose & Rationale for Mock Exams

- We'll be running mock exams in the Term 1 School Holidays for free for Contour students, and they are compulsory to attend, as it offers you an opportunity to experience an entire exam-length exam under timed and invigilated conditions.
- It is an **extremely high-yield session** which is an excellent reality check for your progress and also helps inform your tutors about your learning.

Subjects Running Mock Exams

- **MM12**: AOS 1, 2, 3
- **MM34**: AOS 1, 2
- **SM12**: AOS 1, 2, 3
- **SM34**: AOS 1, 2, 3
- **BI12:** AOS 1, 2 (Unit 1)
- **BI34**: AOS 1, 2 (Unit 3)
- **CH12:** AOS 1 & Half of AOS 2 (2.1-2.3)
- > CH34 (Normal): AOS 1 & 2.1-2.4
- > CH34 (Flipped): AOS 1 & 2.6-2.9
- **PH12:** AOS 1, 2, 3
- **PH34:** AOS 1, & 2.1
- EN34: Section A & Section B (No Section C)

Subjects Not Running Mock Exams

- **MA07:** (Already run CATs)
- MA08: (Already run CATs)
- MA09: (Already run CATs)
- MA10: (Already run CATs)
- EL34: (New Subject)

How Will Booking Work?

Students will receive a mock exam email with a <u>booking link</u> for each Contour subject they're enrolled in.

There will be one email per subject, sent by <u>Friday 4th April</u>. Be sure to book ASAP to get your preferred session ©

Frequently asked questions and their answers will also be emailed—e.g., what to bring, how exams will run, what to do if you cannot attend, marking and reviewing exams on the LMS.

Website: contoureducation.com.au

Phone: 1800 888 300

Email: hello@contoureducation.com.au

Subject-Specific Notes

- Chemistry: Running two sets of exams
 - Normal Exam: Covers AOS 1 & 2.1-2.4
 - Flipped Exam: Covers AOS 1 & 2.6-2.9
 - **Booking:** Students select either *Normal* or *Flipped* on the booking form. Both exams run at the same time and location. Students sit in the same room but receive different exams.
- English:
 - Mock Exam Duration: 2 hours writing + 10 minutes reading (instead of 3 hours writing + 15 minutes reading)
 - Content Note: Section C (Argument Analysis) is excluded as most students haven't covered it yet. Reading time is reduced since there's no Section C passage.
- Additional Things For Students to Bring:
 - MM12: TI/Casio/Mathematica and Bound Reference for Exam 2 (only VCAA Formula Sheet Provided)
 - MM34: TI/Casio/Mathematica and Bound Reference for Exam 2 (only VCAA Formula Sheet Provided)
 - SM12: TI/Casio/Mathematica and Bound Reference for Exam 2 (only VCAA Formula Sheet Provided)
 - SM34: TI/Casio/Mathematica and Bound Reference for Exam 2 (only VCAA Formula Sheet Provided)
 - ☑ BI12: N/A
 - BI34: N/A
 - CH12: Scientific Calculator (only VCAA Data Book Provided)
 - CH34: Scientific Calculator (only VCAA Data Book Provided)
 - PH12: Scientific Calculator, Cheat Sheet (only VCAA Formula Sheet Provided)
 - PH34: Scientific Calculator, Cheat Sheet (only VCAA Formula Sheet Provided)
 - EN34: Dictionary

Mock Exams Term Info Sheet

Purpose & Rationale for Mock Exams

We run the mock exams for **free** for students and are **compulsory to attend**, as it offers students an opportunity to experience an entire exam-length exam under timed and invigilated conditions. It is an **extremely high-yield** session which is an excellent reality check for their progress, and also helps inform tutors about their learning.

Campuses & Days Run, Subjects

Days

Normal Classes will still be run during mock exams (no rescheduled classes).

Exam Dates: Term 1 Holidays

Week 1: Mon 7/04 - Fri 11/04Week 2: Mon 14/04 only

Exceptions: No CBD exams on Wednesday & limited spots at Glen due to regular 1:45 PM - 3:45 PM classes. Less availabilities on Thursday due to regular 1:45 PM - 3:45 PM

Point Cook Tuesday Only, Narre Warren Thursday Only

Subjects Running Mock Exams

MM12: AOS 1, 2, 3

MM34: AOS 1, 2

• **SM12:** AOS 1, 2, 3

• **SM34:** AOS 1, 2, 3

• **BI12:** AOS 1, 2 (Unit 1)

• **BI34:** AOS 1, 2 (Unit 3)

CH12: AOS 1 & Half of AOS 2 (2.1-2.3)

CH34 (Normal): AOS 1 & 2.1-2.4

• CH34 (Flipped): AOS 1 & 2.6-2.9

PH12: AOS 1, 2, 3

• **PH34:** AOS 1, & 2.1

• EN34: Section A & Section B (No Section C)

Campuses

Glen Waverley: 07/04 - 11/04 (Mon - Fri) & 14/04 (Mon)

CBD: 07/04 - 08/04 & 10 - 11/04 (Mon, Tue, Thu, Fri) & 14/04 (Mon)

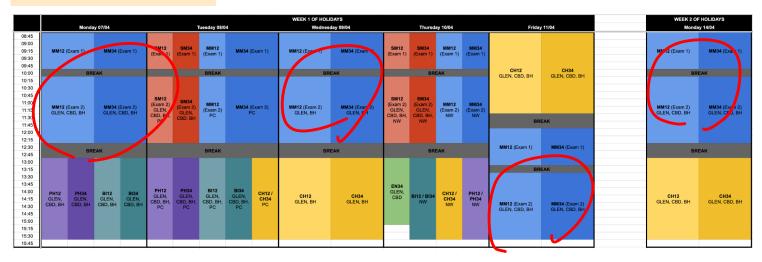
Box Hill: 07/04 - 11/04 (Mon - Fri) & 14/04 (Mon)

Point Cook: 08/04 (Tue) - MM, SM12, CH, BI, PH34

Narre Warren: 10/04 (Thu) - MM, SM, CH, BI, PH

Subjects NOT Running Mock Exams

MA07: (Already run CATs)


MA08: (Already run CATs)

MA09: (Already run CATs)

MA10: (Already run CATs)

• **EL34:** (New Subject)

Exam Schedule, Subject Specific Notes

Link to Spreadsheet Here

Subject Specific Notes

Chemistry: Running two sets of exams

Normal Exam: Covers AOS 1 & 2.1–2.4
 Flipped Exam: Covers AOS 1 & 2.6–2.9

Booking: Students select either *Normal* or *Flipped* on the booking form. Both exams run at the same time and location. Students sit in the same room but receive different exams.

English:

Mock Exam Duration: 2 hours writing + 10 minutes reading (instead of 3 hours writing + 15 minutes reading)

Content Note: Section C (Argument Analysis) is excluded as most students haven't covered it yet. Reading time is reduced since there's no Section C passage.

Additional Things For Students to Bring:

- MM12: TI/Casio/Mathematica and Bound Reference for Exam 2 (only VCAA Formula Sheet Provided)
- MM34: TI/Casio/Mathematica and Bound Reference for Exam 2 (only VCAA Formula Sheet Provided)
- SM12: TI/Casio/Mathematica and Bound Reference for Exam 2 (only VCAA Formula Sheet Provided)
- SM34: TI/Casio/Mathematica and Bound Reference for Exam 2 (only VCAA Formula Sheet Provided)
- **BI12:** N/A
- **BI34:** N/A
- CH12: Scientific Calculator (only VCAA Data Book Provided)
- **CH34:** Scientific Calculator (only VCAA Data Book Provided)
- PH12: Scientific Calculator, Cheat Sheet (only VCAA Formula Sheet Provided)
- PH34: Scientific Calculator, Cheat Sheet (only VCAA Formula Sheet Provided)
- EN34: Dictionary

Frequently Asked Questions (FAQ)

How Exams Rup & What to Bring

What to Bring: Pens, pencil, eraser, ruler, calculator (if permitted), form of ID (to verify identity)

Materials Provided on Day: All other materials (exam paper, MCQ sheet, VCAA formula/data sheets) will be provided.

Arrival Time: Arrive at least 15 minutes before the exam starts.

Exam Conditions: Exams are invigilated and run under strict exam conditions.

Exam Quality: Exams are carefully constructed to cover key learning objectives and are thoroughly proofread for high quality.

Student Attendance for Mock Exams

Mock Exam Eligibility: Students can only sit mock exams for subjects they are enrolled in at Contour Education (e.g., enrolled in Chemistry only = Chemistry exam only).

Number of Mock Exams Run: Students only need to sit **one** exam per subject - the different times are all the same exam - just different availability.

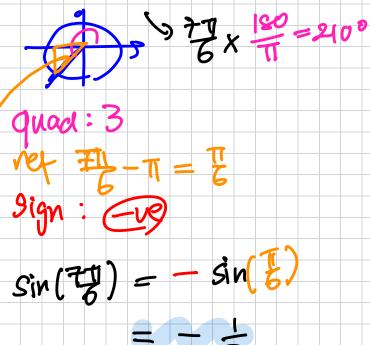
Attendance: Attendance is **compulsory** unless students are on holiday or have valid reasons.

Student Reschedules

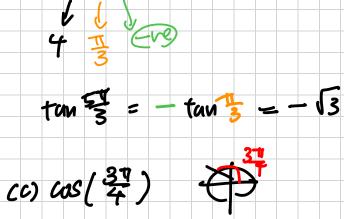
Reschedules: If a student can't attend, an online copy and solutions will be available one week later on the LMS. Their exams will not be marked by us.

Walkthrough Videos: A video walkthrough will be uploaded to the LMS, explaining marking criteria and solutions.

Marking & Reviewing Exam on LMS


Marking & Results: Exams are scanned, marked, and returned as PDFs via email—usually within 2 weeks.

Walkthrough Videos: A video walkthrough will be uploaded to the LMS, explaining marking criteria and solutions.


The Exact Values Table

x	0 (0°)	$\frac{\pi}{6}$ (30°)	$\frac{\pi}{4}~(45^{\rm o})$	$\frac{\pi}{3}~(60^{\rm o})$	$\frac{\pi}{2}~(90^{\rm o})$	
sin(x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
tan(x)	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Undefined	

W	QΥ	m	_	U	P		_/	· bi	9		Q.F	5			
C.	a)		Siı	$oldsymbol{\wedge}$	/ :	7 Y	V	u	w()	eth	וסעו	19l	1	-	
				⊘	<u>ر</u>	0	7								
				7	7			1	7	y ,		\$0	=	24	O

$$(cb)$$
 tan $(\frac{51}{3})$

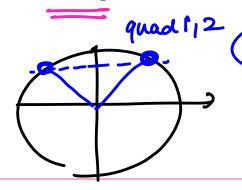
$$\omega s = -\omega s = -\varepsilon$$

$$= -\varepsilon$$

Section A: Particular and General Solutions

Sub-Section: Recap of Particular Solutions

Active Recall: Period of trigonometric function


Period of sin(x) and cos(nx) functions =

Period of tan(\mathbf{x}) functions = \mathbf{x}

where n = coefficient of x and n > 0

<u>Discussion:</u> How often would the solution to $\sin(x) = \frac{1}{2}$ repeat?

Active Recall: Particular Solutions

?

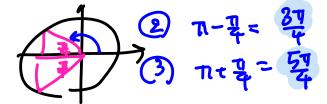
- Solving trigonometric equations for finite solutions.
- Steps
 - 1. Make the trigonometric function the subject.
 - 2. Find the necessary angle for one period.
 - 3. Solve for x by equating the necessary angles to the <u>inside</u> of the trigonometric functions. (regrange)
 - 4. Add and subtract the <u>period</u> to find all other solutions in the domain.

ONTOUREDUCATION one VCE Methods ½ Questions? Message +61 440 138 726

Question 1 Walkthrough.

QR angle perioel

Solve the following equation for x over the domain specified:


$$2\cos(2x) + \sqrt{2} = 0$$
 for $x \in [0, 2\pi]$

$$\omega \varepsilon \left(\frac{2\pi}{2} \right) = \frac{-62}{2}$$

ha)

-ve: quad 2 4 3

angle one cycle

Question 2

Solve the following equations for x over the domains specified:

a.
$$\sin(3x) = -1$$
 for $x \in [-\pi, \pi]$.

$$In[3]:= Reduce[Sin[3x] == -1 \&\& -Pi \le x \le Pi]$$

Out[3]=
$$x = -\frac{5\pi}{6} | x = -\frac{\pi}{6} | x = \frac{\pi}{2}$$

b.
$$2 \sin \left(2x - \frac{\pi}{2} \right) - 1 = 0 \text{ for } x \in [0, 2\pi].$$

$$Sin(2x-\frac{1}{2})=\frac{1}{2}$$

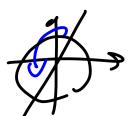
ret angle

$$\frac{910003}{\text{congle}} = 71 + \text{vet}$$

Question 3 Walkthrough.

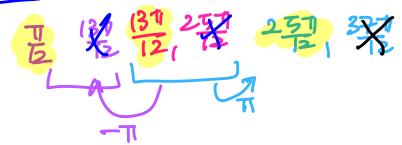
Solve the following equations for x over the domains specified:

$$3\tan(2x-\pi) - 3\sqrt{3} = 0$$
 for $x \in [0, 2\pi]$


In[5]:= Solve [3 Tan [2 x - Pi] - 3
$$\sqrt{3}$$
 == 0 && 0 \le x \le 2 Pi]

Out[5]=
$$\left\{ \left\{ x \to \frac{\pi}{6} \right\}, \left\{ x \to \frac{2\pi}{3} \right\}, \left\{ x \to \frac{7\pi}{6} \right\}, \left\{ x \to \frac{5\pi}{3} \right\} \right\}$$

<u>Discussion:</u> Why do we need to find one angle only for tangents?


Question 4

Solve the following equation for x over the domain specified:

$$\sqrt{3}\tan\left(x - \frac{\pi}{4}\right) + 1 = 0 \text{ for } x \in (0, 3\pi)$$

$$tan(x-4)=-\frac{1}{3}$$

$$quad: 2.4$$

Sub-Section: General Solutions

<u>Discussion:</u> How many solutions would there be for $x \in R$?

0

General Solutions

- Finding **infinite** solutions to a trigonometric equation.
- Steps
 - 1. Make the trigonometric function the subject.
 - **2.** Find the necessary angle for one period.
 - **3.** Solve for *x* by equating the necessary angles to the inside of the trigonometric functions.
 - **4.** Add $Period \cdot n$ where $n \in Z$.

Question 5 Walkthrough.

Find the general solutions to the following equations:

$$2 \sin \left(2x + \frac{\pi}{2}\right) - 1 = 0$$

$$sin(2x+\frac{\pi}{2})=\frac{1}{2}$$

$$2\chi = -\frac{\pi}{3} | \frac{\pi}{3}$$

period = 25 n

Active Recall: General Solutions

- Steps
 - 1. Make the trigonometric function the subject.
 - 2. Find the necessary _____ for one period.
 - **3.** Solve for *x* by equating the necessary angles to the inside of the trigonometric functions.
 - **4.** Add _____ where $n \in Z$.

Question 6

Find the general solutions to the following equations:

$$\mathbf{a.} \quad -2\sin\left(3x + \frac{\pi}{4}\right) = \sqrt{2}$$

angles

b.
$$2\cos\left(2x + \frac{\pi}{6}\right) = 1$$

$$P: \frac{\pi}{3}$$

Period

$$\chi = \frac{1}{2} + \pi n \mid n \in \mathbb{Z}$$
 $\chi = \frac{37}{4} + \pi n \mid n \in \mathbb{Z}$

c.
$$4\sin\left(3x - \frac{\pi}{6}\right) = 2$$

$$gin(3x-7) = \frac{1}{2}$$

Question 7 Walkthrough.

Find the general solutions to the following equations:

$$\tan\left(\frac{1}{2}x - \pi\right) - \frac{1}{\sqrt{3}} = 0$$

In[14]:= Solve
$$\left[\text{Tan} \left[\frac{1}{2} \times - \text{Pi} \right] - \frac{1}{\sqrt{3}} = 0 \right] // \text{ Expand}$$
Out[14]:= $\left\{ \left\{ x \rightarrow \left[\frac{\pi}{3} + 2 \pi c_1 \text{ if } c_1 \in \mathbb{Z} \right] \right\} \right\}$

Out[14]=
$$\left\{ \left\{ \mathbf{x} \rightarrow \left[\frac{\pi}{3} + 2 \pi \mathbf{c_1} \text{ if } \mathbf{c_1} \in \mathbb{Z} \right] \right\} \right\}$$

NOTE: We only need to find one angle for tangents!

Question 8

Find the general solutions to the following equations:

$$\mathbf{a.} \quad \sqrt{3} - \tan\left(2\left(x + \frac{\pi}{3}\right)\right) = 0$$

In[15]:= Solve
$$\left[\sqrt{3} - \text{Tan} \left[2 \left(x + \text{Pi} / 3 \right) \right] == 0 \right] // \text{ Expand}$$
Out[15]= $\left\{ \left\{ x \rightarrow \left[-\frac{\pi}{6} + \frac{\pi c_1}{2} \right] \text{ if } c_1 \in \mathbb{Z} \right\} \right\}$

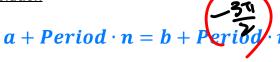
b.
$$2 \tan \left(2x - \frac{\pi}{4}\right) = 2$$

In[17]:= Solve[2 Tan [2 x - Pi / 4] == 2] // Expand Out[17]=
$$\left\{\left\{x \rightarrow \boxed{\frac{\pi}{4} - \frac{\pi \, \mathbb{C}_1}{2} \text{ if } \mathbb{C}_1 \in \mathbb{Z}}\right\}\right\}$$

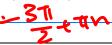
c.
$$\sqrt{3} \tan \left(3x - \frac{\pi}{6}\right) = 1$$

In[19]:= Solve
$$\left[\sqrt{3} \text{ Tan} \left[3 \times - \text{Pi} / 6 \right] == 1 \right] // \text{ Expand}$$
Out[19]= $\left\{ \left\{ x \rightarrow \left[\frac{\pi}{9} - \frac{\pi \, \mathbb{C}_1}{3} \right] \text{ if } \mathbb{C}_1 \in \mathbb{Z} \right\} \right\}$

Sub-Section: Equivalent General Solutions



Discussion: Is 3 + 6k, $k \in \mathbb{Z}$ the same as 9 + 6k, $k \in \mathbb{Z}$?



-2-9-3391521... 901090 01090 6-6-6-6-6-6 -9-339 (52127 -0-339 (52127 -6-6-66627 TIN

Multiple Forms of a General Solution

If the difference of a and b is a multiple of period.

Question 9 Walkthrough.

Which one of the following is **not** the same as the rest

A.
$$(\frac{5\pi}{6} + \frac{\pi}{3})^n n (\frac{37}{6})^n - \frac{\pi}{6} \frac{\pi}{6} \frac{37}{6} \frac{57}{6} \frac{77}{6} \frac{97}{6} \frac{97}{6}$$

B.
$$\frac{\pi}{2} + \frac{\pi}{3}n, n \in \mathbb{Z}$$
C. $-\frac{\pi}{2} + \frac{\pi}{3}n, n \in \mathbb{Z}$

$$\mathbf{D.} \ \frac{5\pi}{3} + \frac{\pi}{3}n, n \in \mathbb{Z}$$

NOTE: Very important for multiple choice questions in VCAA exams!

Question 10

Which one of the following is **not** the same as the rest?

B.
$$\frac{5\pi}{8} + \frac{\pi}{4}n, n \in Z$$

$$C. \quad -\frac{\pi}{3} + \frac{\pi}{4}n, n \in \mathbb{Z}$$

$$\mathbf{D.} \ \frac{7\pi}{6} + \frac{\pi}{4}n, n \in \mathcal{A}$$

Section B: Advanced Trigonometric Algebra

Sub-Section: General Solutions with Domain Restrictions

<u>Discussion:</u> What is the main difference between the general and particular solution questions?

Sos SO

e finite

Question 11 Walkthrough.

Solve the following trigonometric equation:

$$\sin\left(2x + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \text{ for } x \ge 0$$

Quad: 1 \$ 2

Pet: 罪

NEZUSUS

General Solution with Domain Restriction

$$E.G \operatorname{trig}\left(2x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \operatorname{for} x \geq 0$$

- We can have infinite solutions for a restricted domain.
- \blacktriangleright The value of n is also restricted.

Space for	r Personal	Notes
-----------	------------	-------

period = II = II

スーをけれい

Your Turn!

Question 12

Solve the following trigonometric equations:

a.
$$\cos\left(2x - \frac{\pi}{6}\right) = \frac{1}{2} \text{ for } x < 0.$$

b.
$$2\sin\left(3x + \frac{\pi}{3}\right) = \sqrt{3} \text{ for } x > 0.$$

CONTOUREDUCATION

c. $\tan(2x - \frac{\pi}{4}) + \sqrt{3} = 0$ for $x \le 0$.

- Q:2
- R: \$\frac{17}{3}

$$2x - \frac{7}{4} = \pi - \frac{\pi}{3}$$

NOTE: This was assessed in a VCAA exam!

Sub-Section: Hidden Quadratics

Let's have a look at hidden quadratics for circular functions!

Hidden Quadratics

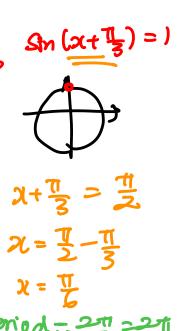
$$af(x)^2 + bf(x) + c = 0$$
Let $A = f(x)$

Question 13 Walkthrough.

Solve the following for the values of x:

Solve the following for the values of x:

$$\sin^{2}\left(x + \frac{\pi}{3}\right) + \sin\left(x + \frac{\pi}{3}\right) = 2,0 \quad x \leq 3\pi$$


$$A = \sin\left(x + \frac{\pi}{3}\right)$$

$$A^{2} + A = 2$$

$$A^{2} + A - 2 = 0$$

$$(A+2)(A-1) = 0$$

$$A = -2$$

NOTE: \sin and \cos are between -1 and 1.

Question 14

Solve the following for the values of x:

a.
$$2\cos^2(2x) + 5\cos(2x) = 3, 0 \le x \le 2\pi$$

$$\begin{array}{c}
A = \cos(2\pi) \\
> 2A^2 + 5A = 3 \\
2A^2 + 5A - 3 = 0 \\
(2A - 1)(A + 3) = 0 \\
A = \frac{1}{2} \times 3 \\
\cos(2\pi) = \frac{1}{3}
\end{array}$$

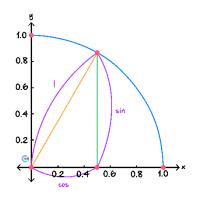
$$(08030) = \frac{1}{2}$$
 $Q: 194$
 $P: \frac{\pi}{3}$
 $2x = \frac{\pi}{3} = 2\pi - \frac{\pi}{3}$

b.
$$4 \tan^2 \left(x - \frac{\pi}{4} \right) - 3 \tan^2 \left(x - \frac{\pi}{4} \right) = 1, -\pi \le x \le \pi$$

$$A = \text{tcm} \left(x - \frac{\pi}{4} \right)$$

$$4A^{2}-3A = 1$$

$$4A^{2}-3A-1=0$$


$$(4A+1)(A-1)=0$$

$$A=-\frac{1}{4}$$

REMINDER: Pythagorean Identity

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

Can be used for finding one trigonometry function by using the other.

Question 15 Extension.

Find the general solution to the following equation:

$$-4\sin^2(3x) + 6\cos(3x) = 0$$

$$ln[46]$$
:= Solve[-4 Sin[3x]^2+6 Cos[3x] == 0, x, Reals] // Expand

$$\text{Out[46]= } \left\{ \left\{ x \rightarrow \boxed{-\frac{\pi}{9} + \frac{2 \pi \, c_1}{3} \; \text{ if } c_1 \in \mathbb{Z}} \right\} \text{, } \left\{ x \rightarrow \boxed{\frac{\pi}{9} + \frac{2 \pi \, c_1}{3} \; \text{ if } c_1 \in \mathbb{Z}} \right\} \right\}$$

TIP: $\sin^2(\theta) = 1 - \cos^2(\theta)$

Contour Check

<u>Learning Objective</u>: [4.2.1] - Solve general solutions for trigonometric functions						
Key Takeaways						
□ General Solutions						
O Finding solutions to a trigonometric equation.						
O Steps						
1. Make the trigonometric function the subject.						
2. Find the necessary for one period.						
3. Solve for x by equating the necessary angles to the of the trigonometric functions.						
4. Add where $n \in Z$.						
$igcolon \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$						
Multiple Forms of a General Solution						
$a + Period \cdot n = b + Period \cdot n$						
If the $\underline{\hspace{1cm}}$ of a and b is a multiple of period.						

□ <u>Learning Objective</u>: [4.2.2] – Solve hidden quadratic equations for trigonometric functions

Key Takeaways

Hidden Quadratics

$$af(x)^2 + bf(x) + c = 0$$

$$\mathsf{Let}\, A = \frac{\mathbf{f}(\mathbf{x})}{\mathbf{f}(\mathbf{x})}$$

• May need to use the Pythagorean identity $\sin^2(\theta) + \cos^2(\theta) =$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	Text-Based Support
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

