

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Circular Function II [4.2]

Workbook

Outline:

- **General Solutions**
- **Equivalent General Solutions**
- **Particular and General Solutions** Pg 2-14 Recap of Particular Solutions
- Advanced Trigonometric Algebra
- General Solutions with Domain Restrictions
- Hidden Quadratics

Learning Objectives:

- MM12 [4.2.1] Solve General Solutions for Trigonometric Functions
- MM12 [4.2.2] Solve Hidden Quadratic Equations for Trigonometric Functions

Section A: Particular and General Solutions

Sub-Section: Recap of Particular Solutions

Active Recall: Period of trigonometric function

Period of sin(nx) and cos(nx) functions = _____

Period of tan(nx) functions = _____

where n = coefficient of x and n > 0

<u>Discussion</u>: How often would the solution to $\sin(x) = \frac{1}{2}$ repeat?

Active Recall: Particular Solutions

- Solving trigonometric equations for finite solutions.
- Steps
 - 1. Make the trigonometric function the subject.
 - 2. Find the necessary ______ for one period.
 - **3.** Solve for *x* by equating the necessary angles to the _____ of the trigonometric functions.
 - **4.** Add and subtract the ______ to find all other solutions in the domain.

Question 1	Walkthrough.
-------------------	--------------

Solve the following equation for x over the domain specified:

$$2\cos(2x) + \sqrt{2} = 0$$
 for $x \in [0, 2\pi]$

Question 2

Solve the following equations for x over the domains specified:

a. $\sin(3x) = -1$ for $x \in [-\pi, \pi]$.

b. $2\sin\left(2x - \frac{\pi}{2}\right) - 1 = 0 \text{ for } x \in [0, 2\pi].$

Question 3 Walkthrough.

Solve the following equations for x over the domains specified:

$$3\tan(2x-\pi) - 3\sqrt{3} = 0$$
 for $x \in [0, 2\pi]$

<u>Discussion:</u> Why do we need to find one angle only for tangents?

Question 4

Solve the following equation for x over the domain specified:

$$\sqrt{3}\tan\left(x - \frac{\pi}{4}\right) + 1 = 0 \text{ for } x \in (0, 3\pi)$$

Sub-Section: General Solutions

<u>Discussion:</u> How many solutions would there be for $x \in R$?

General Solutions

- Finding _____ solutions to a trigonometric equation.
- **Steps**
 - 1. Make the trigonometric function the subject.
 - **2.** Find the necessary angle for one period.
 - **3.** Solve for *x* by equating the necessary angles to the inside of the trigonometric functions.
 - **4.** Add $Period \cdot n$ where $n \in Z$.

Question 5 Walkthrough.

Find the general solutions to the following equations:

$$2\sin\left(2x + \frac{\pi}{2}\right) - 1 = 0$$

Active Recall: General Solutions

- Steps
 - 1. Make the trigonometric function the subject.
 - **2.** Find the necessary _____ for one period.
 - **3.** Solve for x by equating the necessary angles to the inside of the trigonometric functions.
 - **4.** Add _____ where $n \in Z$.

Question 6

Find the general solutions to the following equations:

$$\mathbf{a.} \quad -2\sin\left(3x + \frac{\pi}{4}\right) = \sqrt{2}$$

$$\mathbf{b.} \quad 2\cos\left(2x + \frac{\pi}{6}\right) = 1$$

 $\mathbf{c.} \quad 4\sin\left(3x - \frac{\pi}{6}\right) = 2$

Question 7 Walkthrough.

Find the general solutions to the following equations:

$$\tan\left(\frac{1}{2}x - \pi\right) - \frac{1}{\sqrt{3}} = 0$$

NOTE: We only need to find one angle for tangents!

Question 8

Find the general solutions to the following equations:

$$\mathbf{a.} \quad \sqrt{3} - \tan\left(2\left(x + \frac{\pi}{3}\right)\right) = 0$$

$$\mathbf{b.} \quad 2\tan\left(2x - \frac{\pi}{4}\right) = 2$$

$$\mathbf{c.} \quad \sqrt{3}\tan\left(3x - \frac{\pi}{6}\right) = 1$$

Sub-Section: Equivalent General Solutions

Discussion: Is 3 + 6k, $k \in \mathbb{Z}$ the same as 9 + 6k, $k \in \mathbb{Z}$?

Multiple Forms of a General Solution

$$a + Period \cdot n = b + Period \cdot n$$

If the difference of a and b is a multiple of period.

Question 9 Walkthrough.

Which one of the following is **not** the same as the rest?

$$\mathbf{A.} \quad \frac{5\pi}{6} + \frac{\pi}{3}n, n \in \mathbb{Z}$$

B.
$$\frac{\pi}{2} + \frac{\pi}{3} n, n \in Z$$

$$\mathbf{C.} \quad -\frac{\pi}{2} + \frac{\pi}{3}n, n \in \mathbb{Z}$$

D.
$$\frac{5\pi}{3} + \frac{\pi}{3}n, n \in Z$$

NOTE: Very important for multiple choice questions in VCAA exams!

Question 10

Which one of the following is **not** the same as the rest?

$$\mathbf{A.} \quad \frac{2\pi}{3} + \frac{\pi}{4}n, n \in \mathbb{Z}$$

B.
$$\frac{5\pi}{8} + \frac{\pi}{4}n, n \in Z$$

$$\mathbf{C.} \quad -\frac{\pi}{3} + \frac{\pi}{4}n, n \in \mathbb{Z}$$

D.
$$\frac{7\pi}{6} + \frac{\pi}{4}n, n \in Z$$

Section B: Advanced Trigonometric Algebra

Sub-Section: General Solutions with Domain Restrictions

Discussion: What is the main difference between the general and particular solution questions?

200

Question 11 Walkthrough.

Solve the following trigonometric equation:

$$\sin\left(2x + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \text{ for } x \ge 0$$

General Solution with Domain Restriction

$$E.G \operatorname{trig}\left(2x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\operatorname{for} x\geq 0$$

- We can have infinite solutions for a restricted domain.
- \blacktriangleright The value of n is also restricted.

Space for P	ersonal N	lotes
-------------	-----------	-------

Your Turn!

Question 12

Solve the following trigonometric equations:

a.
$$\cos\left(2x - \frac{\pi}{6}\right) = \frac{1}{2} \text{ for } x < 0.$$

b.
$$2\sin\left(3x + \frac{\pi}{3}\right) = \sqrt{3} \text{ for } x > 0.$$

c. $\tan(2x - \frac{\pi}{4}) + \sqrt{3} = 0 \text{ for } x \le 0.$

NOTE: This was assessed in a VCAA exam!

Sub-Section: Hidden Quadratics

Let's have a look at hidden quadratics for circular functions!

Hidden Quadratics

$$af(x)^2 + bf(x) + c = 0$$

Question 13 Walkthrough.

Solve the following for the values of x:

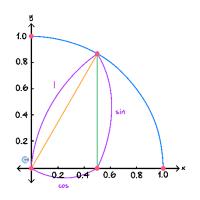
$$\sin^2\left(x + \frac{\pi}{3}\right) + \sin\left(x + \frac{\pi}{3}\right) = 2, 0 \le x \le 3\pi$$

Let A = f(x)

NOTE: \sin and \cos are between -1 and 1.

Question 14

Solve the following for the values of x:


a.
$$2\cos^2(2x) + 5\cos(2x) = 3, 0 \le x \le 2\pi$$

b.
$$4 \tan^2 \left(x - \frac{\pi}{4} \right) - 3 \tan^2 \left(x - \frac{\pi}{4} \right) = 1, -\pi \le x \le \pi$$

REMINDER: Pythagorean Identity

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

Can be used for finding one trigonometry function by using the other.

Question 15 Extension.

Find the general solution to the following equation:

$$-4\sin^2(3x) + 6\cos(3x) = 0$$

TIP: $\sin^2(\theta) = 1 - \cos^2(\theta)$

Contour Check

Learning Objective: [4.2.1] - Solve general solutions for trigonometric functions		
Key Takeaways		
□ General Solutions		
Finding solutions to a trigonometric equation.		
Steps		
1. Make the trigonometric function the subject.		
2. Find the necessary for one period.		
3. Solve for x by equating the necessary angles to the of the trigonometric functions.		
4. Add where $n \in Z$.		
ullet If there is a domain restriction, only step 4 changes, and we need to be more careful in specifying what values n can take.		
□ Multiple Forms of a General Solution		
$a + Period \cdot n = b + Period \cdot n$		
If the of a and b is a multiple of period.		

□ <u>Learning Objective</u>: [4.2.2] – Solve hidden quadratic equations for trigonometric functions

Key Takeaways

Hidden Quadratics

$$af(x)^2 + bf(x) + c = 0$$

Let
$$A =$$

O May need to use the Pythagorean identity $\sin^2(\theta) + \cos^2(\theta) =$ _____

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	Text-Based Support
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

