

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Circular Function II [4.2]

Test Solutions

23 Marks. 1 Minute Reading. 23 Minutes Writing.

Results:

Test Questions	/23	

Section A: Test Questions (23 Marks)

Question 1 (3 marks)

State if the following statements are **true** or **false**.

Statement		True	False
a.	Trigonometric equations without domain restriction have infinite solutions.	✓	
b.	For tangent trigonometric equations, we can always write the answer using one general solution.	✓	
c.	For sine trigonometric equations, we can never write the answer using only one general solution.		Y
d.	The equation $\cos(x) = -\frac{1}{2}$ has the general solution $x = \frac{2\pi}{3} \pm 2n\pi$.		✓
e.	The equation $sin(x) - 2cos^2(x) + 1 = 0$ can be written as $2sin^2(x) + sin(x) - 1 = 0$.	✓	
f.	The general solution of the equation $\tan(2x) = 1$, where $x > 0$ is $x = \frac{\pi}{8} + \frac{n\pi}{2}$ for $n \in Z \cup \{0\}$.	✓	

Question 2 (5 marks)

Solve the following equations for x, over the stated domain.

a.
$$\tan(3x - \pi) = \sqrt{3}$$
, for $x \in [0, \pi]$. (2 marks)

In[14]:= Solve [Tan[3x - Pi] ==
$$\sqrt{3}$$
 && $0 \le x \le Pi$]
Out[14]= $\left\{\left\{x \to \frac{\pi}{9}\right\}, \left\{x \to \frac{4\pi}{9}\right\}, \left\{x \to \frac{7\pi}{9}\right\}\right\}$

b.
$$2\cos\left(2x - \frac{\pi}{4}\right) - 1 = 0$$
, for $x \in [0, 2\pi]$. (3 marks)

Question 3 (6 marks)

Solve the following equations for x:

a.
$$2\sin\left(2x + \frac{\pi}{3}\right) + 1 = 0.$$

$$In[12]:= Solve[2Sin[2x+Pi/3]+1==0] // Expand$$

Out[12]=
$$\left\{\left\{\mathbf{x} \rightarrow \boxed{\frac{5\,\pi}{12} - \pi\,\mathbf{c_1} \text{ if } \mathbf{c_1} \in \mathbf{Z}}\right\}, \left\{\mathbf{x} \rightarrow \boxed{-\frac{\pi}{4} - \pi\,\mathbf{c_1} \text{ if } \mathbf{c_1} \in \mathbf{Z}}\right\}\right\}$$

b. $\sqrt{3} \tan \left(3x - \frac{\pi}{6} \right) + 3 = 0.$

$$In[16] = Solve \left[\sqrt{3} Tan[3x - Pi/6] + 3 = 0 \right] // Expand$$

Out[16]=
$$\left\{ \left\{ \mathbf{x} \rightarrow \boxed{-\frac{\pi}{18} - \frac{\pi \, \mathbf{c_1}}{3} \text{ if } \mathbf{c_1} \in \mathbb{Z}} \right\} \right\}$$

Question 4 (3 marks)

Solve the following equation for x:

$$2\cos\left(2x - \frac{\pi}{4}\right) = 1, \text{ for } x \le 0$$

Out[18]=
$$\left\{\left\{\mathbf{x} \rightarrow \boxed{-\frac{\pi}{24} - \pi \, \mathbf{c_1} \text{ if } \mathbf{c_1} \in \mathbb{Z} \, \&\& \, \mathbf{c_1} \geq \mathbf{0}\right\}\right\}$$

$$\left\{x \to \boxed{\frac{7\,\pi}{24} - \pi\,\mathbb{c}_1 \ \text{if} \ \mathbb{c}_1 \in \mathbb{Z} \ \&\& \ \mathbb{c}_1 \geq 1}\right\}\right\}$$

Question 5 (6 marks)

Consider the function:

$$f(x) = 2\sin^2(2x) - \sin(2x) - 1$$

a. Solve f(x) = 0 for $x \in [0, \pi]$. (4 marks).

$$In[20]:= Solve[2Sin[2x]^2 - Sin[2x] - 1 == 0 && 0 \le x \le Pi]$$

Out[20]=
$$\left\{ \left\{ x \to \frac{\pi}{4} \right\}, \left\{ x \to \frac{\pi}{4} \right\}, \left\{ x \to \frac{7\pi}{12} \right\}, \left\{ x \to \frac{11\pi}{12} \right\} \right\}$$

b. Hence, find a general solution to f(x) = 0. (2 marks)

$$x = \frac{\pi}{4} + n\pi$$
, or $x = \frac{7\pi}{12} + n\pi$ or $x = \frac{11\pi}{12} + n\pi$, where $n \in Z$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

