

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

# VCE Mathematical Methods ½ Circular Function II [4.2] Test

23 Marks. 1 Minute Reading. 23 Minutes Writing.

#### Results:

| <b>.</b>       | 422 |  |
|----------------|-----|--|
| Test Questions | /23 |  |





### Section A: Test Questions (23 Marks)

**Question 1** (3 marks)

State if the following statements are **true** or **false**.

|    | Statement                                                                                                                              | True | False |
|----|----------------------------------------------------------------------------------------------------------------------------------------|------|-------|
| a. | Trigonometric equations without domain restriction have infinite solutions.                                                            |      |       |
| b. | For tangent trigonometric equations, we can always write the answer using one general solution.                                        |      |       |
| c. | For sine trigonometric equations, we can never write the answer using only one general solution.                                       |      |       |
| d. | The equation $\cos(x) = -\frac{1}{2}$ has the general solution $x = \frac{2\pi}{3} \pm 2n\pi$ .                                        |      |       |
| e. | The equation $sin(x) - 2cos^2(x) + 1 = 0$ can be written as $2sin^2(x) + sin(x) - 1 = 0$ .                                             |      |       |
| f. | The general solution of the equation $\tan(2x) = 1$ , where $x > 0$ is $x = \frac{\pi}{8} + \frac{n\pi}{2}$ for $n \in Z \cup \{0\}$ . |      |       |

Space for Personal Notes

Question 2 (5 marks)

Solve the following equations for x, over the stated domain.

**a.**  $\tan(3x - \pi) = \sqrt{3}$ , for  $x \in [0, \pi]$ . (2 marks)

\_\_\_\_\_

**b.**  $2\cos\left(2x - \frac{\pi}{4}\right) - 1 = 0$ , for  $x \in [0, 2\pi]$ . (3 marks)

Space for Personal Notes



#### VCE Methods ½ Questions? Message +61 440 138 726

Question 3 (6 marks)

Solve the following equations for x:

**a.**  $2\sin\left(2x + \frac{\pi}{3}\right) + 1 = 0.$ 

 $\mathbf{b.} \quad \sqrt{3} \tan \left(3x - \frac{\pi}{6}\right) + 3 = 0.$ 



VCE Methods ½ Questions? Message +61 440 138 726

| <b>Question 4</b> (3 marks)  Solve the following equation for $x$ : |             |  |  |
|---------------------------------------------------------------------|-------------|--|--|
|                                                                     |             |  |  |
|                                                                     | -<br>-      |  |  |
|                                                                     |             |  |  |
|                                                                     |             |  |  |
|                                                                     |             |  |  |
|                                                                     |             |  |  |
|                                                                     |             |  |  |
|                                                                     |             |  |  |
|                                                                     |             |  |  |
|                                                                     |             |  |  |
|                                                                     |             |  |  |
|                                                                     | <del></del> |  |  |
|                                                                     |             |  |  |
|                                                                     |             |  |  |
|                                                                     |             |  |  |
| Space for Personal Notes                                            |             |  |  |
|                                                                     |             |  |  |
|                                                                     |             |  |  |
|                                                                     |             |  |  |
|                                                                     |             |  |  |

| Question 5 (6 marks)                                               |  |  |  |  |
|--------------------------------------------------------------------|--|--|--|--|
| Consider the function:                                             |  |  |  |  |
| $f(x) = 2\sin^2(2x) - \sin(2x) - 1$                                |  |  |  |  |
| <b>a.</b> Solve $f(x) = 0$ for $x \in [0, \pi]$ . (4 marks).       |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |
| <b>b.</b> Hence, find a general solution to $f(x) = 0$ . (2 marks) |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |
|                                                                    |  |  |  |  |

**Space for Personal Notes** 



Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

#### VCE Mathematical Methods ½

## Free 1-on-1 Support

#### Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

| 1-on-1 Video Consults                                                                                                                                             | <u>Text-Based Support</u>                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| <ul> <li>Book via bit.ly/contour-methods-consult-2025 (or QR code below).</li> <li>One active booking at a time (must attend before booking the next).</li> </ul> | <ul> <li>Message +61 440 138 726 with questions.</li> <li>Save the contact as "Contour Methods".</li> </ul> |

Booking Link for Consults
bit.ly/contour-methods-consult-2025



Number for Text-Based Support +61 440 138 726

