

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Circular Functions I [4.1]

Workbook

Outline:

Introduction to Circular Functions

Pg 2-13

→ Radians and Degrees

- Unit Circle
- Period
- Pythagorean Identities
- Exact Values

Symmetry Pg 14-35

Supplementary RelationshipsComplementary Relationships

Solving Trigonometric Equations

Particular Solutions

Pg 36-42

Learning Objectives:

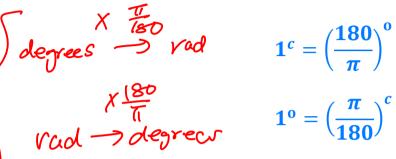
- MM12 [4.1.1] Evaluate Exact Values for Sine, Cosine, and Tangent
- MM12 [4.1.2] Applying Pythagorean Identity to Evaluate Trigonometric Functions
- MM12 [4.1.3] Apply Supplementary and Complementary Relationship to Evaluate Trigonometric Functions
- MM12 [4.1.4] Solve Particular Solution for Trigonometric Functions

Section A: Introduction to Circular Functions

(&v°

Sub-Section: Radians and Degrees

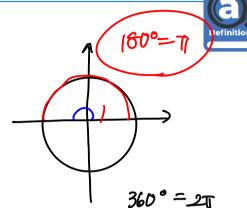
Radians and Degrees



$$1^c = \left(\frac{180}{\pi}\right)^0$$

$$1^o = \left(\frac{\pi}{180}\right)^c$$

$$180^{\circ} = \pi^{c}$$

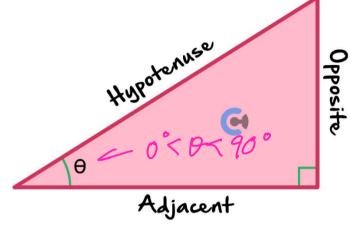


Question 1
$$T = 80^{\circ}$$
a. Find $\left(\frac{\pi}{4}\right)^c$ in degrees:

a. Find
$$\left(\frac{\pi}{4}\right)^c$$
 in degrees:

Sub-Section: Unit Circle

REMINDER: Don't forget!

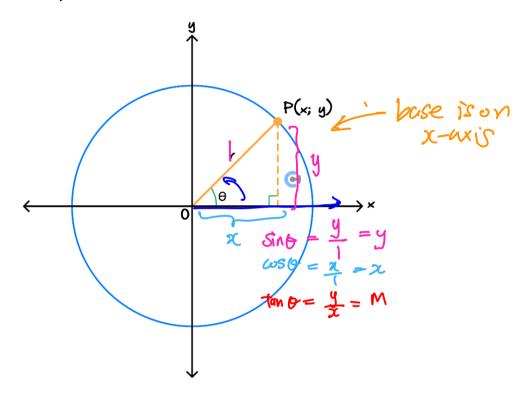


$$sin =$$

$$\cos = \frac{\Lambda/H}{}$$

Exploration: Unit Circle

- The unit circle is simply a circle of radius ______.
- ► Angles are measured from the tve x-axis anticlockwise
- It can be divided into four quadrants:



- We can use the elementary definition of the trigonometric functions.
- Select the option below!

$$sin(\theta) = [X \ Value, Y \ Value, Gradient]$$

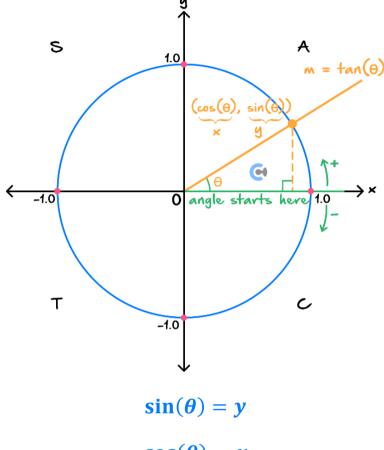
$$cos(\theta) = [X Value, Y Value, Gradient]$$

$$tan(\theta) = [X \ Value, Y \ Value, Gradient]$$

CONTOUREDUCATION

Unit Circle

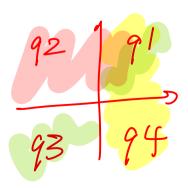
The unit circle is simply a circle of radius 1.



$$\cos(\theta) = x$$

$$tan(\theta) = gradient$$

<u>Discussion:</u> For which quadrant is cos, sin and tangent positive?

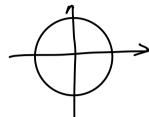


Sub-Section: Period

now of

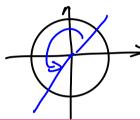
dilation

Discussion: What would happen if we rotate 360° to the value of sin and cos?



Sin / cos: repects 360°

Discussion: What would happen if we rotate 180° to the value of tan?



REMINDER: Don't forget! Transformation

$$f(x) \rightarrow f(nx)$$

Dilation by factor $\frac{1}{n}$ from the y-axis.

Period of a Trigonometric Function

Period of sin(nx) and cos(nx) functions = $\frac{2\pi}{n}$

Period of tan(nx) functions $=\frac{\pi}{n}$

where n = coefficient of x and n > 0

Find the period of each of the following trigonometric functions:

a.
$$p(x) = \tan(\frac{x}{x})$$

$$period = \frac{\pi}{n} = \pi \times 2$$

$$= 2\pi$$

b.
$$q(x) = \cos\left(\frac{3}{2}x + \frac{\pi}{3}\right)$$
 $n = \frac{2}{3}$

$$2\pi i = 2\pi i = \frac{2}{3} = 2\pi i = \frac{2}{3} = \frac{4\pi}{3}$$

Ouestion 3 Extension.

Find the period of the following trigonometric function:
$$f(x) = \cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{3}\right)$$

$$pariod = \frac{2\pi}{1/2} = 4\pi$$

$$pariod = lan (4\pi, 6\pi)$$

$$= 12\pi$$

$$\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{3}\right)$$

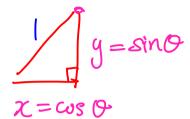
$$\cos\left(\frac{x}{3}\right) + \cos\left(\frac{x}{3}\right)$$

$$\cos$$

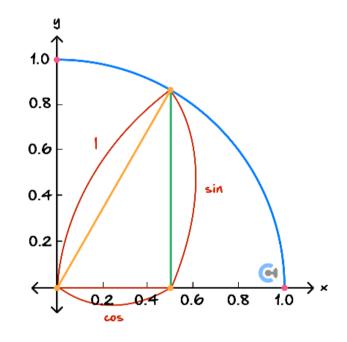
MM12 [4.1] - Circular Functions I - Workbook

Sub-Section: Pythagorean Identities

Discussion: What does $\sin^2(\theta) + \cos^2(\theta)$ equal to?



Pythagorean Identities



$$\sin^2(\theta) + \cos^2(\theta) = 1$$

Can be used for finding one trigonometry function by using the other.

Find the value of $\cos(x)$ given that $\sin(x) = \frac{2}{3}$ and x is first quadrant.

Pythagorean Identity

$$\omega s^2 x = 1 - \frac{4}{9}$$

$$\omega s_{\chi} = \pm \sqrt{s}$$

X N-value is (tvg)

wsx= 15

Triangle Method

sin(x) =
$$\frac{2}{3}$$
 = $\frac{3}{5}$ = $\frac{3}$ = $\frac{3}{5}$ = $\frac{3}{5}$ = $\frac{3}{5}$ = $\frac{3}{5}$ = $\frac{3}{5}$ =

$$\omega s(n) = \frac{A}{H} = \pm \frac{15}{3}$$

quad I was tre

$$\Rightarrow \omega s \alpha = \frac{5}{3}$$

1) triangle

NOTE: Consider the quadrant to determine signs.

The Exact Values Table

x	0 (0°)	$\frac{\pi}{6} (30^{\circ})$	$\frac{\pi}{4} (45^{\circ})$	$\frac{\pi}{3} (60^{\circ})$	$\frac{\pi}{2} (90^{\circ})$
sin(x)	0 =	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1 5
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan(x)	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Undefined

TIP: Use the fact that \sin is the y value, \cos is the x value and the tangent is the gradient to remember the values well!

Space for Personal Notes

X

Sinol

WS IC

TUYZ

$$tunx = \frac{y}{x} = \frac{\sin x}{\cos x}$$

Without looking at the exact value table, evaluate the following.

a. $\sin\left(\frac{\pi}{6}\right)$

b. $\cos\left(\frac{\pi}{3}\right)$

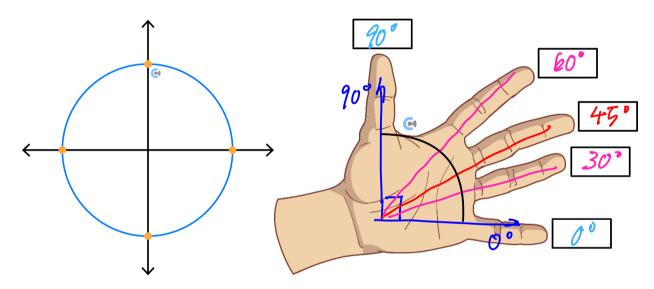
c. $\sin\left(\frac{\pi}{2}\right)$

d. $\tan\left(\frac{\pi}{6}\right)$

$$=\frac{\sqrt{3}}{3} \qquad \left(\frac{1}{\sqrt{3}}\right)$$

Exploration: Exact values

- Hold your left palm up facing yourself.
- Imagine the thumb to align with the positive y-axis, so the thumb is $\frac{90}{100}$
- Imagine the pinky to align with the positive x-axis, so the pinky is 0
- > Can you guess what angles the index finger, middle finger and ring finger represent?
- Label the angles on a unit circle as well as the finger.



$$sin(\theta) = \frac{\sqrt{(the\ number\ of\ fingers\ below)}}{2}$$

$$cos(\theta) = \frac{\sqrt{(the \ number \ of \ fingers \ above)}}{2}$$

Active Recall: The Exact Values Table

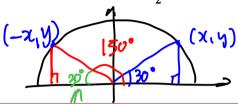
x	0 (0°)	$\frac{\pi}{6}$ (30°)	$\frac{\pi}{4} \ (45^{\circ})$	$\frac{\pi}{3} \ (60^{\circ})$	$\frac{\pi}{2} \ (90^{\circ})$
sin(x)	0	75	뎐	[3 [3	1
$\cos(x)$	1	<u>[3</u>	臣	12	б
tan(x)	D	<u>13</u> 3	((3	undefined

Space for Personal Notes

Section B: Symmetry

<u>Sub-Section</u>: Supplementary Relationships

<u>Discussion:</u> Given that $sin(30) = \frac{1}{2}$, how do we solve for sin(150)?

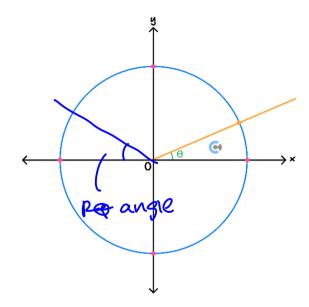


peterence angle

What does Reflection in the y-axis look like?

Exploration: Reflection in y-axis

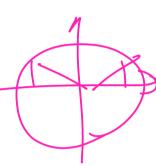
Consider the unit circle.



- Reflect the angle around the y-axis on the unit circle above.
- What is the angle in terms of θ ?

CONTOUREDUCATION

- How does that affect the sine / cosine / tangent functions?
- > Scan the QR code below and have a look!



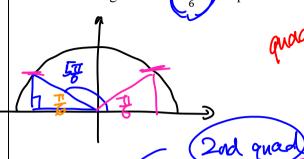
$$\cos(\pi - \theta) = + \cos(\theta)$$

$$\sin(\pi - \theta) = + \int -\sin(\theta)$$

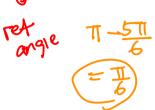
$$\tan(\pi - \theta) = + \left(-\tan(\theta)\right) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{+}{-} =$$

Question 6 walk-through

(QRS a. Find the angle at which $\frac{5\pi}{6}$ corresponds to in the first quadrant



quadrave



b. What would $\sin\left(\frac{5\pi}{6}\right)$ equal to given that $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$?

c. What would $\cos\left(\frac{5\pi}{6}\right)$ equal to given that $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$?

d. What would $\tan\left(\frac{5\pi}{6}\right)$ equal to given that $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$?

$$\tan 57 = -\tan \left(\frac{\pi}{6}\right)$$

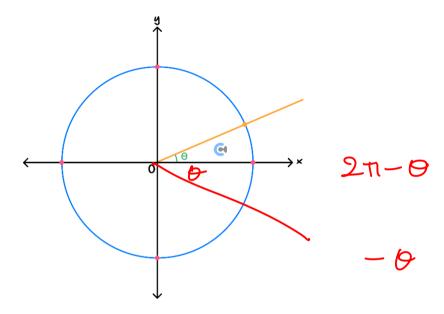
NOTE: Visualise on the unit circle.

ALSO NOTE: In the second quadrant, the y value (sin) is positive.

What does a Reflection in the x-axis look like?

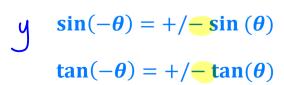
Exploration: Reflection in x-axis

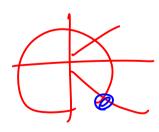
Consider the unit circle.



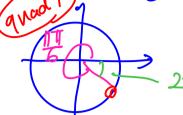
- \blacktriangleright Reflect the angle around the x-axis on the unit circle above.
- \blacktriangleright What is the angle in terms of θ ?
- How does that affect the sine / cosine / tangent functions?
- Scan the QR code below and have a look!







a. Find the angle at which $\frac{11\pi}{6}$ corresponds to in the first quadrant.



b. What would $\sin\left(\frac{11\pi}{6}\right)$ equal to given that $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$?

$$= -\sin(2) = -\frac{1}{2}$$

c. What would $\cos\left(\frac{11\pi}{6}\right)$ equal to given that $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$?

$$= + \omega s \left(\frac{\pi}{6} \right) = \frac{5}{3}$$

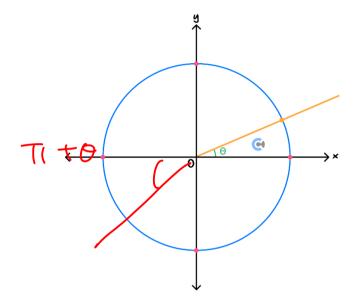
d. What would $\tan\left(\frac{11\pi}{6}\right)$ equal to given that $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$?

NOTE: In the fourth quadrant, the x value (cos) is positive.

What does Reflection in both axes look like?

Exploration: Reflection in both axes

Consider the unit circle.

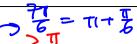


- Reflect the angle around both axes on the unit circle above.
- \blacktriangleright What is the angle in terms of θ ?
- How does that affect the sine / cosine / tangent functions?
- > Scan the QR code below and have a look!

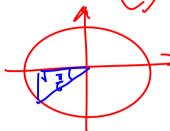
$$\cos(\pi + \theta) = +/-\cos(\theta)$$

$$\sin(\pi + \theta) = +/-\sin(\theta)$$

$$\tan(\pi + \theta) = +/-\tan(\theta)$$



a. Find the angle which $\frac{7\pi}{6}$ corresponds to in the first quadrant.



b. What would $\sin\left(\frac{7\pi}{6}\right)$ equal to given that $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$?

$$=-\sin T$$

c. What would $\cos\left(\frac{7\pi}{6}\right)$ equal to given that $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$?

$$=-\omega \xi$$

$$=-\frac{13}{2}$$

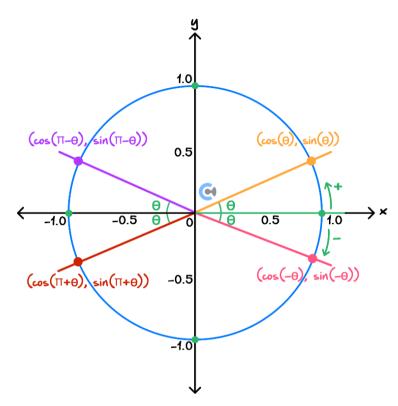
d. What would $\tan\left(\frac{7\pi}{6}\right)$ equal to given that $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$?

$$=\frac{\sqrt{3}}{3}$$
 $\left(\frac{1}{\sqrt{3}}\right)$

NOTE: In the third quadrant, the gradient (tangent) is positive.

Let's summarise

Supplementary Relationships



- Simply look at the quadrant to find the correct sign.
 - Second Quadrant $(\pi \theta)$

$$\cos(\pi - \theta) = -\cos(\theta)$$

$$\sin(\pi - \theta) = +\sin(\theta)$$

$$tan(\pi - \theta) = -tan(\theta)$$

G Third Quadrant $(\pi + \theta)$

$$\cos(\pi + \theta) = -\cos(\theta)$$

$$\sin(\pi + \theta) = -\sin(\theta)$$

$$\tan(\pi + \theta) = + \tan(\theta)$$

G Fourth Quadrant $(-\theta)$

$$\cos(-\theta) = +\cos(\theta)$$

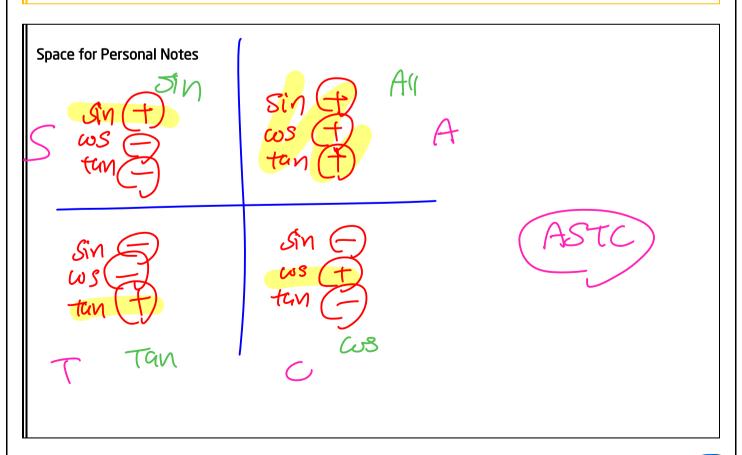
$$\sin(-\theta) = -\sin(\theta)$$

$$\tan(-\theta) = -\tan(\theta)$$

- Steps
 - **1.** Equate to $\cos / \sin / \tan(\theta)$.
 - **2.** Determine the sign (\pm) by considering the quadrant.

Try the following question!

TIP: Simply draw the unit circle.



Question 9 Walkthrough.

If $dos(\theta) = 0.8$ where θ is a first quadrant angle, evaluate the following.

a.
$$\cos(\pi + \theta)$$

Q: quad 3

R: 6

b. $\sin(\pi - \theta)$

P: 0 c. (+ve)

 $Sin(\pi-6) = t Sin(0)$ $= \frac{3}{5}$

c.
$$tan(\pi + \theta)$$
 $\frac{1}{2}$ $\frac{1}{2}$

S: (+19)

If $sin(\theta) = 0.6$ where θ is a first quadrant angle, evaluate the following.

a.
$$\sin(\pi + \theta)$$

b.
$$\cos(\pi + \theta)$$

c.
$$\tan(\pi-\theta)$$

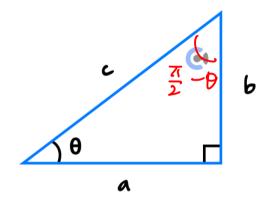
$$=$$
 $-tan 0$

Sub-Section: Complementary Relationships

Let's have a look at this right-angle triangle.

Exploration: Understanding Complementary Relationships

Take a look at this right-angle triangle:



- What does $sin(\theta)$ equal to?
- On the triangle above, label $\frac{\pi}{2} \theta$

What does $\cos\left(\frac{\pi}{2} - \theta\right)$ equal to?

$$\cos\left(\frac{\pi}{2}-\theta\right)=$$

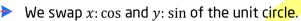
 $\sin(\theta)$

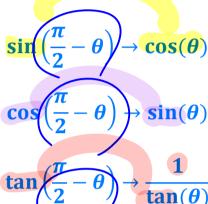
What do you notice?

$$\sin(\theta) = \frac{\cos\left(\frac{\pi}{2} - \cos\right)}{\cos\left(\frac{\pi}{2} - \cos\right)}$$

Discussion: Given that sin and cos swaps, what would happen to the value of tan

Exploration: Understanding Complementary Relationships





If $\sin(\theta) = \frac{1}{3}$ where θ is a first quadrant angles, evaluate the following.

a.
$$\cos\left(\frac{\pi}{2} - \theta\right)$$

$$=\frac{1}{3}$$

b.
$$\sin\left(\frac{\pi}{2} - \theta\right)$$

b.
$$\sin\left(\frac{\pi}{2} - \theta\right)$$

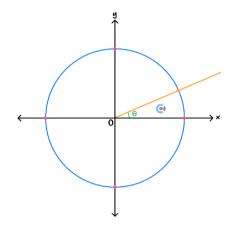
$$= \cos \theta = \frac{2\sqrt{2}}{3}$$

c.
$$\tan\left(\frac{\pi}{2} - \theta\right)$$

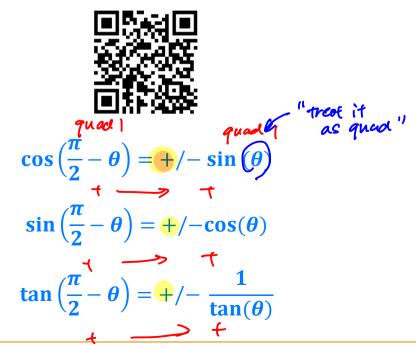
$$=\frac{1}{\tan \theta}=\frac{1}{2\sqrt{2}}$$

Exploration: Generalising Complementary Relationships

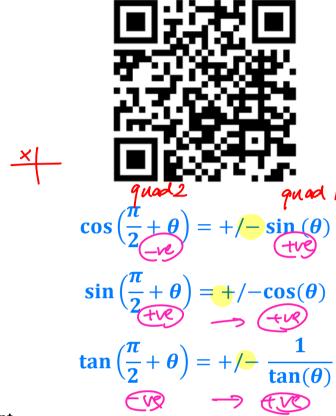
Take a look at the unit circle below.



- Mark the angle $\frac{\pi}{2} \theta$. Which quadrant is it in?
- Mark the angle $\frac{\pi}{2} + \theta$. Which quadrant is it in?
- Mark the angle $\frac{3\pi}{2} \theta$. Which quadrant is it in?
- Mark the angle $\frac{3\pi}{2} + \theta$. Which quadrant is it in?
 - First Quadrant _____



Second Quadrant _______.



Third Quadrant _____

$$\cos\left(\frac{3\pi}{2} - \theta\right) = +/-\sin\left(\theta\right)$$

$$\sin\left(\frac{3\pi}{2} - \theta\right) = +/-\cos(\theta)$$

$$\tan\left(\frac{3\pi}{2} - \theta\right) = +/-\frac{1}{\tan(\theta)}$$

G Fourth Quadrant ______.

$$\cos\left(\frac{3\pi}{2} + \theta\right) = +/-\sin\left(\theta\right)$$

$$\sin\left(\frac{3\pi}{2} + \theta\right) = +/-\cos(\theta)$$

$$\tan\left(\frac{3\pi}{2} + \theta\right) = +/-\frac{1}{\tan(\theta)}$$

Complementary Relationships

Consider the quadrant for signs.

First Quadrant $\left(\frac{\pi}{2} - \theta\right)$

$$\cos\left(\frac{\pi}{2} - \theta\right) = +\sin(\theta)$$

$$\sin\left(\frac{\pi}{2} - \theta\right) = +\cos(\theta)$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = +\frac{1}{\tan(\theta)}$$

Second Quadrant $\left(\frac{\pi}{2} + \theta\right)$

$$\sin\left(\frac{\pi}{2} + \theta\right) = +\cos(\theta)$$

$$\cos\left(\frac{\pi}{2} + \theta\right) = -\sin(\theta)$$

$$\tan\left(\frac{\pi}{2} + \theta\right) = -\frac{1}{\tan(\theta)}$$

ightharpoonup Third Quadrant $\left(\frac{3\pi}{2} - \theta\right)$

$$\sin\left(\frac{3\pi}{2} - \theta\right) = -\cos(\theta)$$

$$\cos\left(\frac{3\pi}{2}-\theta\right)=-\sin(\theta)$$

$$\tan\left(\frac{3\pi}{2} - \theta\right) = \frac{1}{\tan(\theta)}$$

CONTOUREDUCATION

Fourth Quadrant $\left(\frac{3\pi}{2} + \theta\right)$

$$\sin\left(\frac{3\pi}{2} + \theta\right) = -\cos(\theta)$$

$$\cos\left(\frac{3\pi}{2} + \theta\right) = +\sin(\theta)$$

$$\tan\left(\frac{3\pi}{2} + \theta\right) = -\frac{1}{\tan(\theta)}$$

- Steps
 - 1. Note complementary relationship by identifying a vertical angle $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$.
 - **2.** Equate to the opposite trigonometric function $\cos / \sin / \frac{1}{\tan(\theta)}$.
 - **3.** Determine the sign (\pm) by considering the quadrant.

VCE Methods ½ Questions? Message +61 440 138 726

Question 12 Walkthrough

If $\sin(\alpha) = \frac{4}{5}$ and $\cos(\beta) = \frac{1}{5}$ where α, β are first quadrant angles, evaluate the following. $\frac{31}{2}$

$$= + \sin(x) \left(-\frac{4}{5}\right)$$
quad 1
$$+ \sqrt{9}$$

$$= + \sin(x) = \frac{4}{5}$$
quad |

b.
$$\sin\left(\frac{\pi}{2} + \alpha\right) = + \cos\left(\alpha\right)$$

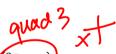
e.
$$\sin\left(\frac{3\pi}{2} - \alpha\right) + \cos\left(\frac{3\pi}{2} + \beta\right)$$

$$= -\frac{3}{5} + \frac{2\sqrt{6}}{5}$$

If $sin(\alpha) = 0.6$ and $cos(\beta) = 0.4$ where α, β are first quadrant angles, evaluate the following.

a. $\cos\left(\frac{\pi}{2} + \alpha\right)$

b. $\sin\left(\frac{\pi}{2} - \alpha\right) = + \cos\left(\alpha\right)$ = 4



$$\frac{\sin\left(\frac{3\pi}{2} + \alpha\right)}{\cos\left(\frac{3\pi}{2} - \beta\right)}$$

= - 6560 - (-sm(B))

$$= -\frac{4}{5} + \frac{14}{5}$$

<u>Discussion:</u> How can we tell apart from supplementary relationship and complementary relationships?

T

2-1

Supplementary vs Complementary

Supplementary: $trig(Horizontal\ Angle \pm \theta)$

Complementary: $trig(Vertical\ Angle \pm \theta)$

Question 14

If $sin(\alpha) = 0.6$ and $cos(\beta) = 0.4$ where α, β are first quadrant angles, evaluate the following.

a. $\sin(\pi + \alpha)$

b. $\sin\left(\frac{\pi}{2} + \beta\right)$

 $\mathbf{c.} \quad \sin(\pi - \alpha) - \sin\left(\frac{3\pi}{2} - \beta\right)$

Section C: Solving Trigonometric Equations

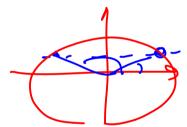
Sub-Section: Particular Solutions

Active Recall: Period of Trigonometric Function

Period of
$$sin(nx)$$
 and $cos(nx)$ functions =

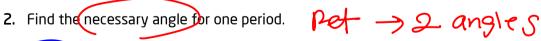
where n = coefficient of x and n > 0

<u>Discussion:</u> How often would the solution to $sin(x) = \frac{1}{3} repeat?$



Particular Solutions

- Solving trigonometric equation for finite solutions.
- Steps
 - 1. Make the trigonometric function the subject.



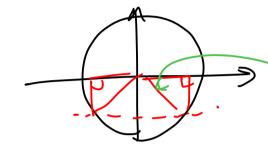
- Solve for x by equating the necessary angles to the inside of the trigonometric functions.
- **4.** Add and subtract the period to find all other solutions in the domain.

Question 15 Walkthrough.

Solve the following equations for x over the domain specified.

$$2\sin(2x) + \sqrt{3} = 0 \text{ for } x \in [0, 2\pi]$$

$$Sin(22) = -\frac{13}{2}$$



quad 3\$44 ref (table)

$$2x = \frac{47}{3} (-\frac{17}{3})$$

 $x = \frac{27}{3} (-\frac{7}{3})$

$$-\frac{2\pi}{2}$$

Space for Personal Notes

$$x = \frac{1}{3} - \frac{1}{3} = \frac{1}{3} =$$

ONTOUREDUCATION

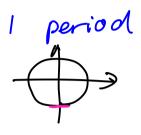
Question 16

Solve the following equations for x over the domains specified.

a.
$$\sin(4x) = -1$$
 for $x \in [-\pi, \pi]$.

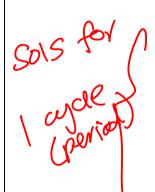
Desolution for 1 period
$$4x = \frac{3\pi}{2}$$

$$\chi = \frac{3\eta}{8}$$



$$\chi = \frac{-57}{8} - \frac{7}{8} \frac{37}{8} \frac{77}{8}$$

b.
$$2\cos\left(2x - \frac{\pi}{2}\right) + 1 = 0 \text{ for } x \in [0, 2\pi].$$
 \Rightarrow $\omega S(2x - \frac{\pi}{2})$



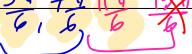
$$2x - \frac{7}{2} = \frac{27}{3} - \frac{47}{3}$$

$$2x = \frac{57}{3} - \frac{77}{3}$$

$$2x = \frac{57}{3} - \frac{77}{3}$$

$$2x = \frac{57}{3} - \frac{77}{3}$$

MM12 [4.1] - Circular Functions I'- Workbook



Question 17 Extension.

Solve the following equation for x over the domain specified.
$$\omega s^2(2x) = 1 - \sin^2(2x)$$

$$\sin^2(2x) - 9\sin(2x) - 5\cos^2(2x) + 8 = 0 \text{ for } x \in (0, \pi)$$

$$\sin^2(2\pi) - 9\sin(2\pi) - 5(1-\sin^2(2\pi)) + 6 = 0$$

$$6\sin^2(2x) - 9\sin(2x) + 3 = 0$$

$$(A-1)(2A-1)=0$$

$$Sin(2x) = 1$$

$$\sin(2x) = \frac{1}{2} \times \frac{1}{1} \times \frac{1}{1}$$

No point add/subtracting period

Space for Personal Notes

Question	18	Walkthrough.
Oueshon	10	waikun ougn.

Solve the following equations for x over the domains specified.

$$2\tan (2x + \pi) + 2\sqrt{3} = 0 \text{ for } x \in [0, 2\pi]$$

Discussion: Why do we need to find one angle only for tangents?

Question 19

Solve the following equations for x over the domains specified.

$$\sqrt{3}\tan\left(x - \frac{\pi}{3}\right) - 1 = 0 \text{ for } x \in (0, 3\pi)$$

tan(
$$x-\frac{1}{3}$$
)= $\frac{1}{3}$

D Solutions for 1 period:
 $x-\frac{1}{3}=\frac{1}{5}$
 $x=\frac{1}{5}$

Calculator Commands: Particular Solutions on Technology

- Mathematica
- TI-Nspire
 - Solve (trigequation, x)|domain
- Casio Classpad
 - Solve (trigequation, x)|domain

Question 20 Tech-Active.

Solve the following equations for x over the domains specified.

a.
$$\sqrt{3} \tan \left(x - \frac{\pi}{3}\right) - 1 = 0$$
 for $x \in (0, 3\pi)$.

Out[1]=
$$\left\{\left\{x \to \frac{\pi}{2}\right\}, \left\{x \to \frac{3\pi}{2}\right\}, \left\{x \to \frac{5\pi}{2}\right\}\right\}$$

Out[2]=
$$\left\{ \left\{ x \to \frac{7 \pi}{12} \right\}, \left\{ x \to \frac{11 \pi}{12} \right\}, \left\{ x \to \frac{19 \pi}{12} \right\}, \left\{ x \to \frac{23 \pi}{12} \right\} \right\}$$

b.
$$2\cos\left(2x - \frac{\pi}{2}\right) + 1 = 0 \text{ for } x \in [0, 2\pi].$$

Space for Personal Notes

Contour Check

□ <u>Learning Objective</u>: [4.1.1] – Evaluate exact values for sine, cosine, and tangent

Key Takeaways

Radians and Degrees

$$\mathbf{1}^c = \left(\frac{180}{\pi}\right)^{\mathbf{0}}$$

$$\mathbf{1}^{o} = \left(\frac{\pi}{180}\right)^{c}$$

$$180^{\circ} = \pi^{c}$$

■ The Exact Values Table:

x	0 (0°)	$\frac{\pi}{6}$ (30°)	$\frac{\pi}{4} (45^{\circ})$	$\frac{\pi}{3} (60^{\circ})$	$\frac{\pi}{2} (90^{\circ})$
sin(x)	0	1/2	<u> </u>	13/2	1
$\cos(x)$	([3 [3	짇	7	O
tan(x)	Õ	<u>13</u> 3)	3	undetined

□ Learning Objective: [4.1.2] - Applying Pythagorean identity to evaluate trigonometric functions

Key Takeaways

Pythagorean Identity:

$$\sin^2(\theta) + \cos^2(\theta) = \underline{\hspace{1cm}}$$

□ Learning Objective: [4.1.3] - Apply supplementary and complementary relationship to evaluate trigonometric functions

Key Takeaways

- Supplementary Relationships:
- □ Look at the quadrant to find the correct sign.
 - Second Quadrant $(\pi \theta)$
 - Reflection around γ-axis.

$$\cos(\pi - \theta) = \frac{-\cos \theta}{\sin(\pi - \theta)} = \frac{+\sin \theta}{\tan(\pi - \theta)} = \frac{-\tan \theta}{\tan(\pi - \theta)}$$

$$\sin(\pi - \theta) = \underline{\qquad} + \sin \theta$$

$$tan(\pi - \theta) = \underline{\qquad} tan \theta$$

- O Third Quadrant $(\pi + \theta)$
 - \square Reflection around x- and y-axis.

$$\cos(\pi + \theta) = \frac{-\omega s \theta}{\sin(\pi + \theta)}$$

$$\sin(\pi + \theta) = \frac{-\omega s \theta}{\tan(\pi + \theta)}$$

$$\tan(\pi + \theta) = \frac{+\omega s \theta}{\tan(\pi + \theta)}$$

- O Fourth Quadrant $(-\theta)$
 - \square Reflection around *x*-axis.

$$cos(-\theta) = + \omega \theta \theta$$

$$sin(-\theta) = - \sin \theta$$

$$tan(-\theta) = - tunb$$

- Steps
 - **1.** Equate to $\cos / \sin / \tan(\theta)$.
 - 2. Determine the sign (\pm) by considering the quadrant.

- Complementary Relationships:
 - O First Quadrant $\left(\frac{\pi}{2} \theta\right)$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \frac{+ \sin \theta}{\sin\left(\frac{\pi}{2} - \theta\right)} = \frac{+ \cos \theta}{\tan\left(\frac{\pi}{2} - \theta\right)} = \frac{+ \cos \theta}{\tan \theta}$$

O Second Quadrant $\left(\frac{\pi}{2} + \theta\right)$

$$\sin\left(\frac{\pi}{2} + \theta\right) = \frac{+ \cos \theta}{\cos\left(\frac{\pi}{2} + \theta\right)} = \frac{-\sin \theta}{\tan\left(\frac{\pi}{2} + \theta\right)} = \frac{-\sin \theta}{\tan \theta}$$

O Third Quadrant $\left(\frac{3\pi}{2} - \theta\right)$

$$\sin\left(\frac{3\pi}{2} - \theta\right) = \frac{-\omega S \Theta}{\cos\left(\frac{3\pi}{2} - \theta\right)} = \frac{-\sin\Theta}{\tan\left(\frac{3\pi}{2} - \theta\right)} = \frac{-\sin\Theta}{\tan\Theta}$$

O Fourth Quadrant $\left(\frac{3\pi}{2} + \theta\right)$

$$\sin\left(\frac{3\pi}{2} + \theta\right) = \underline{\qquad} \quad \mathcal{O}$$

$$\cos\left(\frac{3\pi}{2} + \theta\right) = \underline{\qquad} \quad \mathcal{O}$$

$$\tan\left(\frac{3\pi}{2} + \theta\right) = \underline{\qquad} \quad \mathcal{O}$$

Steps:

- 1. Note complementary relationship by identifying a vertical angle $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$.
- **2.** Equate to the opposite trigonometric function $\cos / \sin / \frac{1}{\tan(\theta)}$.
- **3.** Determine the sign (\pm) by considering the quadrant.

□ <u>Learning Objective</u>: [4.1.4] - Solve particular solution for trigonometric functions

Key Takeaways

Period

Period of sin(nx) and cos(nx) functions = $\frac{T}{n}$

where n = coefficient of x and n > 0

- Particular Solutions:
 - O Solving trigonometric equations for finite solutions.
 - O Steps:
 - 1. Make the trigonometric function the Subject
 - 2. Find the necessary <u>angles</u> for one period.
 - 3. Solve for x by equating the necessary angles to the $\underline{\text{inside}}$ of the trigonometric functions.
 - 4. Add and subtract the **period** to find all other solutions in the domain.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	Text-Based Support
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

