

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Circular Functions I [4.1]

Workbook

Outline:

aduction to Circular Supetions Dg 2 12

Introduction to Circular Functions

Pg 2-13

- Radians and Degrees
- Unit Circle
- Period
- Pythagorean Identities
- Exact Values

Solving Trigonometric Equations

Particular Solutions

Pg 36-42

Symmetry Pg 14-35

- Supplementary Relationships
- Complementary Relationships

Learning Objectives:

- MM12 [4.1.1] Evaluate Exact Values for Sine, Cosine, and Tangent
- MM12 [4.1.2] Applying Pythagorean Identity to Evaluate Trigonometric Functions
- MM12 [4.1.3] Apply Supplementary and Complementary Relationship to Evaluate Trigonometric Functions
- MM12 [4.1.4] Solve Particular Solution for Trigonometric Functions

Section A: Introduction to Circular Functions

Sub-Section: Radians and Degrees

Definition

Radians and Degrees

$$\mathbf{1}^c = \left(\frac{180}{\pi}\right)^{\mathbf{0}}$$

$$1^{o} = \left(\frac{\pi}{180}\right)^{c}$$

$$180^{\circ} = \pi^{c}$$

Question 1

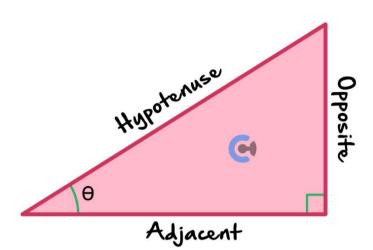
a. Find $\left(\frac{\pi}{4}\right)^c$ in degrees:

b. Find 12° in radians:

Sub-Section: Unit Circle

•

REMINDER: Don't forget!



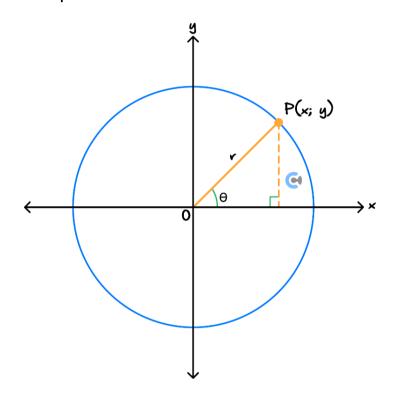
sin = _____

cos = _____

What is a unit circle and how do we use it?

Exploration: Unit Circle

- The unit circle is simply a circle of radius ______.
- Angles are measured from the ______
- lt can be divided into four quadrants:



- We can use the elementary definition of the trigonometric functions.
- Select the option below!

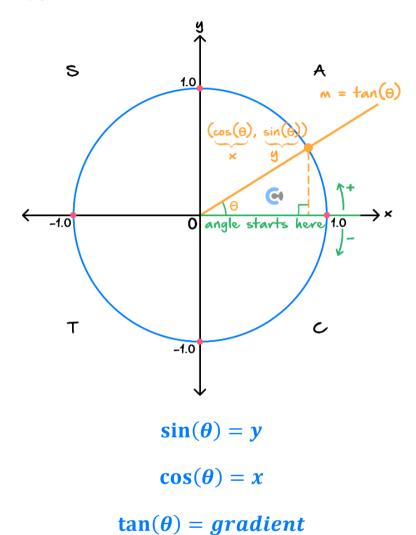
 $sin(\theta) = [X \ Value, Y \ Value, Gradient]$

 $cos(\theta) = [X Value, Y Value, Gradient]$

 $tan(\theta) = [X Value, Y Value, Gradient]$

Unit Circle

The unit circle is simply a circle of radius 1.



<u>Discussion:</u> For which quadrant is cos, sin and tangent positive?

Sub-Section: Period

Discussion: What would happen if we rotate 360° to the value of sin and cos?

Discussion: What would happen if we rotate 180° to the value of tan?

REMINDER: Don't forget! Transformation

$$f(x) \rightarrow f(nx)$$

Dilation by factor $\frac{1}{n}$ from the y-axis.

Period of a Trigonometric Function

Period of
$$sin(nx)$$
 and $cos(nx)$ functions = $\frac{2\pi}{n}$

Period of
$$tan(nx)$$
 functions = $\frac{\pi}{n}$

where n = coefficient of x and n > 0

Find the period of each of the following trigonometric functions:

a. $p(x) = \tan\left(\frac{x}{2}\right)$

b. $q(x) = \cos\left(\frac{3}{2}x + \frac{\pi}{3}\right)$

Question 3 Extension.

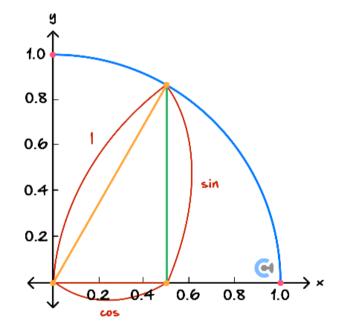
Find the period of the following trigonometric function:

$$f(x) = \cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{3}\right)$$

Sub-Section: Pythagorean Identities

Discussion: What does $\sin^2(\theta) + \cos^2(\theta)$ equal to?

Pythagorean Identities



$$\sin^2(\theta) + \cos^2(\theta) = 1$$

Can be used for finding one trigonometry function by using the other.

Find the value of cos (x) given that $sin(x) = \frac{2}{3}$ and x is first quadrant.

NOTE: Consider the quadrant to determine signs.

Sub-Section: Exact Values

The Exact Values Table

x	0 (0°)	$\frac{\pi}{6} \ (30^{\circ})$	$\frac{\pi}{4}~(45^{\rm o})$	$\frac{\pi}{3} \ (60^{\circ})$	$\frac{\pi}{2} \ (90^{\rm o})$
sin(x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan(x)	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Undefined

TIP: Use the fact that sin is the y value, cos is the x value and the tangent is the gradient to remember the values well!

Without looking at the exact value table, evaluate the following.

a. $\sin\left(\frac{\pi}{6}\right)$

b. $\cos\left(\frac{\pi}{3}\right)$

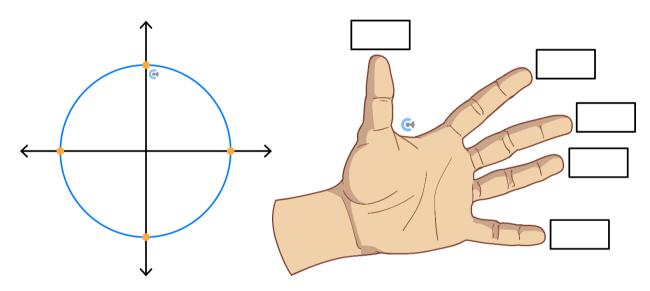
c. $\sin\left(\frac{\pi}{2}\right)$

d. $\tan\left(\frac{\pi}{6}\right)$

Is there a quick method to remember the exact values?

Exploration: Exact values

- Hold your left palm up facing yourself.
- Imagine the thumb to align with the positive y-axis, so the thumb is ______.
- \blacktriangleright Imagine the pinky to align with the positive x-axis, so the pinky is _____.
- Can you guess what angles the index finger, middle finger and ring finger represent?
- Label the angles on a unit circle as well as the finger.



$$sin(\theta) = \frac{\sqrt{(the \ number \ of \ fingers \ below)}}{2}$$

$$cos(\theta) = \frac{\sqrt{(the\ number\ of\ fingers\ above)}}{2}$$

Active Recall: The Exact Values Table

x	0 (0°)	$\frac{\pi}{6} \ (30^{\circ})$	$\frac{\pi}{4} (45^{\circ})$	$\frac{\pi}{3}~(60^{\rm o})$	$\frac{\pi}{2} \ (90^{\circ})$
sin(x)					
$\cos(x)$					
tan(x)					

Space for Personal Notes						

Section B: Symmetry

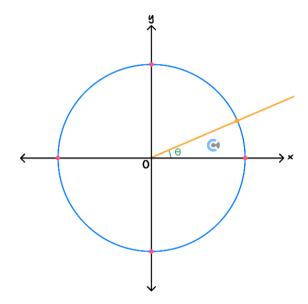
Sub-Section: Supplementary Relationships

<u>Discussion:</u> Given that $sin(30) = \frac{1}{2}$, how do we solve for sin(150)?

What does Reflection in the y-axis look like?

Exploration: Reflection in y-axis

Consider the unit circle.



- Reflect the angle around the y-axis on the unit circle above.
- \blacktriangleright What is the angle in terms of θ ?

CONTOUREDUCATION

- How does that affect the sine / cosine / tangent functions?
- Scan the QR code below and have a look!

$$\cos(\pi - \theta) = +/-\cos(\theta)$$

$$\sin(\pi - \theta) = +/-\sin(\theta)$$

$$\tan(\pi - \theta) = +/-\tan(\theta)$$

a. Find the angle at which $\frac{5\pi}{6}$ corresponds to in the first quadrant.

b. What would $\sin\left(\frac{5\pi}{6}\right)$ equal to given that $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$?

c. What would $\cos\left(\frac{5\pi}{6}\right)$ equal to given that $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$?

d. What would $\tan\left(\frac{5\pi}{6}\right)$ equal to given that $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$?

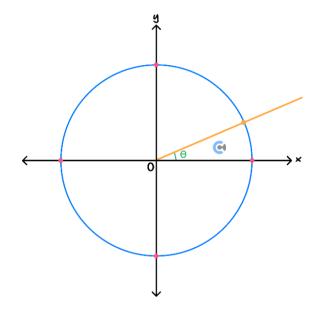
NOTE: Visualise on the unit circle.

ALSO NOTE: In the second quadrant, the y value (sin) is positive.

What does a Reflection in the x-axis look like?

Exploration: Reflection in x-axis

Consider the unit circle.



- Reflect the angle around the x-axis on the unit circle above.
- \blacktriangleright What is the angle in terms of θ ?
- How does that affect the sine / cosine / tangent functions?
- Scan the QR code below and have a look!

$$\cos(-\theta) = +/-\cos(\theta)$$

$$\sin(-\theta) = +/-\sin(\theta)$$

$$\tan(-\theta) = +/-\tan(\theta)$$

a. Find the angle at which $\frac{11\pi}{6}$ corresponds to in the first quadrant.

b. What would $\sin\left(\frac{11\pi}{6}\right)$ equal to given that $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$?

c. What would $\cos\left(\frac{11\pi}{6}\right)$ equal to given that $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$?

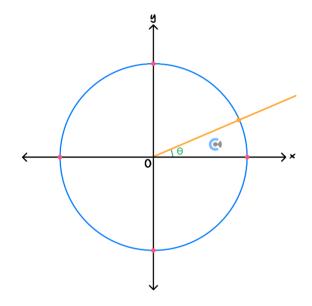
d. What would $\tan\left(\frac{11\pi}{6}\right)$ equal to given that $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$?

NOTE: In the fourth quadrant, the x value (cos) is positive.

What does Reflection in both axes look like?

Exploration: Reflection in both axes

Consider the unit circle.



- Reflect the angle around both axes on the unit circle above.
- \blacktriangleright What is the angle in terms of θ ?
- How does that affect the sine / cosine / tangent functions?
- > Scan the QR code below and have a look!

$$\cos(\pi + \theta) = +/-\cos(\theta)$$

$$\sin(\pi + \theta) = +/-\sin(\theta)$$

$$\tan(\pi + \theta) = +/-\tan(\theta)$$

a. Find the angle which $\frac{7\pi}{6}$ corresponds to in the first quadrant.

b. What would $\sin\left(\frac{7\pi}{6}\right)$ equal to given that $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$?

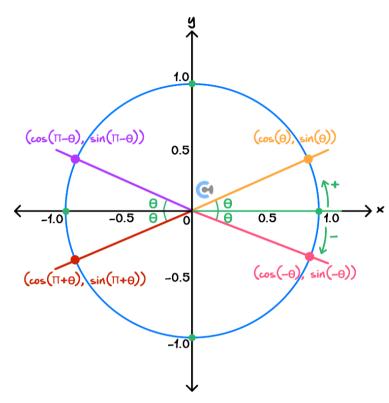
c. What would $\cos\left(\frac{7\pi}{6}\right)$ equal to given that $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$?

d. What would $\tan\left(\frac{7\pi}{6}\right)$ equal to given that $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$?

NOTE: In the third quadrant, the gradient (tangent) is positive.

Let's summarise

Supplementary Relationships



- Simply look at the quadrant to find the correct sign.
 - **G** Second Quadrant $(\pi \theta)$

$$\cos(\pi - \theta) = -\cos(\theta)$$

$$\sin(\pi - \theta) = +\sin(\theta)$$

$$\tan(\pi - \theta) = -\tan(\theta)$$

G Third Quadrant $(\pi + \theta)$

$$\cos(\pi + \theta) = -\cos(\theta)$$

$$\sin(\pi + \theta) = -\sin(\theta)$$

$$\tan(\pi + \theta) = + \tan(\theta)$$

CONTOUREDUCATION

G Fourth Quadrant $(-\theta)$

$$\cos(-\theta) = +\cos(\theta)$$

$$\sin(-\theta) = -\sin(\theta)$$

$$\tan(-\theta) = -\tan(\theta)$$

- Steps
 - **1.** Equate to $\cos / \sin / \tan(\theta)$.
 - **2.** Determine the sign (\pm) by considering the quadrant.

Try the following question!

TIP: Simply draw the unit circle.

Question 9 Walkthrough.

If $cos(\theta) = 0.8$ where θ is a first quadrant angle, evaluate the following.

a. $cos(\pi + \theta)$

b. $\sin(\pi - \theta)$

c. $tan(\pi + \theta)$

If $sin(\theta) = 0.6$ where θ is a first quadrant angle, evaluate the following.

a. $sin(\pi + \theta)$

b. $cos(\pi + \theta)$

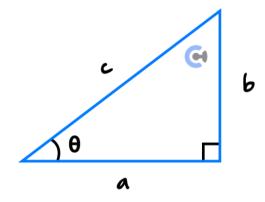
c. $tan(\pi - \theta)$

Sub-Section: Complementary Relationships

Let's have a look at this right-angle triangle.

Exploration: Understanding Complementary Relationships

Take a look at this right-angle triangle:



What does $\sin(\theta)$ equal to?

$$sin(\theta) =$$

• On the triangle above, label $\frac{\pi}{2} - \theta$.

What does $\cos\left(\frac{\pi}{2} - \theta\right)$ equal to?

$$\cos\left(\frac{\pi}{2}-\theta\right)=$$

What do you notice?

$$sin(\theta) =$$

Discussion: Given that sin and cos swaps, what would happen to the value of tan?

Exploration: Understanding Complementary Relationships

We swap x: cos and y: sin of the unit circle.

$$\sin\left(\frac{\pi}{2}-\theta\right)\to\cos(\theta)$$

$$\cos\left(\frac{\pi}{2} - \theta\right) \to \sin(\theta)$$

$$\tan\left(\frac{\pi}{2}-\theta\right)\to\frac{1}{\tan(\theta)}$$

If $sin(\theta) = \frac{1}{3}$ where θ is a first quadrant angles, evaluate the following.

a. $\cos\left(\frac{\pi}{2}-\theta\right)$

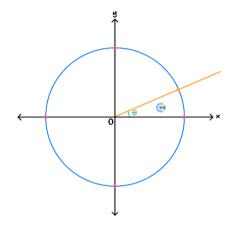
b. $\sin\left(\frac{\pi}{2} - \theta\right)$

c. $\tan\left(\frac{\pi}{2} - \theta\right)$

Now let's take a look at more complementary relationships in other quadrants.

Exploration: Generalising Complementary Relationships

Take a look at the unit circle below.



- Mark the angle $\frac{\pi}{2} \theta$. Which quadrant is it in?
- Mark the angle $\frac{\pi}{2} + \theta$. Which quadrant is it in?
- Mark the angle $\frac{3\pi}{2} \theta$. Which quadrant is it in?
- Mark the angle $\frac{3\pi}{2} + \theta$. Which quadrant is it in?
 - G First Quadrant _____

$$\cos\left(\frac{\pi}{2} - \theta\right) = +/-\sin\left(\theta\right)$$

$$\sin\left(\frac{\pi}{2} - \theta\right) = +/-\cos(\theta)$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = +/-\frac{1}{\tan(\theta)}$$

Second Quadrant _______

$$\cos\left(\frac{\pi}{2} + \theta\right) = +/-\sin\left(\theta\right)$$

$$\sin\left(\frac{\pi}{2} + \theta\right) = +/-\cos(\theta)$$

$$\tan\left(\frac{\pi}{2} + \theta\right) = +/-\frac{1}{\tan(\theta)}$$

Third Quadrant _____

$$\cos\left(\frac{3\pi}{2} - \theta\right) = +/-\sin\left(\theta\right)$$

$$\sin\left(\frac{3\pi}{2} - \theta\right) = +/-\cos(\theta)$$

$$\tan\left(\frac{3\pi}{2} - \theta\right) = +/-\frac{1}{\tan(\theta)}$$

G Fourth Quadrant ______.

$$\cos\left(\frac{3\pi}{2} + \theta\right) = +/-\sin\left(\theta\right)$$

$$\sin\left(\frac{3\pi}{2} + \theta\right) = +/-\cos(\theta)$$

$$\tan\left(\frac{3\pi}{2} + \theta\right) = +/-\frac{1}{\tan(\theta)}$$

Complementary Relationships

Consider the quadrant for signs.

First Quadrant $\left(\frac{\pi}{2} - \theta\right)$

$$\cos\left(\frac{\pi}{2} - \theta\right) = +\sin(\theta)$$

$$\sin\left(\frac{\pi}{2} - \theta\right) = +\cos(\theta)$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = +\frac{1}{\tan(\theta)}$$

Second Quadrant $\left(\frac{\pi}{2} + \theta\right)$

$$\sin\left(\frac{\pi}{2} + \theta\right) = +\cos(\theta)$$

$$\cos\left(\frac{\pi}{2} + \theta\right) = -\sin(\theta)$$

$$\tan\left(\frac{\pi}{2} + \theta\right) = -\frac{1}{\tan(\theta)}$$

ightharpoonup Third Quadrant $\left(\frac{3\pi}{2} - \theta\right)$

$$\sin\left(\frac{3\pi}{2} - \theta\right) = -\cos(\theta)$$

$$\cos\left(\frac{3\pi}{2}-\theta\right)=-\sin(\theta)$$

$$\tan\left(\frac{3\pi}{2} - \theta\right) = \frac{1}{\tan(\theta)}$$

CONTOUREDUCATION

Fourth Quadrant $\left(\frac{3\pi}{2} + \theta\right)$

$$\sin\left(\frac{3\pi}{2} + \theta\right) = -\cos(\theta)$$

$$\cos\left(\frac{3\pi}{2} + \theta\right) = +\sin(\theta)$$

$$\tan\left(\frac{3\pi}{2} + \theta\right) = -\frac{1}{\tan(\theta)}$$

- Steps
 - 1. Note complementary relationship by identifying a vertical angle $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$.
 - **2.** Equate to the opposite trigonometric function $\cos / \sin / \frac{1}{\tan(\theta)}$.
 - **3.** Determine the sign (\pm) by considering the quadrant.

Question 12 Walkthrough.

If $\sin(\alpha) = \frac{4}{5}$ and $\cos(\beta) = \frac{1}{5}$ where α, β are first quadrant angles, evaluate the following.

a.
$$\cos\left(\frac{\pi}{2} - \alpha\right)$$

b.
$$\sin\left(\frac{\pi}{2} + \alpha\right)$$

c.
$$\sin\left(\frac{3\pi}{2} - \alpha\right) + \cos\left(\frac{3\pi}{2} + \beta\right)$$

If $sin(\alpha) = 0.6$ and $cos(\beta) = 0.4$ where α, β are first quadrant angles, evaluate the following.

a.
$$\cos\left(\frac{\pi}{2} + \alpha\right)$$

b.
$$\sin\left(\frac{\pi}{2} - \alpha\right)$$

c.
$$\sin\left(\frac{3\pi}{2} + \alpha\right) - \cos\left(\frac{3\pi}{2} - \beta\right)$$

<u>Discussion:</u> How can we tell apart from supplementary relationship and complementary relationships?

Supplementary vs Complementary

Supplementary: $trig(Horizontal\ Angle \pm \theta)$

Complementary: $trig(Vertical\ Angle \pm \theta)$

Question 14

If $sin(\alpha) = 0.6$ and $cos(\beta) = 0.4$ where α, β are first quadrant angles, evaluate the following.

a. $sin(\pi + \alpha)$

b. $\sin\left(\frac{\pi}{2} + \beta\right)$

 $\mathbf{c.} \quad \sin(\pi - \alpha) - \sin\left(\frac{3\pi}{2} - \beta\right)$

Section C: Solving Trigonometric Equations

Sub-Section: Particular Solutions

Active Recall: Period of Trigonometric Function

Period of sin(nx) and cos(nx) functions = _____

Period of tan(nx) functions = _____

where n = coefficient of x and n > 0

<u>Discussion</u>: How often would the solution to $sin(x) = \frac{1}{2}$ repeat?

Particular Solutions

- Solving trigonometric equation for finite solutions.
- Steps
 - 1. Make the trigonometric function the subject.
 - **2.** Find the necessary angle for one period.
 - **3.** Solve for *x* by equating the necessary angles to the inside of the trigonometric functions.
 - **4.** Add and subtract the period to find all other solutions in the domain.

Question 15 Walkthrough.

Solve the following equations for x over the domain specified.

$$2\sin(2x) + \sqrt{3} = 0$$
 for $x \in [0, 2\pi]$

Space for Personal Notes

Question 16

Solve the following equations for x over the domains specified.

a.
$$\sin(4x) = -1$$
 for $x \in [-\pi, \pi]$.

b.
$$2\cos\left(2x - \frac{\pi}{2}\right) + 1 = 0 \text{ for } x \in [0, 2\pi].$$

Question 17 Extension.

Solve the following equation for x over the domain specified.

$$\sin^2(2x) - 9\sin(2x) - 5\cos^2(2x) + 8 = 0 \text{ for } x \in (0, \pi)$$

Space for Personal Notes

Onestion	18	Walkthrough.
Ouesnon	10	waikun dugn.

Solve the following equations for x over the domains specified.

$$2\tan (2x + \pi) + 2\sqrt{3} = 0 \text{ for } x \in [0, 2\pi]$$

<u>Discussion:</u> Why do we need to find one angle only for tangents?

Question 19

Solve the following equations for x over the domains specified.

$$\sqrt{3}\tan\left(x - \frac{\pi}{3}\right) - 1 = 0 \text{ for } x \in (0, 3\pi)$$

Calculator Commands: Particular Solutions on Technology

Mathematica

Solve
[TrigEquation &&
Domain, x]

TI-Nspire

Solve (trigequation, x)|domain

Casio Classpad

Solve (trigequation, x)|domain

Question 20 Tech-Active.

Solve the following equations for x over the domains specified.

a.
$$\sqrt{3} \tan \left(x - \frac{\pi}{3}\right) - 1 = 0$$
 for $x \in (0, 3\pi)$.

b.
$$2\cos\left(2x - \frac{\pi}{2}\right) + 1 = 0 \text{ for } x \in [0, 2\pi].$$

Space for Personal Notes

Contour Check

□ <u>Learning Objective</u>: [4.1.1] – Evaluate exact values for sine, cosine, and tangent

Key Takeaways

Radians and Degrees

$$\mathbf{1}^c = \left(\frac{180}{\pi}\right)^{\mathbf{0}}$$

$$1^{o} = \left(\frac{\pi}{180}\right)^{c}$$

$$180^{\circ} = \pi^{c}$$

☐ The Exact Values Table:

x	0 (0°)	$\frac{\pi}{6} (30^{\circ})$	$\frac{\pi}{4} \left(45^{\circ}\right)$	$\frac{\pi}{3} \left(60^{\circ}\right)$	$\frac{\pi}{2} \left(90^{\circ} \right)$
sin(x)					
$\cos(x)$					
tan(x)					

Learning Objective: [4.1.2] - Applying Pythagorean identity to evaluate
trigonometric functions

Key Takeaways

Pythagorean Identity:

$$\sin^2(\theta) + \cos^2(\theta) = \underline{\hspace{1cm}}$$

□ <u>Learning Objective</u>: [4.1.3] – Apply supplementary and complementary relationship to evaluate trigonometric functions

Key Takeaways

- Supplementary Relationships:
- ☐ Look at the quadrant to find the correct sign.
 - O Second Quadrant $(\pi \theta)$
 - \square Reflection around y-axis.

$$\cos(\pi - \theta) =$$

$$\sin(\pi - \theta) = \underline{\hspace{1cm}}$$

$$\tan(\pi - \theta) = \underline{\hspace{1cm}}$$

- O Third Quadrant $(\pi + \theta)$
 - \square Reflection around x- and y-axis.

$$\cos(\pi + \theta) =$$

$$\sin(\pi + \theta) =$$

$$\tan(\pi + \theta) = \underline{\hspace{1cm}}$$

- O Fourth Quadrant $(-\theta)$
 - \square Reflection around x-axis.

$$\cos(-\theta) =$$

$$sin(-\theta) = \underline{\hspace{1cm}}$$

$$tan(-\theta) = \underline{\hspace{1cm}}$$

- Steps
 - **1.** Equate to $\cos / \sin / \tan(\theta)$.
 - **2.** Determine the sign (\pm) by considering the quadrant.

- Complementary Relationships:
 - O First Quadrant $\left(\frac{\pi}{2} \theta\right)$

$$\cos\left(\frac{\pi}{2}-\theta\right)=$$

$$\sin\left(\frac{\pi}{2}-\theta\right)=$$

$$\tan\left(\frac{\pi}{2}-\theta\right) = \underline{\hspace{1cm}}$$

O Second Quadrant $\left(\frac{\pi}{2} + \theta\right)$

$$\sin\left(\frac{\pi}{2}+\theta\right)=$$

$$\cos\left(\frac{\pi}{2}+\theta\right)=$$

$$\tan\left(\frac{\pi}{2}+\theta\right) = \underline{\hspace{1cm}}$$

O Third Quadrant $\left(\frac{3\pi}{2} - \theta\right)$

$$\sin\left(\frac{3\pi}{2}-\theta\right)=\underline{\hspace{1cm}}$$

$$\cos\left(\frac{3\pi}{2}-\theta\right)=$$

$$\tan\left(\frac{3\pi}{2}-\theta\right)=\underline{\hspace{1cm}}$$

O Fourth Quadrant $\left(\frac{3\pi}{2} + \theta\right)$

$$\sin\left(\frac{3\pi}{2}+\theta\right)=\underline{\hspace{1cm}}$$

$$\cos\left(\frac{3\pi}{2}+\theta\right)=$$

$$\tan\left(\frac{3\pi}{2}+\theta\right)=\underline{\hspace{1cm}}$$

O Steps:

- 1. Note complementary relationship by identifying a vertical angle $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$.
- **2.** Equate to the opposite trigonometric function $\cos / \sin / \frac{1}{\tan(\theta)}$.
- **3.** Determine the sign (\pm) by considering the quadrant.

Learning Objective: [4.1.4] - Solve particular solution for trigonometric functions				
Key Takeaways				
□ Period				
Period of $sin(nx)$ and $cos(nx)$ functions =				
Period of $tan(nx)$ functions =				
where $oldsymbol{n}=$ coefficient of $oldsymbol{x}$ and $oldsymbol{n}>oldsymbol{0}$				
Particular Solutions:				
 Solving trigonometric equations for finite solutions. 				
O Steps:				
1. Make the trigonometric function the				
2. Find the necessary for one period.				
3. Solve for x by equating the necessary angles to the of the trigonometric functions.				
4. Add and subtract the to find all other solutions in the domain.				

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

