

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Circular Functions I [4.1]

Homework

Admin Info & Homework Outline:

Chudant Nama	
Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 2-Pg 26

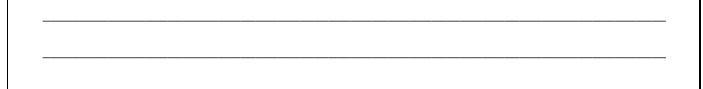
Section A: Compulsory Questions

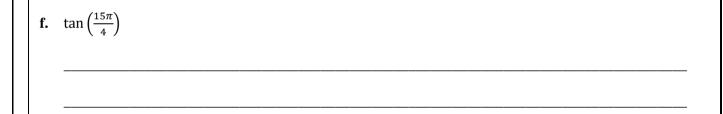
TIP: Drawing a unit circle will really help!

<u>Sub-Section [4.1.1]</u>: Evaluating Exact Values for Sine, Cosine And Tangent

Qu	estion 1	J
Fin	d:	
a.	$\sin\left(\frac{\pi}{3}\right)$	
b.	cos(45°)	

c.	$\tan\left(\frac{\pi}{6}\right)$
d.	sin(150°)
e.	$\cos\left(\frac{3\pi}{2}\right)$
f.	tan(225°)


Question 2	الأو
Find:	
a. $\sin(10\pi)$	
b. cos(390°)	
c. tan (-210°)	



d.	$\sin(-150^\circ)$			

Question 3 Tech-Active.

Find the value of the following expressions, giving your answer to 3 decimal places if an exact answer is not possible.

a. $\sin\left(\frac{\pi}{9}\right)$

(= 400)

b. cos(742°)

c. $\tan\left(\frac{\pi}{12}\right)$

d. sin(105°)

VCE Methods ½ Questions? Message +61 440 138 726

e.	$\cos\left(-\frac{29\pi}{12}\right)$
f.	tan(111.3°)

<u>Sub-Section [4.1.2]</u>: Applying Identities to Evaluate Trigonometric Functions

Qu	nestion 4				
Given that $sin(\theta) = \frac{3}{5}$ and θ is in the first quadrant, find:					
a.	$\cos(heta)$				
		-			
		-			
		-			
		-			
		-			
		-			
		-			
b.	$\tan(heta)$				
		-			
		-			
		-			
		-			
ر د د	Space for Personal Notes				
3t	ace for Personal Notes				

Question 5	
Given that $cos(\theta) = -\frac{5}{13}$ and θ is in the third quadrant, find:	
$\mathbf{a.} \sin(\theta)$	
b. $tan(\theta)$	

CONTOUREDUCATION

Question 6

A point *P* lies on the unit circle such that its *y*-coordinate is $\frac{4}{5}$ and it lies in the second quadrant. Let θ be the angle that the line segment between *P* and the origin makes with the positive direction of the *x*-axis.

- **a.** State an interval (a, b), where $b a = \frac{\pi}{2}$, that θ could fall into.
- **b.** Find $sin(\theta)$.

c. Hence, find $\cos(\theta)$.

Question 7 Tech-Active.			
Giv	ven that $cos(\theta) = 0.4$ and θ is in the fourth quadrant, find:		
a.	$\sin(heta)$		
b.	an(heta)		
c.	The coordinates of the point on the unit circle corresponding to the angle θ .		
Sp	ace for Personal Notes		

<u>Sub-Section [4.1.3]</u>: Apply Supplementary and Complementary Relationships to Evaluate Trigonometric Functions

Question 8	j
Let $sin(\theta) = \frac{3}{5}$, where θ is in the first quadrant.	
Find:	
a. $\sin(\pi - \theta)$	
b. $\cos\left(\frac{\pi}{2} + \theta\right)$	
c. $\tan (\pi - \theta)$	

Question 9

Let $sin(\theta) = \frac{8}{17}$, where θ is in the second quadrant.

Find:

a. $\cos\left(\frac{\pi}{2} - \theta\right)$

b. $\sin(\pi + \theta)$

c. $\tan(-\theta)$

Question 10

Let α be an angle in the third quadrant such that $\sin(\alpha) = -\frac{5}{13}$ and β be an angle in the second quadrant such that $\cos(\beta) = -\frac{4}{5}$.

Find:

a.	sin	$\left(\frac{\pi}{2}\right)$	α
----	-----	------------------------------	----------

b.	$\cos\left(\frac{\pi}{2}+\beta\right)$			

c. $\tan\left(\frac{\pi}{2} + \alpha\right) \tan\left(\frac{\pi}{2} - \beta\right)$

Question 11 Tech-Active.

Let $sin(\theta) = \frac{\sqrt{5}}{3}$, where θ lies in the second quadrant.

Find:

a. $\cos(\pi - \theta)$

b. $tan(-\theta)$ c. $\cos\left(\frac{\pi}{2} - \theta\right)$

<u>Sub-Section [4.1.3]</u>: Finding Particular Solutions for Trigonometric Functions

Qι	nestion 12
So	lve the following over the domain $x \in [0,2\pi]$.
a.	$\sin(x) = \frac{1}{2}$
b.	$\cos(x) = -\frac{1}{2}$
c.	tan(x) = 1

d. $\sin(x) = -\frac{\sqrt{2}}{2}$

 $\mathbf{e.} \quad \cos(x) = \frac{\sqrt{2}}{2}$

 $\mathbf{f.} \quad \tan(x) = -\sqrt{3}$

Question 13

Solve the following over the domain $x \in [0,2\pi]$.

a. $2\sin(2x) - \sqrt{3} = 0$

b. $3 + 4\cos\left(3x - \frac{\pi}{4}\right) = 1$

c. $-2\tan\left(4x + \frac{\pi}{6}\right) + 1 = 3$

 $\mathbf{d.} \quad 2\cos\left(\frac{x}{2}\right) - \sqrt{2} = 0$

e. $1 - 2\sin\left(3x + \frac{\pi}{3}\right) = 3$

f. $2\tan(5x) + 1 = 3$

Space for Personal Notes

MM12 [4.1] - Circular Functions I - Homework

Question 14

Solve the following over the domain $x \in [-2\pi, 0]$.

a. $\sqrt{3}\sin(2x) + \cos(2x) = 0$

b. $\sin(\pi - 3x) = \sin\left(\frac{\pi}{2} + 3x\right)$

Question 15 Tech-Active.

Solve the following over the domain $x \in [0,2\pi]$, giving solutions to 3 decimal places.

a. $\sin(2x) + \cos(2x) = \frac{\sqrt{2}}{2}$

b. $\sin\left(x - \frac{\pi}{12}\right) - \cos\left(3x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{4}$

 $\mathbf{c.} \quad \tan^2\left(\frac{x}{3} + \frac{\pi}{16}\right) = 7$

Sub-Section: The 'Final Boss'

Qu	estion 16
a.	Find $\sin\left(\frac{\pi}{6}\right)$.
b.	Hence, using the Pythagorean identity, find $\cos\left(\frac{\pi}{6}\right)$.

c. Given that $tan(\theta) = \frac{5}{12}$ and θ lies in quadrant 3, find:

i. $sin(\theta)$

ii. $cos(\theta)$

iii. $\sin\left(\frac{\pi}{2} - \theta\right)$

d. Solve $\sin(x) + 2\cos(x) + \cos(x)\tan(x) = 0$ over the interval $x \in [-\pi, \pi]$.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	Text-Based Support
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

