CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Transformations Exam Skills [2.5]

Workbook

Outline:

Pg 2-12

Pg 19-31

Recap of Transformations

- Image and Pre-Image
- Dilation
- Reflection
- Translation
- Basic Transformation of Points
- The Order of Transformations
- Interpreting the Transformation of Points
- Applying Transformations to Functions
- Finding the Applied Transformations

Warmup Test Pg 13-18

Transformations Exam Skills

- Quick Method
- Finding Opposite Transformations
- Finding Domain, Range, Points, and Tangents of Transformed Functions
- Finding Transformations of Inverse Functions
- Multiple Pathways for the Same Transformation

<u>Exam 1</u> Pg 32-38

Tech Active Exam Skills Pg 39-41

Exam 2 Pg 42-47

Learning Objectives:

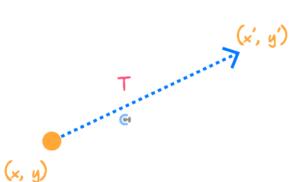
- MM12 [2.5.1] Apply Quick Method to Find Transformations
- MM12 [2.5.2] Find Opposite Transformations
- MM12 [2.5.3] Apply Transformations of Functions to Find Their Domain, Range, Transformed Points
- MM12 [2.5.4] Find Transformations of the Inverse Functions f(x)
- MM12 [2.5.5] Find Multiple Transformations for the Same Functions

Section A: Recap of Transformations

Sub-Section: Image and Pre-Image

What do we call an original coordinate and a transformed coordinate?

Image and Pre-Image



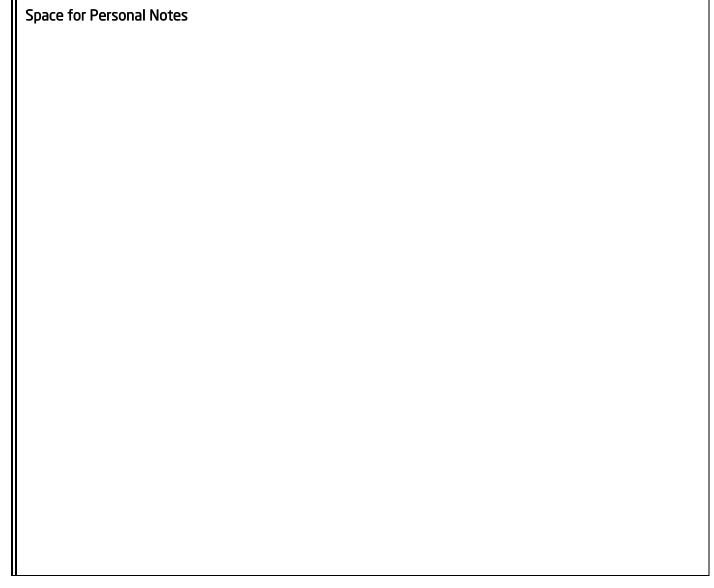
- The original coordinate is called the **FeeTmage**
- The transformed coordinate is called the Twage

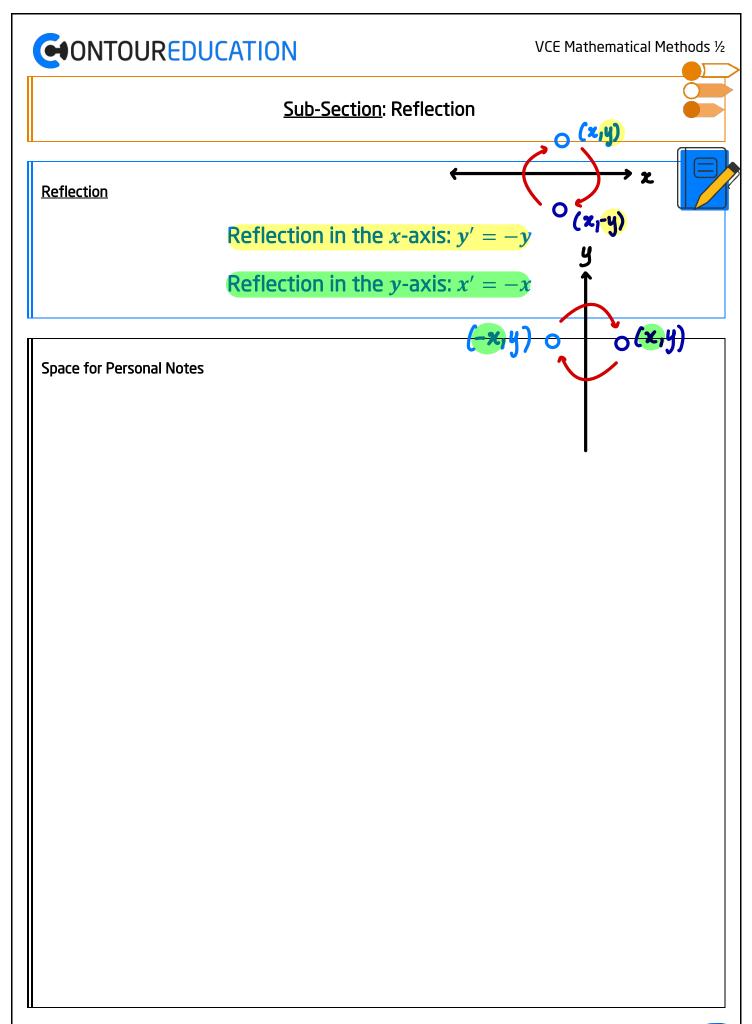
Pre-Image: (x, y)

Image: (x', y')

NOTE: The x' and y' notation will be used quite heavily!

NOTE: We are applying the transformations on (x, y) not (x', y').





Sub-Section: Translation

Translation

Translation by d units in the positive direction of y-axis: y' = y + d

Question 1

Find the image (x', y') after applying the following transformations to (x, y).

Dilation by a factor 4 from the x-axis. (x)

Dilation by a factor 3 trom use.

Translation by 3 units in the negative direction of the x-axis. (3x-3,4y)Also positive direction of the y-axis. (3x-3,4y)

Key Takeaways

- \checkmark The transformed point is called the image and is denoted by (x', y').
- ✓ The dilation factor is multiplied by the original coordinates.
- Reflection makes the original coordinates the negative of their original values.
- Translation adds a unit to the original coordinates.

Sub-Section: Basic Transformation of Points

Let's try to apply all types of transformations to a point!

Question 2

Find the image (x', y') after applying the following transformations to (x, y).

Dilation by a factor 2 from the x-axis. (x_1 2 y_2

Dilation by a factor 4 from the y-axis. $(4x_1-2y_1)$ Reflection in the x-axis. $(4x_1-2y_1)$ Translation by 2 units in the negative direction of the x-axis. $(4x_1-2y_1)$ Translation by 3 units in the positive direction of the y-axis. $(4x_1-2y_1)$

NOTE: Order Is Important!

Apply the next transformation on top of everything that has already been done!

Sub-Section: The Order of Transformations

What is the order of transformations the same as?

The Order of Transformation

Order = BODMAS Order

Question 3

The series of transformations, "a dilation by a factor $\frac{1}{2}$ from the x-axis and a translation by 3 units up" yields the same result as the series of transformations, "a translation by a units up and a dilation by a factor b from the x-axis." Find the values of a and b.

$$\frac{1}{2}y+3 = b(y+a)$$

$$\frac{1}{2}(y+6) = b(y+a)$$

NOTE: Dilation factors don't change!

Sub-Section: Interpreting the Transformation of Points

Question 4

Consider the transformation which maps:

x' = 3x + 6

v' = -2(v + 2)

State the transformation in DRT (Dilation, Reflection, Translation) order.

3. Refution in n 4. 6 might 5. 4 down

b. State the transformation in the translation first order.

Key Takeaways

- \checkmark Transformations should be interpreted when x' and y' are isolated.
- ▼ The order of transformation follows the BODMAS order.
- To change the order of transformations, we either factorise or expand.

Sub-Section: Applying Transformations to Functions

Let's now work with functions!

Transformation of Functions

The aim is to get rid of the old variables, x and y, and have the new variables, x' and y', instead.

$$y = f(x) \rightarrow y' = f(x')$$

- Steps:
 - 1. Transform the points.
 - **2.** Make x and y the subjects.
 - **3.** Substitute them into the function.

ONTOUREDUCATION

Question 5

a.
$$f(x) = x^2$$

Dilation by factor 3 from the x-axis. (2,34)

Reflect in the y-axis. (-x,3y)

Translate 3 units to the left. (-x-3, 3y)

Dilate by a factor of 5 from the y-axis. (5(-x-3), 3y)

$$\chi = \frac{2'+15}{-5}$$

$$\frac{y}{3} = \left(\frac{x+15}{-5}\right)^2$$

b.
$$f(x) = \sqrt{x}$$

(44,4) Dilate by a factor of $\frac{1}{4}$ from the y-axis.

Dilate by a factor of 3 from the x-axis. (4x,34)

Translate 4 units to the left. (4x-4, 34)

Translate 1 unit up.

Reflect in the *y*-axis.

$$x = -4(x'-4)$$

$$y = \frac{y'-1}{2}$$

$$\frac{4^{4}}{3} = \sqrt{4(x^{4})}$$

Sub-Section: Finding the Applied Transformations

Now, let's go backwards!

Reverse Engineering

- Steps:
 - 1. Add the dashes (') back to the transformed function.
 - **2.** Make f() the subject.
 - **3.** Equate the LHS of the original and transformed functions to the RHS of the original and transformed functions.
 - **4.** Make x' and y' the subjects and interpret the transformations.

Your turn!

Question 6

State a series of transformations (in order) that allow f(x) to be transformed into g(x).

a.
$$f(x) = 2(x+1)^2 + 3$$
 and $g(x) = 6(x-4)^2 - 3$.

$$y = 2(x+1) + 3$$
 $y' = 6(x-4)^2 - 3$

$$\frac{y-3}{2} = (2+1)^2$$
 $\frac{y+3}{6} = (x-4)^2$

$$\frac{y-3}{2} = \frac{y'+3}{6}$$

$$y' = 3y - 12$$

$$1. \text{ Dil 3 from x}$$

$$2. \text{ 12 down}$$

$$b. f(x) = 3(x - 1)^2 \text{ and } g(x) = \frac{1}{2}(2x + 3)^2 + 1.$$

b.
$$f(x) = 3(x-1)^2$$
 and $g(x) = \frac{1}{2}(2x+3)^2 + 1$.

$$y = 3(x-1)^2$$
 $y' = \frac{1}{2}(2x'+3)^2+1$

$$\frac{y}{3} = (x-1)^2$$
 $2(y-1) = (2x+3)^2$

$$\frac{y}{3} = 2y' - 2$$
 $\chi - 1 = 2x' + 3$

$$y' = \frac{1}{6}y + 1$$
 $x' = \frac{1}{2}x - 2$

Key Takeaways

- We transform the coordinates first, then transform the function.
- To transform the function, replace its old variables with the new ones.
- To find the transformations, simply equate LHS with RHS after separating the transformations of x and y.

Section B: Warmup Test (15 Marks)

INSTRUCTION: 15 Marks. 15 Minutes Writing.

Question 7 (4 marks)

Consider the transformation T where $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (3x - 6, -2y + 4). Describe in words what the transformation T does with:

a. Dilation and reflections before translations. (1 mark)

- 1. Dil 3 from y

- 2. Dil 2 from x
 3. Reflection in x x' = 3x 64. 6 left y' = -2y + 45. 4 up

b. Translations before dilations and reflections. (2 marks)

- 3. Reflection in a x' = 3(x-2)4. Di 3 from y y' = -2(y-2)5. Di 1 2 from n

(यथु)

c. The series of transformations given by "a dilation by a factor of 2 from the x-axis, followed by a translation of 6 units up", yields the exact same result as the series of transformations given by "a translation by a units up, followed by a dilation by a factor of b from the x-axis".

Find the values of a and b. (1 mark) (a, b(y+a))

$$2y+6 = b(y+a)$$

$$2(y+3) = b(y+a)$$

Question 8 (3 marks)

Consider the following function: $f(x) = (x+3)^2$

Apply the following transformations to the function above.

Dilation by a factor of $\frac{1}{2}$ from the y-axis.

Dilation by a factor of 3 from the x-axis. ($\frac{1}{2}$ &y)

Translation by 2 units in the negative direction of the x-axis. $(\frac{1}{2}x-2, \frac{3}{4}y)$ Translation by 6 units in the positive direction of the y-axis. $(\frac{1}{2}x-2, \frac{3}{4}y+6)$ Reflection in the y-axis. $(-(\frac{1}{2}x-2), \frac{3}{4}y+6)$

		$y = (x+3)^2$
x'= = = 2x+2	x = -2(x'-2)	↓ ↓
y'= 3y+6	y = <u>y-6</u>	$\frac{4^{2}}{3} = (-2(x^{2}) + 3)^{2}$
		$f(x) = 3(-2x+7)^2 + 6$

Question 9 (2 marks)

For the function $f(x) = \sqrt{2x + 1}$, the function f is dilated by a factor of 3 from the x-axis, translated 2 units in the negative x-direction and then is reflected in the y-axis to produce the function g.

Find the rule for g(x).

$$(-(x-2),3y)$$

		$y = \sqrt{2x+1}$
x'= -x+2	x= 2-x'	4
y'= 3y	y = 1/3 / 1	$\frac{1}{3}y' = \sqrt{2(2-x')+1}$
		: g(z) = 3√5-x
		7

Question 10 (3 marks)

Consider the following functions:

$$f(x) = \sqrt{x+3}$$

$$g(x) = -4\sqrt{4 - 2x} + 3$$

Find the set of transformations that maps f(x) to g(x).

$$g: y' = -4\sqrt{4-2x'} + 3$$

$$y = \frac{y'-3}{4} \qquad \text{3.} \quad z+3 = 4-2x'$$

$$y' = -4y + 3$$
 $x' = -\frac{1}{2}x + \frac{1}{2}$

Question 11 (3 marks)

Consider the following functions:

$$f_1(x) = x^3$$

$$f_2(x) = -4(2x+1)^3 - 5$$

Find the set of transformations that maps the function f_1 into f_2 .

$$\frac{1}{x}$$
: $y = x^3$

$$f_2: y' = -4(2x'+1)^3-5$$

$$\frac{y'+5}{-4} = (2x'+1)^3$$

$$y = \frac{y'+5}{-4} \qquad x = 2x'+1$$

Section C: Transformations Exam Skills

Sub-Section: Quick Method

Let's try to do it more quickly!

Active Recall: Interpretation of Transformations

 \blacktriangleright When the new variables x' and y' are the subject, we can read the transformation directly.

$$x' = x + 5 \rightarrow 5 \text{ right}$$

- When the original variables x and y are the subject instead, we must read the transformation in the opposite way.
- This includes the order of transformation!

$$x = x' - 5 \rightarrow 5 \text{ right}$$

Quick Method

- \blacktriangleright The transformation of x in the function is represented in the opposite way in the final function.
- For applying transformation in a quick method:

Apply everything for x in the opposite direction, including the order!

For interpreting transformation in a quick method:

Read everything for x in the opposite direction, including the order!

Question 12 Walkthrough.

Apply the following transformations to $y = x^2$ using the quick method.

y

 $\left(\frac{\chi-2}{2}\right)$

Dilation by a factor 3 from the x-axis.

Зy

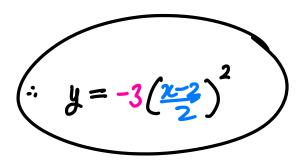
OPPOSITE

Dilation by a factor 2 from the *y*-axis.

SAME

Reflection in the x-axis.

Translation of 2 units right.



NOTE: For x, simply apply everything in the opposite way and order!

Your turn!

Question 13

Apply the following transformations to $y = \log_2(x)$ using the quick method.

Dilation by a factor $\frac{1}{4}$ from the *x*-axis.

3(x+5)

Dilation by a factor 3 from the y-axis.

-(x+5)

Reflection in the *y*-axis.

2+5

Translation of 5 units left.

Translation of 2 units up.

X

NOTE: For x, simply apply everything in the opposite way and order!

Now, interpreting transformations!

X: 1. 1 left
1. Dil 2 fom x
2. Dil \frac{1}{3} fon y
2. 3 down

NOTE: The order is opposite to BODMAS for x.

Your turn!

State the transformation required for $y = 2^{x}$ to transform into $y = 5 \times 2^{3(x+1)} + 3$.

Sub-Section: Finding Opposite Transformations

How can we undo transformations?

Analogy: Untying a Shoelace

- Sam is being silly and ties his shoelace when he was meant to take off his shoes at a chocolate restaurant that he's booked 3 years in advance.
- Which knot should he start untying first?

[First Knot] [Last Knot]

Similarly, which transformations should we undo first? [First Transformation] [Last Transformation]

Finding Opposite Transformations

- Order is **revened**
- All transformations are Opposite

Question 16

a. Find the transformation from $f(x) = 3(x+1)^2 - 6$ to $g(x) = x^2 + 3$.

b. Hence, state the transformation from g(x) to f(x).

$$g \rightarrow f$$
:

<u>Sub-Section</u>: Finding Domain, Range, Points, and Tangents of Transformed Functions

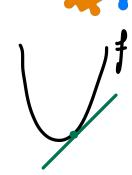
Analogy: Function, Points, and Tangents

Let's say your entire family decides to move 2 units right.

Family: Let's go 2 units right.

What does that mean for you?

You: 2 units right



Similarly, if a function moves in a certain way, how should its points, tangents, domain, and range move? [Same way] [Different way]

Finding Domain, Range, and Points of Transformed Functions

Definition

- Everything moves together as a function.
- > Steps:
 - 1. Find the transformations between two functions.
 - **2.** Apply the same transformations to domain, range, points, and tangents.

Question 17 Walkthrough.

It is known that f(x) has a domain of [2,4] and a range of (0,20].

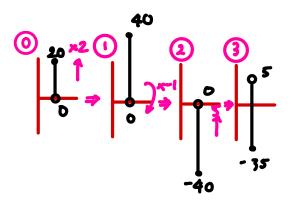
The function has been transformed to g(x) = -2f(x+3) + 5.

a. State the transformation from f(x) to g(x).

b. State the domain of g(x).

c. State the range of g(x).

y
$$\in$$
 (0,20]
1 2 from $\times \in (0,40]^{2} \times 2$
1 2 from $\times \in [-40,0)^{2} \times -1$
5 up $\in [-35,5)^{2} + 5$



Question 18

It is known that f(x) has an x-intercept at (3,0) and a range of [-5,10).

The function has been transformed to g(x) = 2f(2x - 1).

a. State the transformation from f(x) to g(x).

b. State the x-intercept of g(x).

c. State the range of g(x).

NOTE: Everything changes with respect to the transformations.

Sub-Section: Finding Transformations of Inverse Functions

REMINDER: Don't forget Inverse Relations.

Inverse functions swap x and y.

<u>Discussion:</u> If f(x) moves 2 units right, where would $f^{-1}(x)$ go to?

\$(x): x'=x+2 2ight ✓

Finding Transformation of Inverse Functions

**Ey

$$f(x) \rightarrow f(x-2)$$
: 2 Right

$$f^{-1}(x) \rightarrow f^{-1}(x) + 2:2 \text{ Up}$$

- Steps:
 - 1. Find the transformation between two original functions.
 - 2. Inverse the transformations found in 1.

Question 19 Walkthrough.

It is known that f(x) has been transformed to g(x) = 3f(x-4) + 1.

State the transformations required for $f^{-1}(x)$ to transform to $g^{-1}(x)$.

Active Recall: Steps on Finding Transformations of Inverse Functions

- 1. Find the _______ between two original functions.
- 2. **Inume** the transformations found in 1.

(Juap x & y)

Ouestion 20

It is known that $f(x) = 2(x-1)^2 + 3$ has been transformed to $g(x) = 4(x+2)^2 - 1$.

State the transformations required for $f^{-1}(x)$ to transform to $g^{-1}(x)$.

Sub-Section: Multiple Pathways for the Same Transformation

<u>Discussion:</u> Consider the transformations required for $f(x) = x^2$ to $g(x) = (2x)^2$. What happens if we take the factor of 2 inside the square bracket out?

Expanded:
$$y = 4x^{2}$$
1. Dil 4 from x

$$y = \left(\frac{2x}{2x}\right)^2$$

Multiple Pathways

- Same transformations can be done differently by either putting it in or out of the $f(\cdot)$.
- Commonly, look for basic algebra, index, and log laws.

Question 21 Walkthrough.

Find the transformation for $y = x^2$ to transform into $y = 4x^2$ by using a dilation from the y-axis.

$$y = \left(\frac{2x}{2}\right)^2$$

$$21 \pm \text{for } y$$

Question 22

Find the transformation for $y = (x + 1)^3 - 2$ to transform into $y = 8x^3$ without using a dilation from the x-axis.

$$y' = (2x')^3$$

- 1. 1 night (x) $y' = (2x')^3$ 2. Dil $\frac{1}{2}$ from y3. 2 up

NOTE: This skill is important for MCQ questions.

Section D: Exam 1 (17 Marks)

Question 23 (2 marks)

The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (2x+4, -y+2) maps the function $f(x) = \underline{x}^2$ to a function g(x). Find the rule for g(x).

$$x = \frac{x'-4}{2}$$
 $y' = -y+2$

"
$$g(x) = -\left(\frac{x-4}{2}\right)^2 + 2$$

Question 24 (4 marks)

The following sequence of transformations:

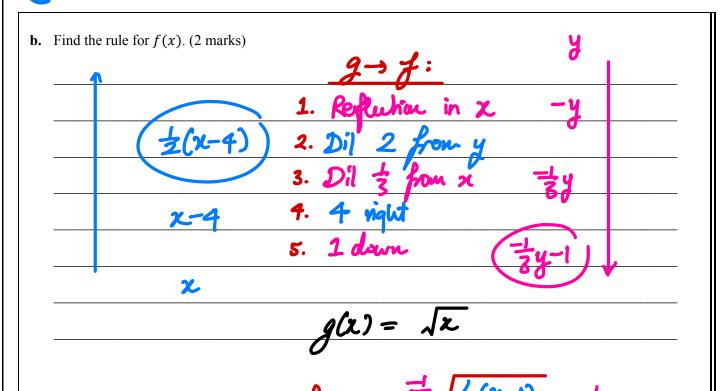
- A translation 1 unit up.
- A translation 4 units left.
- \blacktriangleright A dilation by factor 3 from the *x*-axis. \checkmark
- A dilation by factor $\frac{1}{2}$ from the y-axis.
- \blacktriangleright A reflection in the x-axis. \checkmark

is applied to the function f(x) so that f(x) is mapped to $g(x) = \sqrt{x}$.

a. Find a sequence of transformations that maps g(x) to f(x). (2 marks)

- 1. Reflection in x
- 2. Dil 2 from y
- 3. Dil & from x
- 4. 4 nght
- 5. 1 down

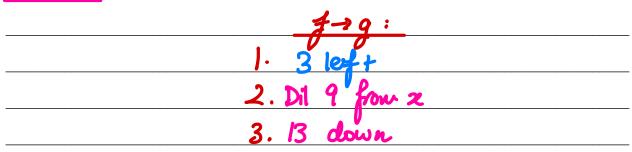
CONTOUREDUCATION



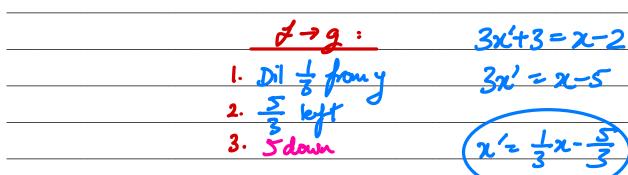
Question 25 (4 marks) CTS (2-2)+1

Consider the functions $f(x) = x^2 - 4x + 5$ and $g(x) = 9(x+1)^2 - 4$.

a. Find a sequence of three transformations in the order DTT that maps f(x) to g(x), and where the dilation is from the x-axis. (2 marks)



b. Find a different sequence of transformations in the order <u>DTT</u>, where the <u>dilation</u> is from the *y*-axis, that also maps f(x) to g(x). (2 marks)



Question 26 (5 marks)

Consider the function $f(x) = 2\sqrt{(x-1)^2 + 3} - 2$ defined on the domain [0, 4].

a. The function g is obtained by applying the following sequence of transformations to f.

A dilation by factor $\frac{1}{2}$ from the y-axis.

- A dilation by factor 3 from the x-axis.
- A translation 1 unit right.
 - A reflection in the x-axis.
- State the domain of g. (1 mark)

ii. Find the rule for g(x). (2 marks)

$$f(x) = 2 \sqrt{(x-1)^2 + 3} - 2$$

$$2 \cdot g(x) = -3 \left(2 \sqrt{(2(x-1)^2 + 3)^2 + 3} - 2\right)$$

$$3(x) = -6 \sqrt{(2x-3)^2 + 3} + 6 \sqrt{2x-3}$$

CONTOUREDUCATION

b. Let $h(x) = \sqrt{(x+1)^2 + 3} + 1$. Write down a sequence of three transformations that map f(x) to h(x). (2 marks)

$$f(x) = 2 \sqrt{(x-1)^2 + 3} - 2$$

$$h(x) = \sqrt{(x+1)^2 + 3} + 1$$

f > h:

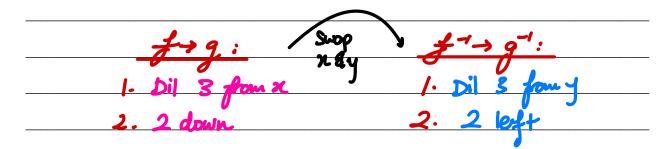
1. Dil 当from x

3.2 pgt

Question 27 (2 marks)

Consider the function f with inverse function f^{-1} . The function f is transformed to the function g by the following sequence of transformations: A dilation by factor 3 from the x-axis and a translation 2 units down.

Write down the transformations that take f^{-1} to g^{-1} .



Section E: Tech Active Exam Skills

G

Calculator Tip: Finding Transformed Functions

- Save the function as f(x).
- Substitute the x and y in terms of x' and y'.
- Solve for y!
- Can also apply the transformations directly to f(x). Must make sure you interpret the transformations correctly or you can easily make a mistake doing this.

Question 28 Tech-Active.

Apply the following transformations to $y = 2\sqrt{3x + 6}$.

Dilation by a factor $\frac{1}{2}$ from the x-axis. (2, $\frac{1}{2}$)

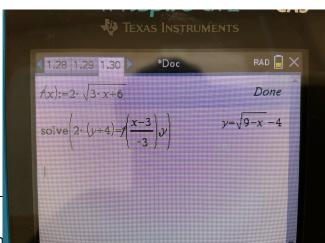
Dilation by a factor 3 from the y-axis. ($3x_1 + y_1$)

Reflection in the y-axis. $(-3x, \frac{1}{2}y)$

Translation of 3 units right. (-3x+3, 2y)

Translation of 4 units down. (-3x+3, \frac{1}{2}y-4)

$$x' = -3x+3$$
 $\Rightarrow x = \frac{x'-3}{-3}$
 $y' = \frac{1}{2}y-4$ $\Rightarrow y = 2(y'+4)$



Calculator Tip: Mathematica UDF

ApplyTransformList[]

ApplyTransformList[f[x], $\{x, y\}$, list of transforms]
Applies the list of transforms to f[x] in the chronological order.

ApplyTransformList[x^2 , {x, y}, {x-1, 2x, y+3}]

$$4 + x + \frac{x^2}{4}$$

ApplyTransformInvList[f[x], $\{x, y\}$, $\{x-1, 2x, y+3\}$]

ApplyTransformInvList[Sin[x], $\{x, y\}$, $\{x - \pi/2, 2y, y - 1\}$]

$$Sin\left[\frac{x}{2}\right]^2$$

ApplyTransformInvList[]

ApplyTransformInvList[f[x], $\{x, y\}$, list of transforms]

Applies the list of transforms to f[x] in reverse order and as the inverse to the transforms of ApplyTransformList.

 $In[a]:= ApplyTransformInvList[x^2, \{x, y\}, \{x-1, 2*x, y+3\}]$ $Out[a]:= ApplyTransformInvList[x^2, \{x, y\}, \{x-1, 2*x, y+3\}]$

$$1 - 8 x + 4 x^2$$

 $In[a]:= ApplyTransformInvList[f[x], \{x, y\}, \{x-1, 2*x, y+3\}]$ $Out[a]:= ApplyTransformInvList[f[x], \{x, y\}, \{x-1, 2*x, y+3\}]$

Sin[x]

VCE Mathematical Meth

Calculator Tip: TI UDF

transform()

Transform a Function

transform
$$\left| \sin(x), x, \left\{ x - \frac{\pi}{2}, 2 \cdot y, y - 1 \right\} \right|$$

- ▶ Translation $\frac{\pi}{2}$ units along the neg. x-dir. $\cos(x)$
- ▶ Dilation by factor of 2 from the x-axis 2·cos(x)
- ▶ Translation -1 unit along the neg. y-dir. 2·cos(x)-1

Overview:

Apply any sequence of transformations to a function. The program will display the transformed function after each step.

Input:

Other notes:

The list of transformations can either be presented in a (horizontal or vertical) matrix of expressions or a list of expressions

transform_inv()

Invert a Transformation

transform_inv
$$(x^2,x,\{x-1,2\cdot x,y+3\})$$

▶ Inverted Transformations:

$$\left\{y-3,\frac{x}{2},x+1\right\}$$

- ▶ Translation -3 units along the neg. y-dir.
 x²-3
- ▶ Dilation by factor of $\frac{1}{2}$ from the y-axis

$$4 \cdot x^2 - 3$$

 \blacktriangleright Translation 1 unit along the pos. x-dir.

$$4 \cdot x^2 - 8 \cdot x + 1$$

Overview:

Find the preimage of a function under a list of transformations. The program will display the list of inverted transformations and the transformed function after each step.

Input:

Other notes:

The list of transformations can either be presented in a row or column matrix, or a list of expressions

Section F: Exam 2 (15 Marks)

Question 29 (1 mark)

Let $f: [0,4] \to \mathbb{R}$, $f(x) = x^2 + 4$. The graph of f is transformed by a reflection in the x-axis, followed by a dilation of factor 2 from the y-axis, then a dilation by a factor of 2 from the x-axis. The resulting graph is defined by:

- **A.** $g:[0,4] \to \mathbb{R}, g(x) = -\frac{x^2}{8} 8$
- **B.** $g: [0,8] \to \mathbb{R}, g(x) = -\frac{x^2}{16} 4$
- C. $g:[0,8] \to \mathbb{R}, g(x) = -\frac{x^2}{8} 4$
- **D.** $g:[0,4] \to \mathbb{R}, g(x) = -\frac{x^2}{4} 8$

Question 30 (1 mark)

The point P(2, 4) lies on the graph of f. The point Q(4, 12) lies on the graph of h. A transformation that maps the graph of f to the graph of h also maps the point f to the point f to the point f to the graph of f and f could be given by:

- **A.** $h(x) = \frac{1}{2} f(x+2)$
- **B.** h(x) = 2f(x-2)
- $\mathbf{C.} \ \ h(x) = 3f(x-2)$
- **D.** h(x) = 3f(x+2)

Question 31 (1 mark)

A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, which maps the curve with equation $y = 4x^2$ onto the curve with equation $y = (x - 1)^2 + 3$, has the rule:

- **A.** T(x,y) = (2x + 1, y + 3)
- **B.** $T(x,y) = \left(\frac{x}{2} + 1, y + 3\right)$
- C. T(x, y) = (x 1.4y + 3)
- **D.** $T(x,y) = \left(\frac{x}{2} + 2, y + 3\right)$

y= \ +6

1. 3 left

2. Dil & from 2

Question 32 (1 mark)

image rule $y = 2\sqrt{x-3} + 6$ from the original func

A sequence of transformations is applied to create the image rule $y = 2\sqrt{x-3} + 6$ from the original function $y = \sqrt{x}$, in an appropriate order, could be:

- **A.** A dilation by a factor of 4 from the x-axis, a dilation by factor 2 from the y-axis, a translation 3 units to the left, and finally a translation of 6 units up.
- **B.** A dilation by a factor of 2 from the x-axis, a translation 3 units to the left, and finally a translation of 6 units up.
- C. A dilation by a factor of $\frac{1}{4}$ from the y-axis, a translation 3 units to the right, and finally a translation 6 units up.
- **D.** A dilation by a factor of 2 from the x-axis, followed by a reflection in the y-axis, a translation 2 units right, and finally a translation of 3 units up.

Question 33 (1 mark)

If the graphs of y = h(x) and y = k(x) intersect at (p,q), then the graphs of y = 3h(2x) and y = 3k(2x) intersect at:

- **A.** $\left(2p,\frac{q}{3}\right)$
- **B.** $\left(\frac{p}{3}, 2q\right)$
- C. $\left(\frac{p}{2}, 3q\right)$
- **D.** $(3p, \frac{q}{2})$

Question 34 (10 marks)

Consider the functions:

$$f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = (x+1)^2(x-2)$$

$$g: \mathbb{R} \longrightarrow \mathbb{R}, g(x) = x^3 - 3x + 2$$

a.

i.	Factorise	a(x).	(1	mark)
	1 actorise	$g(\lambda)$.	(τ	munt

$$g(x)=(x-1)^2 (x+2)$$

ii. Find the rule for the image of f, if f is reflected in the y-axis. (1 mark)

$$f(-x)=-(x+2)(1-x)^2$$

iii. Hence or otherwise, describe a sequence of **reflections** that map the graph of f onto the graph of g. (2 marks)

Note that $(1-x)^2=(x-1)^2$.

A reflection in the y-axis, followed by,

A reflection in the x-axis.

iv. Describe a single translation that maps the graph of f onto the graph of g. (1 mark)

Note that $f(x)=x^3-3x-2$.

Required translation is a shift 4 units up.

Consider the following transformations:

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, T(x, y) = (2x - 1, 3y + 2)$$

$$S: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, S(x, y) = (-x + 2, 2y - 3)$$

b.

i. Find the rule for the image of f after it has undergone the transformation T. (2 marks)

Solution: Let $f_T(x)$ be the image of f under the transformation T.

$$f_T(x) = 3f\left(\frac{1}{2}(x+1)\right) + 2 = 3\left(\frac{x+1}{2} - 2\right)\left(\frac{x+1}{2} + 1\right)^2 + 2$$
$$= \frac{1}{8}\left(3x^3 + 9x^2 - 27x - 65\right)$$

ii. Hence, find the rule for the image of f after it has undergone the transformation T followed by the transformation S. (1 mark)

We apply the transformation S to $f_T(x)$.

$$f_{TS}(x) = 2f_T(2-x) - 3 = \frac{1}{4} \left(-3x^3 + 27x^2 - 45x - 71 \right)$$

C.	This the coordinates of the point $F(u, v)$, if the image of the point F under I and S is the same. (2 marks)

Solution: Solve the equations

$$2x-1=-x+2$$

$$3y + 2 = 2y - 3$$

$$x = 1$$
 and $y = -5$. Therefore, $P(1, -5)$

Contour Checklist

Learning Objective: [2.5.1] - Apply Quick Method to Find Transformations Key Takeaways For applying transformations in the quick method:

- Apply everything for x in the ______ direction, including the order!
 For interpreting transformations in the quick method:
 - \circ Read everything for x in the opposite direction, including the ______!
 - □ <u>Learning Objective</u>: [2.5.2] Find Opposite Transformations

Key Takeaways

- Order is reversed.
- All transformations are in the _______ direction.

Learning Objective: [2.5.3] - Apply Transformations of Functions to Find Their Domain, Range, Transformed Points

Key Takeaways

- Everything moves together as a function.
- Steps:
 - 1. Find the ______ between two functions.
 - 2. Apply the _____ transformations to domain, range, and points.

<u>Learning Objective</u>: [2.5.4] - Find Transformations of the Inverse Functions f(x)

Key Takeaways

- Steps:
 - 1. Find the **two original functions**.
 - 2. Step 14 for the transformations found in 1.

<u>Learning Objective</u>: [2.5.5] - Find Multiple Transformations for the Same Functions

Key Takeaways

- \square Same transformations can be done \square by either putting it in or out of the f().
- Commonly, look for basic algebra, index, and log laws.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-methods-consult-2025

