CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Transformations Exam Skills [2.5]

Workbook

Outline:

Pg 2-12

Pg 19-31

Recap of Transformations

- Image and Pre-Image
- Dilation
- Reflection
- Translation
- Basic Transformation of Points
- The Order of Transformations
- Interpreting the Transformation of Points
- Applying Transformations to Functions
- Finding the Applied Transformations

Warmup Test Pg 13-18

Transformations Exam Skills

Quick Method

- Finding Opposite Transformations
- Finding Domain, Range, Points, and Tangents of Transformed Functions
- Finding Transformations of Inverse Functions
- Multiple Pathways for the Same Transformation

<u>Exam 1</u> Pg 32-38

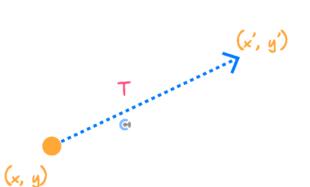
Tech Active Exam Skills Pg 39-41

Exam 2 Pg 42-47

Learning Objectives:

- MM12 [2.5.1] Apply Quick Method to Find Transformations
- MM12 [2.5.2] Find Opposite Transformations
- MM12 [2.5.3] Apply Transformations of Functions to Find Their Domain, Range, Transformed Points
- **MM12 [2.5.4]** Find Transformations of the Inverse Functions f(x)
- MM12 [2.5.5] Find Multiple Transformations for the Same Functions

Section A: Recap of Transformations


Sub-Section: Image and Pre-Image

What do we call an original coordinate and a transformed coordinate?

Image and Pre-Image

- The original coordinate is called the ______
- The transformed coordinate is called the _____

Pre-Image: (x, y)

Image: (x', y')

NOTE: The x' and y' notation will be used quite heavily!

Sub-Section: Dilation

Dilation

Dilation by factor a from the x-axis: y' = ay

Dilation by factor b from the y-axis: x' = bx

NOTE: We are applying the transformations on (x, y) not (x', y').

Sub-Section: Reflection

Reflection

Reflection in the *x*-axis: y' = -y

Reflection in the *y*-axis: x' = -x

Sub-Section: Translation

Translation

Translation by c units in the positive direction of x-axis: x' = x + c

Translation by d units in the positive direction of y-axis: y' = y + d

Question 1

Find the image (x', y') after applying the following transformations to (x, y).

Dilation by a factor 4 from the x-axis.

Dilation by a factor 3 from the *y*-axis.

Translation by 3 units in the negative direction of the x-axis.

Translation by 6 units in the positive direction of the y-axis.

Key Takeaways

- \checkmark The transformed point is called the image and is denoted by (x', y').
- ✓ The dilation factor is multiplied by the original coordinates.
- ☑ Reflection makes the original coordinates the negative of their original values.
- ✓ Translation adds a unit to the original coordinates.

Sub-Section: Basic Transformation of Points

Let's try to apply all types of transformations to a point!

Question 2

Find the image (x', y') after applying the following transformations to (x, y).

Dilation by a factor 2 from the x-axis.

Dilation by a factor 4 from the *y*-axis.

Reflection in the x-axis.

Translation by 2 units in the negative direction of the x-axis.

Translation by 3 units in the positive direction of the *y*-axis.

NOTE: Order Is Important!

Apply the next transformation on top of everything that has already been done!

Sub-Section: The Order of Transformations

What is the order of transformations the same as?

The Order of Transformation

Order = BODMAS Order

Question 3

The series of transformations, "a dilation by a factor $\frac{1}{2}$ from the x-axis and a translation by 3 units up" yields the same result as the series of transformations, "a translation by a units up and a dilation by a factor b from the x-axis." Find the values of a and b.

NOTE: Dilation factors don't change!

Sub-Section: Interpreting the Transformation of Points

Question 4

Consider the transformation which maps:

$$x' = 3x + 6$$

$$y' = -2(y+2)$$

a. State the transformation in DRT (Dilation, Reflection, Translation) order.

b. State the transformation in the translation first order.

Key Takeaways

- \checkmark Transformations should be interpreted when x' and y' are isolated.
- ☑ The order of transformation follows the BODMAS order.
- ☑ To change the order of transformations, we either factorise or expand.

Sub-Section: Applying Transformations to Functions

Let's now work with functions!

Transformation of Functions

The aim is to get rid of the old variables, x and y, and have the new variables, x' and y', instead.

$$y = f(x) \rightarrow y' = f(x')$$

- Steps:
 - 1. Transform the points.
 - **2.** Make x and y the subjects.
 - **3.** Substitute them into the function.

Question 5

a. $f(x) = x^2$

Dilation by factor 3 from the x-axis.

Reflect in the *y*-axis.

Translate 3 units to the left.

Dilate by a factor of 5 from the *y*-axis.

b.
$$f(x) = \sqrt{x}$$

Dilate by a factor of $\frac{1}{4}$ from the y-axis.

Dilate by a factor of 3 from the x-axis.

Translate 4 units to the left.

Translate 1 unit up.

Reflect in the *y*-axis.

Sub-Section: Finding the Applied Transformations

Now, let's go backwards!

Reverse Engineering

- Steps:
 - 1. Add the dashes (') back to the transformed function.
 - **2.** Make f() the subject.
 - **3.** Equate the LHS of the original and transformed functions to the RHS of the original and transformed functions.
 - **4.** Make x' and y' the subjects and interpret the transformations.

Your turn!

Question 6

State a series of transformations (in order) that allow f(x) to be transformed into g(x).

a.
$$f(x) = 2(x+1)^2 + 3$$
 and $g(x) = 6(x-4)^2 - 3$.

b.
$$f(x) = 3(x-1)^2$$
 and $g(x) = \frac{1}{2}(2x+3)^2 + 1$.

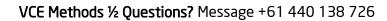
Key Takeaways

- ☑ We transform the coordinates first, then transform the function.
- $\ensuremath{\checkmark}$ To transform the function, replace its old variables with the new ones.
- Arr To find the transformations, simply equate LHS with RHS after separating the transformations of x and y.

Section B: Warmup Test (15 Marks)

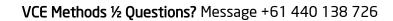
INSTRUCTION: 15 Marks. 15 Minutes Writing.

Question 7 (4 marks)					
Consider the transformation T where $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (3x - 6, -2y + 4)$. Describe in words what the transformation T does with:					
a. Dilation and reflections before translations. (1 mark)					
b. Translations before dilations and reflections. (2 marks)					

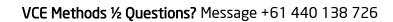


VCE Methods ½ Questions? Message +61 440 138 726

c.	The series of transformations given by "a dilation by a factor of 2 from the x -axis, followed by a translation of 6 units up", yields the exact same result as the series of transformations given by "a translation by a units up, followed by a dilation by a factor of b from the x -axis".
	Find the values of a and b . (1 mark)
St	pace for Personal Notes



Question 8 (3 marks)	
Consider the following function: $f(x) = (x + 3)^2$	
Apply the following transformations to the function above.	
Dilation by a factor of $\frac{1}{2}$ from the y-axis.	
Dilation by a factor of 3 from the x -axis.	
Translation by 2 units in the negative direction of the x -axis.	
Translation by 6 units in the positive direction of the y -axis.	
Reflection in the <i>y</i> -axis.	
Space for Personal Notes	



Question 9 (2 marks)				
For the function $f(x) = \sqrt{2x+1}$, the function f is dilated by a factor of 3 from the x -axis, translated 2 units in the negative x -direction and then is reflected in the y -axis to produce the function g .				
Find the rule for $g(x)$.				
· 				
Space for Personal Notes				

Question 10 (3 marks)	
Consider the following functions:	
$f(x) = \sqrt{x+3}$	
$g(x) = -4\sqrt{4 - 2x} +$	- 3
Find the set of transformations that maps $f(x)$ to $g(x)$.	
Space for Personal Notes	

onsider the follow	ving functions:					
			$f_1(x) = x^3$			
		$f_2(x)$)=-4(2x+	$(1)^3 - 5$		
nd the set of tran	sformations that	maps the fund	etion f_1 into f_2			
					 	_
						_
						_
						_
						-
						_
					 	_
					 	_
					 	_
pace for Person	al Notes					

Section C: Transformations Exam Skills

Sub-Section: Quick Method

Let's try to do it more quickly!

Active Recall: Interpretation of Transformations

 \blacktriangleright When the new variables x' and y' are the subject, we can read the transformation directly.

$$x' = x + 5 \rightarrow 5 \text{ right}$$

- When the original variables x and y are the subject instead, we must read the transformation in the opposite way.
- This includes the order of transformation!

$$x = x' - 5 \rightarrow 5 \text{ right}$$

Quick Method

- \blacktriangleright The transformation of x in the function is represented in the opposite way in the final function.
- For applying transformation in a quick method:

Apply everything for x in the opposite direction, including the order!

For interpreting transformation in a quick method:

Read everything for x in the opposite direction, including the order!

Apply the following transformations to $y = x^2$ using the quick method.

Dilation by a factor 3 from the x-axis.

Dilation by a factor 2 from the *y*-axis.

Reflection in the x-axis.

Translation of 2 units right.

NOTE: For x, simply apply everything in the opposite way and order!

Your turn!

Question 13

Apply the following transformations to $y = \log_2(x)$ using the quick method.

Dilation by a factor $\frac{1}{4}$ from the x-axis.

Dilation by a factor 3 from the *y*-axis.

Reflection in the *y*-axis.

Translation of 5 units left.

Translation of 2 units up.

NOTE: For x, simply apply everything in the opposite way and order!

Now, interpreting transformations!

Question 14 Walkthrough.

State the transformations required for $y = \sqrt{x}$ to transform into $y = 2\sqrt{3x + 1} - 3$.

NOTE: The order is opposite to BODMAS for x.

Your turn!

Question 15

State the transformation required for $y = 2^x$ to transform into $y = 5 \times 2^{3(x+1)} + 3$.

Sub-Section: Finding Opposite Transformations

How can we undo transformations?

Analogy: Untying a Shoelace

- Sam is being silly and ties his shoelace when he was meant to take off his shoes at a chocolate restaurant that he's booked 3 years in advance.
- Which knot should he start untying first?

[First Knot] / [Last Knot]

Similarly, which transformations should we undo first? [First Transformation] / [Last Transformation]

Finding Opposite Transformations

- Order is ______.
- All transformations are ______.

Question 16

a. Find the transformation from $f(x) = 3(x+1)^2 - 6$ to $g(x) = x^2 + 3$.

b. Hence, state the transformation from g(x) to f(x).

<u>Sub-Section</u>: Finding Domain, Range, Points, and Tangents of Transformed Functions

Analogy: Function, Points, and Tangents

Let's say your entire family decides to move 2 units right.

Family: Let's go 2 units right.

What does that mean for you?

Similarly, if a function moves in a certain way, how should its points, tangents, domain, and range move? [Same way] / [Different way]

Finding Domain, Range, and Points of Transformed Functions

- > Everything moves together as a function.
- > Steps:
 - 1. Find the transformations between two functions.
 - 2. Apply the same transformations to domain, range, points, and tangents.

Question 17 Walkthrough.

It is known that f(x) has a domain of [2,4] and a range of (0,20].

The function has been transformed to g(x) = -2f(x+3) + 5.

a. State the transformation from f(x) to g(x).

b. State the domain of g(x).

c. State the range of g(x).

Question 18

It is known that f(x) has an x-intercept at (3,0) and a range of [-5,10).

The function has been transformed to g(x) = 2f(2x - 1).

a. State the transformation from f(x) to g(x).

b. State the *x*-intercept of g(x).

c. State the range of g(x).

NOTE: Everything changes with respect to the transformations.

Sub-Section: Finding Transformations of Inverse Functions

REMINDER: Don't forget Inverse Relations.

Inverse functions swap x and y.

<u>Discussion:</u> If f(x) moves 2 units right, where would $f^{-1}(x)$ go to?

Finding Transformation of Inverse Functions

$$f(x) \rightarrow f(x-2)$$
: 2 Right

$$f^{-1}(x) \to f^{-1}(x) + 2:2 \text{ Up}$$

- > Steps:
 - 1. Find the transformation between two original functions.
 - 2. Inverse the transformations found in 1.

Question 19 Walkthrough.

It is known that f(x) has been transformed to g(x) = 3f(x - 4) + 1.

State the transformations required for $f^{-1}(x)$ to transform to $g^{-1}(x)$.

Active Recall: Steps on Finding Transformations of Inverse Functions

- 1. Find the ______ between two original functions.
- 2. _____the transformations found in 1.

Question 20

It is known that $f(x) = 2(x-1)^2 + 3$ has been transformed to $g(x) = 4(x+2)^2 - 1$.

State the transformations required for $f^{-1}(x)$ to transform to $g^{-1}(x)$.

Sub-Section: Multiple Pathways for the Same Transformation

200

<u>Discussion:</u> Consider the transformations required for $f(x) = x^2$ to $g(x) = (2x)^2$. What happens if we take the factor of 2 inside the square bracket out?

Multiple Pathways

- Same transformations can be done differently by either putting it in or out of the $f(\)$.
- Commonly, look for basic algebra, index, and log laws.

Question 21 Walkthrough.

Find the transformation for $y = x^2$ to transform into $y = 4x^2$ by using a dilation from the y-axis.

Ο	4	22
OH	estion	ZZ

Find the transformation for $y = (x + 1)^3 - 2$ to transform into $y = 8x^3$ without using a dilation from the x-axis.

NOTE: This skill is important for MCQ questions.

Section D: Exam 1 (17 Marks)

Question 23 (2 marks)				
The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x, y) = (2x + 4, -y + 2)$ maps the function $f(x) = x^2$ to a function $g(x)$. Find the rule for $g(x)$.				

	Space for Personal Notes
1	

Question 24 (4 marks)					
The following sequence of transformations:					
A translation 1 unit up.					
A translation 4 units left.					
A dilation by factor 3 from the x -axis.					
A dilation by factor $\frac{1}{2}$ from the y-axis.					
A reflection in the x -axis.					
is applied to the function $f(x)$ so that $f(x)$ is mapped to $g(x) = \sqrt{x}$.					
Find a sequence of transformations that maps $g(x)$ to $f(x)$. (2 marks)					

VCE Methods ½ Questions? Message +61 440 138 726

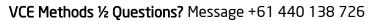
b.	Find the rule for $f(x)$. (2 marks)			
Space for Personal Notes				

יו				
Question 25 (4 marks)				
Consider the functions $f(x) = x^2 - 4x + 5$ and $g(x) = 9(x+1)^2 - 4$.				
a.	Find a sequence of three transformations in the order DTT that maps $f(x)$ to $g(x)$, and where the dilation is from the x -axis. (2 marks)	is		
b.	Find a different sequence of transformations in the order DTT, where the dilation is from the y-axis, that all maps $f(x)$ to $g(x)$. (2 marks)	lso		
Conso for Dorsonal Notes				
Space for Personal Notes				

Question 26 (5 marks)

Consider the function $f(x) = 2\sqrt{(x-1)^2 + 3} - 2$ defined on the domain [0, 4].

- **a.** The function g is obtained by applying the following sequence of transformations to f.
 - A dilation by factor $\frac{1}{2}$ from the y-axis.
 - \bullet A dilation by factor 3 from the *x*-axis.
 - A translation 1 unit right.
 - \bullet A reflection in the *x*-axis.
 - **i.** State the domain of g. (1 mark)


ii. Find the rule for g(x). (2 marks)

VCE Methods ½ Questions? Message +61 440 138 726

b.	Let $h(x) = \sqrt{(x+1)^2 + 3} + 1$. Write down a sequence of three transformations that map $f(x)$ to $h(x)$. (2 marks)

	Space for Personal Notes
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
l	
I	
I	
I	
ı	

Question 27 (2 marks)
Consider the function f with inverse function f^{-1} . The function f is transformed to the function g by the following sequence of transformations: A dilation by factor 3 from the x -axis and a translation 2 units down.
Write down the transformations that take f^{-1} to g^{-1} .
Space for Personal Notes

Section E: Tech Active Exam Skills

G

Calculator Tip: Finding Transformed Functions

- Save the function as f(x).
- Substitute the x and y in terms of x' and y'.
- Solve for y!
- Can also apply the transformations directly to f(x). Must make sure you interpret the transformations correctly or you can easily make a mistake doing this.

Question 28 Tech-Active.

Apply the following transformations to $y = 2\sqrt{3x + 6}$.

Dilation by a factor $\frac{1}{2}$ from the *x*-axis.

Dilation by a factor 3 from the *y*-axis.

Reflection in the *y*-axis.

Translation of 3 units right.

Translation of 4 units down.

Calculator Tip: Mathematica UDF

ApplyTransformList[]

ApplyTransformList[f[x], $\{x, y\}$, list of transforms]

Applies the list of transforms to f[x] in the chronological order.

ApplyTransformList[x^2 , {x, y}, {x-1, 2x, y+3}]

$$4+x+\frac{x^2}{4}$$

ApplyTransformInvList[f[x], $\{x, y\}$, $\{x-1, 2x, y+3\}$]

ApplyTransformInvList[Sin[x], $\{x, y\}$, $\{x-\pi/2, 2y, y-1\}$]

$$Sin\left[\frac{x}{2}\right]^2$$

ApplyTransformInvList[]

ApplyTransformInvList[f[x], $\{x, y\}$, list of transforms]

Applies the list of transforms to f[x] in reverse order and as the inverse to the transforms of ApplyTransformList.

 $In[a]:= ApplyTransformInvList[x^2, \{x, y\}, \{x-1, 2*x, y+3\}]$ $Out[a]:= ApplyTransformInvList[x^2, \{x, y\}, \{x-1, 2*x, y+3\}]$

$$1 - 8 x + 4 x^2$$

In[*]:= ApplyTransformInvList[f[x], {x, y}, {x-1, 2*x, y+3}]
Out[*]=

In[*]:= ApplyTransformInvList[2 * Cos[x] - 1, {x, y}, {x - Pi / 2, 2 * y, y - 1}]
Out[*]:=

Sin[x]

Calculator Tip: TI UDF

transform()

Transform a Function

transform
$$\left| \sin(x), x, \left\{ x - \frac{\pi}{2}, 2 \cdot y, y - 1 \right\} \right|$$

- ▶ Translation $\frac{\pi}{2}$ units along the neg. x-dir. $\cos(x)$
- ▶ Dilation by factor of 2 from the x-axis 2·cos(x)
- ▶ Translation -1 unit along the neg. y-dir. 2·cos(x)-1

transform_inv()

Invert a Transformation

transform_inv $(x^2,x,\{x-1,2\cdot x,y+3\})$ • Inverted Transformations:

$$\left\{y-3,\frac{x}{2},x+1\right\}$$

- ▶ Translation -3 units along the neg. y-dir.
 x²-3
- ▶ Dilation by factor of $\frac{1}{2}$ from the y-axis

$$4 \cdot x^2 - 3$$

▶ Translation 1 unit along the pos. x-dir. $4 \cdot x^2 - 8 \cdot x + 1$

Overview:

Apply any sequence of transformations to a function. The program will display the transformed function after each step.

Input:

Other notes:

The list of transformations can either be presented in a (horizontal or vertical) matrix of expressions or a list of expressions

Overview:

Find the preimage of a function under a list of transformations. The program will display the list of inverted transformations and the transformed function after each step.

Input:

Other notes:

The list of transformations can either be presented in a row or column matrix, or a list of expressions

Section F: Exam 2 (15 Marks)

Question 29 (1 mark)

Let $f: [0,4] \to \mathbb{R}$, $f(x) = x^2 + 4$. The graph of f is transformed by a reflection in the x-axis, followed by a dilation of factor 2 from the y-axis, then a dilation by a factor of 2 from the x-axis. The resulting graph is defined by:

- **A.** $g:[0,8] \to \mathbb{R}, g(x) = -\frac{x^2}{8} 8$
- **B.** $g: [0,8] \to \mathbb{R}, g(x) = -\frac{x^2}{16} 4$
- C. $g:[0,8] \to \mathbb{R}, g(x) = -\frac{x^2}{8} 4$
- **D.** $g: [0,4] \to \mathbb{R}, g(x) = -\frac{x^2}{4} 8$

Question 30 (1 mark)

The point P(2,4) lies on the graph of f. The point Q(4,12) lies on the graph of h. A transformation that maps the graph of f to the graph of h also maps the point P to the point Q. The relationship between f and h could be given by:

- **A.** $h(x) = \frac{1}{2} f(x+2)$
- **B.** h(x) = 2f(x-2)
- **C.** h(x) = 3f(x-2)
- **D.** h(x) = 3f(x+2)

Question 31 (1 mark)

A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, which maps the curve with equation $y = 4x^2$ onto the curve with equation $y = (x - 1)^2 + 3$, has the rule:

- **A.** T(x,y) = (2x + 1, y + 3)
- **B.** $T(x,y) = (x+1,\frac{1}{4}y+3)$
- C. T(x, y) = (x 1.4y + 3)
- **D.** $T(x,y) = \left(\frac{x}{2} + 2, y + 3\right)$

Question 32 (1 mark)

A sequence of transformations is applied to create the image rule $y = 2\sqrt{x-3} + 6$ from the original function $y = \sqrt{x}$, in an appropriate order, could be:

- **A.** A dilation by a factor of 4 from the x-axis, a dilation by factor 2 from the y-axis, a translation 3 units to the left, and finally a translation of 6 units up.
- **B.** A dilation by a factor of 2 from the x-axis, a translation 3 units to the left, and finally a translation of 6 units up.
- C. A dilation by a factor of $\frac{1}{4}$ from the y-axis, a translation 3 units to the right, and finally a translation 6 units up.
- **D.** A dilation by a factor of 2 from the x-axis, followed by a reflection in the y-axis, a translation 2 units right, and finally a translation of 3 units up.

Question 33 (1 mark)

If the graphs of y = h(x) and y = k(x) intersect at (p,q), then the graphs of y = 3h(2x) and y = 3k(2x) intersect at:

- **A.** $\left(2p,\frac{q}{3}\right)$
- **B.** $\left(\frac{p}{3}, 2q\right)$
- C. $\left(\frac{p}{2}, 3q\right)$
- **D.** $(3p, \frac{q}{2})$

Question 34 (10 marks)

Consider the functions:

$$f: \mathbb{R} \to \mathbb{R}, f(x) = (x+1)^2(x-2)$$

$$g: \mathbb{R} \to \mathbb{R}, g(x) = x^3 - 3x + 2$$

a.

i. Factorise $g(x)$. (1 mark)	
--------------------------------	--

ii. Find the rule for the image of f, if f is reflected in the y-axis. (1 mark)

iii. Hence or otherwise, describe a sequence of **reflections** that map the graph of f onto the graph of g. (2 marks)

iv. Describe a single translation that maps the graph of f onto the graph of g. (1 mark)

Consider the following transformations:

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, T(x, y) = (2x - 1, 3y + 2)$$

$$S: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $S(x, y) = (-x + 2, 2y - 3)$

b.

i. Find the rule for the image of f after it has undergone the transformation T. (2 marks)

ii. Hence, find the rule for the image of *f* after it has undergone the transformation *T* followed by the transformation *S*. (1 mark)

VCE Methods ½ Questions? Message +61 440 138 726

c.	Find the coordinates of the point $P(u, v)$, if the image of the point P under T and S is the same. (2 marks)
Spa	ace for Personal Notes

Contour Checklist

Learning Objective: [2.5.1] - Apply Quick Method to Find Transformations
Key Takeaways
☐ For applying transformations in the quick method:
loop Apply everything for x in the direction, including the order!
☐ For interpreting transformations in the quick method:
$lue{lue}$ Read everything for x in the opposite direction, including the!
Learning Objective: [2.5.2] - Find Opposite Transformations
Key Takeaways
□ Order is
☐ All transformations are in the direction.

□ <u>Learning Objective</u> : [2.5.3] - Apply Transformations of Fund	
	to Find Their Domain, Range, Transformed Points

Key Takeaways Everything moves together as a function. Steps: 1. Find the _______ between two functions. 2. Apply the _____ transformations to domain, range, and points.

<u>Learning Objective</u>: [2.5.4] - Find Transformations of the Inverse Functions f(x)

Key Takeaways

1. Find the ______ between the two original functions.

2. _____ the transformations found in 1.

<u>Learning Objective</u>: [2.5.5] - Find Multiple Transformations for the Same Functions

Key Takeaways

- \square Same transformations can be done ______ by either putting it in or out of the f().
- Commonly, look for basic algebra, index, and log laws.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via <u>bit.ly/contour-methods-consult-2025</u> (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

