

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

# VCE Mathematical Methods ½ Transformations Exam Skills [2.5]

Homework

#### Admin Info & Homework Outline:

| Student Name                |               |
|-----------------------------|---------------|
| Questions You Need Help For |               |
| Compulsory Questions        | Pg 2 – Pg 24  |
| Supplementary Questions     | Pg 25 — Pg 43 |



## Section A: Compulsory Questions



## Sub-Section [2.5.1]: Apply Quick Method to Find Transformations

| Question 1                                                             |
|------------------------------------------------------------------------|
| Find the rule for the image of $f(x) = x^2$ under the transformations: |
| A dilation by factor 3 from the $x$ -axis.                             |
| A translation 1 unit up.                                               |
| A translation of 3 units to the left.                                  |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
| Space for Personal Notes                                               |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |



| Ouestion 2 |  |
|------------|--|



Find the rule for the image of  $f(x) = 2\sqrt{x+4} - 1$  under the transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (2x+3, -y+1).$ 

#### **Question 3**



Describe a sequence of transformations that maps the graph of  $y = 3^{2x+1} - 2$  onto the graph of  $y = 1 - 3^x$ .





## <u>Sub-Section [2.5.2]</u>: Find Opposite Transformations

|        | tion 4  ibe a sequence of transformations that map $f(x) = 2(x - 1)^2 + 4$ to $y = x^2$ .                |
|--------|----------------------------------------------------------------------------------------------------------|
| Desci  | the a sequence of transformations that map $f(x) = 2(x - 1)^{-1} + 4 \cos y = x^{-1}$ .                  |
| _      |                                                                                                          |
| _      |                                                                                                          |
| _      |                                                                                                          |
| _      |                                                                                                          |
| _      |                                                                                                          |
|        |                                                                                                          |
|        |                                                                                                          |
| Ques   | tion 5                                                                                                   |
| The fo | ollowing sequence of transformations map the graph of $y = f(x)$ on the graph of $y = 2\sqrt{x-1} + 1$ . |
| A      | reflection in the y-axis                                                                                 |
| A      | dilation by factor 2 from the $x$ -axis                                                                  |
|        | translation 2 units to the right                                                                         |
|        |                                                                                                          |
| ina t  | the rule of $f$ .                                                                                        |
| _      |                                                                                                          |
| _      |                                                                                                          |
| _      |                                                                                                          |
| _      |                                                                                                          |
|        |                                                                                                          |



| Question 6                                                                                       | الالا |
|--------------------------------------------------------------------------------------------------|-------|
| Describe a sequence of transformations that map $f(x) = 3x^2 - 12x + 16$ to $y = x^2 - 2x + 2$ . |       |
|                                                                                                  |       |
|                                                                                                  |       |
|                                                                                                  |       |
|                                                                                                  |       |
|                                                                                                  |       |
|                                                                                                  |       |
|                                                                                                  |       |
|                                                                                                  |       |

| Space for Personal Notes |  |  |
|--------------------------|--|--|
|                          |  |  |
|                          |  |  |
|                          |  |  |
|                          |  |  |
|                          |  |  |
|                          |  |  |
|                          |  |  |
|                          |  |  |
|                          |  |  |
|                          |  |  |
|                          |  |  |
|                          |  |  |
|                          |  |  |
|                          |  |  |
|                          |  |  |
|                          |  |  |
|                          |  |  |
|                          |  |  |





## Sub-Section [2.5.3]: Apply Transformations of Functions to Find its Domain, Range, Transformed Points.

**Question 7** 

Find the image of the point A(2,5) under the transformation

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = \left(2x - 1, \frac{1}{2}(y - 1)\right)$$

|  |  | <br> |  |
|--|--|------|--|
|  |  |      |  |
|  |  |      |  |
|  |  |      |  |
|  |  |      |  |
|  |  |      |  |
|  |  |      |  |
|  |  |      |  |
|  |  |      |  |
|  |  |      |  |

**Question 8** 



Consider the function  $f: [-3,1] \to \mathbb{R}$ ,  $f(x) = x^2 - 4$ . The sequence of transformations

- A dilation by factor 2 from the x-axis
- A dilation by factor 2 from the y-axis
- A translation 3 units to the left

Map the function f to the function g. Find the domain of g.

| <br> | <br> |  |
|------|------|--|
|      |      |  |





| _    |        | - |
|------|--------|---|
| Λ    | estion | Λ |
|      | ection | ч |
| - Vu | CSUUII | _ |



Consider the function  $f: [-3,2] \to \mathbb{R}$ ,  $f(x) = x^2 + 4x - 1$ . The sequence of transformations

- $\rightarrow$  A dilation by factor 3 from the x-axis
- A dilation by factor 2 from the *y*-axis
- A translation 1 unit to the right
- $\rightarrow$  A reflection in the *x*-axis

| <br> | <br> | <br> |  |
|------|------|------|--|
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      |      |      |  |
|      | <br> | <br> |  |
|      |      |      |  |
|      |      |      |  |





## Sub-Section [2.5.4]: Find Transformations of the Inverse Functions

#### **Question 10**

Let  $f: [0, \infty) \to \mathbb{R}$ ,  $f(x) = \sqrt{x}$ .

f is mapped to function g, by a dilation by factor 2 from the x-axis and a translation 1 unit to the right.

Describe a sequence of transformations that map  $f^{-1}$  to  $g^{-1}$ .

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |

#### **Question 11**



Consider the one-to-one functions, f and g. The transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$ , T(x,y) = (2x + 4, y - 3) maps the function f to the function g.

Describe a sequence of transformations that map the function  $f^{-1}$  to the function  $g^{-1}$ .



| Questio | n 1  | 2 |
|---------|------|---|
| Oucsuo  | 11 1 | _ |



Consider the functions  $f:[0,\infty)\to\mathbb{R}, 2\sqrt{x}+1$  and  $g:[2,\infty)\to\mathbb{R}$ ,  $g(x)=4\sqrt{x-2}-1$ .

The transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$ , T(x,y) = (ax + b, y + c) maps the function  $f^{-1}$  to the function  $g^{-1}$ .





## Sub-Section [2.5.5]: Find Multiple Transformations for the Same Functions

#### **Question 13**

Let  $f(x) = x^3$  and  $g(x) = 8x^3$ .

**a.** State a dilation that maps f(x) to g(x).

**b.** State a different dilation that maps f(x) to g(x).

| <b>Ouestion</b> | 1/ |
|-----------------|----|
| Ouestion        | 14 |



Let  $f(x) = (x - 1)^2 + 3$  and  $g(x) = 4(x + 2)^2 + 1$ .

**a.** Find a sequence of transformations that map f(x) to g(x), without using a dilation from the y-axis.



**b.** Find a sequence of transformations that map f(x) to g(x), without using a dilation from the x-axis.

#### **Question 15**



Let  $f(x) = x^2 + 4x + 1$  and  $g(x) = 9x^2 - 18x + 2$ .

- **a.** Find a sequence of transformations that map f(x) to g(x), without using a dilation from the y-axis.



VCE Methods ½ Questions? Message +61 440 138 726

| υ. | Find a sequence of transformations that map $f(x)$ to $g(x)$ , without using a dilation from the x-axis. |
|----|----------------------------------------------------------------------------------------------------------|
|    |                                                                                                          |
|    |                                                                                                          |
|    |                                                                                                          |
|    |                                                                                                          |
|    |                                                                                                          |
|    |                                                                                                          |
|    |                                                                                                          |
| р  | ace for Personal Notes                                                                                   |
|    |                                                                                                          |
|    |                                                                                                          |
|    |                                                                                                          |
|    |                                                                                                          |
|    |                                                                                                          |
|    |                                                                                                          |
|    |                                                                                                          |
|    |                                                                                                          |
|    |                                                                                                          |
|    |                                                                                                          |





## **Sub-Section**: Exam 1 Questions

| Qu | nestion 16                                                           |  |  |  |  |
|----|----------------------------------------------------------------------|--|--|--|--|
| Co | Consider the transformation:                                         |  |  |  |  |
|    | $T: \mathbb{R}^2 \to \mathbb{R}^2, \qquad T(x,y) = (2x + 1, 3y - 1)$ |  |  |  |  |
| a. | Find the image of the point $P(2,3)$ under $T$ .                     |  |  |  |  |
|    |                                                                      |  |  |  |  |
|    |                                                                      |  |  |  |  |
| b. | Write out what the transformation $T$ does in the order DRT.         |  |  |  |  |
|    |                                                                      |  |  |  |  |
|    |                                                                      |  |  |  |  |
|    |                                                                      |  |  |  |  |
|    |                                                                      |  |  |  |  |
|    |                                                                      |  |  |  |  |
| c. | Find the image of the curve $y = x^2$ under the transformation $T$ . |  |  |  |  |
|    |                                                                      |  |  |  |  |
|    |                                                                      |  |  |  |  |
|    |                                                                      |  |  |  |  |
|    |                                                                      |  |  |  |  |
|    |                                                                      |  |  |  |  |



Let  $f : \mathbb{R} \to \mathbb{R}$ ,  $f(x) = x^2 - 9$ .

**a.** Find the coordinates of all axes intercepts of f.

**b.** Let the graph of g be a transformation of the graph of f where the transformations have been applied in the following order:

- Dilation by a factor of  $\frac{1}{2}$  from the y-axis.
- $\bullet$  Dilation by a factor of 2 from the *x*-axis.
- G Translation 1 unit to the left.

Find the rule for g(x).

 ${f c.}$  State the coordinates for the axes intercepts of  ${f g.}$ 



Consider the function  $f(x) = \frac{2}{(x+1)^2} - 3$ .

Apply the following sequence of transformations to f(x).

- $\triangleright$  Dilation by a factor 3 from the *x*-axis
- $\triangleright$  Translated 2 units in the negative direction of the *x*-axis
- Reflection in the y-axis
- Translated 4 units in the positive direction of the y-axis
- Dilation by a factor of  $\frac{1}{3}$  from the y-axis.

15



Let 
$$f(x) = \frac{1}{2x+2}$$
.

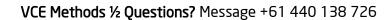
**a.** The transformation  $T_1$  given by:

$$T_1: \mathbb{R}^2 \to \mathbb{R}^2, T_1(x, y) = (x + a, by)$$

maps the graph of y = f(x) onto the graph of  $y = \frac{1}{x}$ .

Find the values of a and b.

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |


**b.** The transformation  $T_2$  given by

$$T_2:\mathbb{R}^2\to\mathbb{R}^2, T_2(x,y)\ = (c(x+d),y)$$

maps the graph of  $y = \frac{1}{x}$  onto the graph of y = f(x).

Find the values of c and d.

| · | <br> | <br> |
|---|------|------|
|   |      |      |
|   |      |      |
|   |      |      |
|   | <br> |      |





| Question | 20   |
|----------|------|
| Oucsuon  | . ⊿∪ |

The image of the curve  $y = \sqrt{9 - x^2}$  under a transformation T, has the equation

$$y = \sqrt{32 - 4x - x^2} + 4$$

Find the transformations that makeup T, with dilations before translations.

| <br> | <br> |  |
|------|------|--|

| <br> |  |
|------|--|
|      |  |
|      |  |
|      |  |





### **Sub-Section**: Exam 2

#### **Question 21**

The graph of the function f passes through the point (2, -6). If h(x) = 3f(x - 3), then the graph of the function h must pass through the point:

- **A.** (0, -6)
- **B.** (-1, -18)
- C. (5, -18)
- **D.** (-1, -6)

#### **Question 22**

The graph of the function  $f : \mathbb{R} \to \mathbb{R}$ ,  $f(x) = 2^x$ , is reflected in the y-axis and then translated 3 units to the right and 2 units up. Which one of the following is the rule of the transformed graph?

- **A.**  $y = 2^{-x} + 2$
- **B.**  $y = 2^{-x+3} + 1$
- C.  $y = \left(\frac{1}{2}\right)^{x-3} + 2$
- **D.**  $y = \frac{1}{2} \cdot 2^{-x+3} + 2$



The graph of the function g is obtained from the graph of the function:

$$f: [-2,1] \to \mathbb{R}, f(x) = 2x^2 - 4x + 8,$$

by a dilation of factor 3 from the y-axis, followed by a dilation of factor  $\frac{1}{3}$  from the x-axis, followed by a reflection in the x-axis, and finally followed by a translation of 2 units in the positive direction of the y-axis. The domain and range of g are respectively:

- **A.** [-6,3] and [-6,3]
- **B.** [-3, 6] and [-3, 0]
- C. [-6, 3] and [-6, 0]
- **D.** [-6,3] and [-3,3]

#### **Question 24**

Consider the functions  $f(x) = \frac{1}{x-2} + 1$  and  $g(x) = 2 - \frac{1}{x-1}$ . If T transforms the graph of f onto the graph of g, then:

- **A.**  $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (1 x, y 3)$
- **B.**  $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (x 1, y 3)$
- C.  $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (x 1, 3 y)$
- **D.**  $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (1 x, 3 y)$



The image of the function  $g(x) = x^3$  is  $y = -5\left(\frac{x}{2} + 2\right)^3$ . The transformations that could have been applied are:

- A. Reflection in the x-axis, then translation in the positive direction of the x-axis by 2 units followed by a dilation from the y-axis by a factor of  $\frac{1}{2}$ .
- **B.** Reflection in the x-axis, then translation in the negative direction of the x-axis by 2 units, followed by a dilation from the x-axis by a factor of 5 and a dilation by factor 2 from the y-axis.
- C. Reflection in the x-axis, then a dilation from the x-axis by a factor of 2, followed by a translation in the positive direction of the x-axis by 2 units, and finally a dilation from the y-axis by a factor of 2.
- **D.** Reflection in the x-axis, then a dilation from the y-axis by a factor of  $\frac{1}{2}$  followed by a translation in the negative direction of the x-axis by 2 units, and finally a dilation from the x-axis by a factor of  $\frac{5}{2}$

#### **Question 26**

Consider the function  $f: (-1,2) \to \mathbb{R}, f(x) = (x-1)^2(2x+5)$ .

**a.** State the range of f.



| The  | the following sequence of transformations, $T$ , map the graph of $f$ onto the graph of $g$ . |  |  |
|------|-----------------------------------------------------------------------------------------------|--|--|
| G    | A dilation by a factor of 2 from the $x$ -axis, followed by,                                  |  |  |
| G    | A translation of 3 units down and 4 units left, followed by,                                  |  |  |
| G    | A reflection in the <i>y</i> -axis.                                                           |  |  |
| i.   | State the rule of $g$ .                                                                       |  |  |
|      |                                                                                               |  |  |
|      |                                                                                               |  |  |
|      |                                                                                               |  |  |
|      |                                                                                               |  |  |
| ::   | State the demain of a                                                                         |  |  |
| 11.  | State the domain of $g$ .                                                                     |  |  |
|      |                                                                                               |  |  |
|      |                                                                                               |  |  |
| iii. | State the range of $g$ .                                                                      |  |  |
|      |                                                                                               |  |  |
|      |                                                                                               |  |  |
| iv.  | Find the image of the point $(1,0)$ under $T$ .                                               |  |  |
| -,,  | Time and image of the point (2) of ander 1.                                                   |  |  |
|      |                                                                                               |  |  |
|      |                                                                                               |  |  |
|      |                                                                                               |  |  |
|      |                                                                                               |  |  |
|      |                                                                                               |  |  |
|      |                                                                                               |  |  |



#### VCE Methods ½ Questions? Message +61 440 138 726

| Let $g$ be a function with the same rule as $f$ but defined for all $x \in \mathbb{R}$ .                                     |
|------------------------------------------------------------------------------------------------------------------------------|
| That is $g: \mathbb{R} \to :\mathbb{R}, g(x) = f(x)$ .                                                                       |
| <b>c.</b> A transformation $S: \mathbb{R}^2 \to \mathbb{R}^2$ , $S(x,y) = (a - x, b - y)$ maps the graph of $g$ onto itself. |
| Determine the values of $a$ and $b$ .                                                                                        |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |



Consider the function  $f: [-4, 4] \to \mathbb{R}, f(x) = x^2 - 9$ 

**a.** Consider the transformation  $T(x,y) = \left(2x + 4, \frac{1}{3}y - 2\right)$ . Find the transformed function of y = f(x) under the transformation T. State the new domain and range also.

Let g be the function that is the image of f under T.

**b.** Find a transformation  $T_1: \mathbb{R}^2 \to \mathbb{R}^2$  that maps the function g to the function f.



#### VCE Methods ½ Questions? Message +61 440 138 726

| <b>:.</b> | A function $h$ is such that applying the transformation $T$ to $h$ maps it to the function $f$ . Find the rule and domain for the function $h$ . |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                  |
|           |                                                                                                                                                  |
|           |                                                                                                                                                  |
|           |                                                                                                                                                  |
|           |                                                                                                                                                  |
| P         | ace for Personal Notes                                                                                                                           |
|           |                                                                                                                                                  |
|           |                                                                                                                                                  |
|           |                                                                                                                                                  |
|           |                                                                                                                                                  |
|           |                                                                                                                                                  |
|           |                                                                                                                                                  |
|           |                                                                                                                                                  |



## Section B: Supplementary Questions



## <u>Sub-Section [2.5.1]</u>: Apply Quick Method to Find Transformations

| ind the image of th  | be graph of $y = x^2$ under the transformation, $T : \mathbb{R}^2 \to \mathbb{R}^2$ , $T(x, y) = (1 - 2x, y + 5)$ . |                 |
|----------------------|---------------------------------------------------------------------------------------------------------------------|-----------------|
| and the image of the | The graph of $y = x$ under the transformation, $Y = x$ and $Y = x$ , $Y = x$ , $Y = x$ .                            |                 |
|                      |                                                                                                                     |                 |
|                      |                                                                                                                     |                 |
|                      |                                                                                                                     |                 |
|                      |                                                                                                                     |                 |
|                      |                                                                                                                     |                 |
|                      |                                                                                                                     |                 |
|                      |                                                                                                                     |                 |
|                      |                                                                                                                     |                 |
|                      |                                                                                                                     |                 |
|                      |                                                                                                                     | -               |
| uestion 29           |                                                                                                                     |                 |
|                      |                                                                                                                     |                 |
|                      | e of transformations that maps the graph of $y = x^3$ onto the graph of $y = 2(3x + 2)^3$                           | 3.              |
|                      |                                                                                                                     | <b>.</b> 3.     |
|                      | e of transformations that maps the graph of $y = x^3$ onto the graph of $y = 2(3x + 2)^3$                           | - 3.<br>        |
|                      |                                                                                                                     | · 3.            |
|                      |                                                                                                                     | -3.<br>         |
|                      |                                                                                                                     | - 3.<br>        |
|                      |                                                                                                                     | -3.<br>         |
|                      |                                                                                                                     | · 3.            |
|                      |                                                                                                                     | - 3.<br>        |
|                      |                                                                                                                     | -3.<br>         |
|                      |                                                                                                                     | -3.<br>         |
| escribe a sequence   |                                                                                                                     | -3.<br><br><br> |
|                      |                                                                                                                     | -3.<br>         |
|                      |                                                                                                                     | -3.<br>         |



| Question 30                                                                                     |
|-------------------------------------------------------------------------------------------------|
| Find the image of the graph of $y = \log_2(x)$ under the following sequence of transformations: |
| $\blacktriangleright$ A dilation by a factor of 3 from the $x$ -axis, followed by,              |
| ➤ A translation of 2 units left and 3 units up, followed by,                                    |
| ➤ A reflection in the y-axis, followed by,                                                      |
| A dilation by a factor of 5 from the <i>y</i> -axis.                                            |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |







## <u>Sub-Section [2.5.2]</u>: Find Opposite Transformations

| Questi          | on 31                                                                                                                                                     |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Descri          | be a sequence of transformations that maps the graph of $y = 4(x-2)^2 - 3$ onto the graph of $y = x^2$ .                                                  |
|                 |                                                                                                                                                           |
|                 |                                                                                                                                                           |
|                 |                                                                                                                                                           |
|                 |                                                                                                                                                           |
|                 |                                                                                                                                                           |
|                 |                                                                                                                                                           |
|                 |                                                                                                                                                           |
|                 |                                                                                                                                                           |
| Questi          | on 32                                                                                                                                                     |
| The tra $y = x$ | Insformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$ , $T(x, y) = \left(2x + 3, \frac{1}{3}y - 4\right)$ maps the graph of $y = f(x)$ onto the graph of $3$ . |
| Find th         | he rule of $f$ .                                                                                                                                          |
|                 |                                                                                                                                                           |
|                 |                                                                                                                                                           |
|                 |                                                                                                                                                           |
|                 |                                                                                                                                                           |
|                 |                                                                                                                                                           |
|                 |                                                                                                                                                           |
|                 |                                                                                                                                                           |
|                 |                                                                                                                                                           |
|                 | <del>_</del>                                                                                                                                              |



| Question 33                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------|
| The following sequence of transformations maps the graph of $f$ onto the graph of $y = \sqrt{x}$ , for $x \in (2, \infty)$ : |
| A dilation by a factor of 3 from the $x$ -axis, followed by,                                                                 |
| A translation of 2 units left and 4 units up, followed by,                                                                   |
| A reflection in both the $x$ -axis and the $y$ -axis.                                                                        |
| State the rule and domain of $f$ .                                                                                           |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
| · <del></del>                                                                                                                |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
| Space for Personal Notes                                                                                                     |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |
|                                                                                                                              |





## <u>Sub-Section [2.5.3]</u>: Apply Transformations of Functions to Find its Domain, Range, Transformed Points

| Question 34                                                                                                                                                            |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| The function $f: \mathbb{R} \to \mathbb{R}$ has a range of $[2, \infty]$ .                                                                                             |  |  |  |  |
| The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$ , $T(x, y) = (5 - 2x, 3 + y)$ maps the graph of $f$ onto the graph of $g$ . State the domain and range of $g$ . |  |  |  |  |
|                                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                        |  |  |  |  |
| Space for Personal Notes                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                        |  |  |  |  |



| Question 35                                                                                                                                                 |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| The function $f:(-\infty,-1)\to\mathbb{R}$ has a range of $(-2,\infty)$ .                                                                                   |  |  |  |  |
| Describe a sequence of transformations that maps the graph of $f$ onto a graph of a function with a domain of $[0, \infty]$ and a range of $(-\infty, 2)$ . |  |  |  |  |
|                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                             |  |  |  |  |
| Space for Personal Notes                                                                                                                                    |  |  |  |  |
|                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                             |  |  |  |  |

## **CONTOUREDUCATION**

| O | nestion | 36 |
|---|---------|----|



Consider the function,  $f: [-2, \infty] \to R$ ,  $f(x) = 3\sqrt{x+2} - 5$ .

The following sequence of transformations maps the graph of f onto the graph of g:

- $\triangleright$  A reflection in the x-axis, followed by,
- $\blacktriangleright$  A dilation by a factor of 3 from the x-axis, followed by,
- A dilation by a factor of  $\frac{1}{2}$  from the y-axis, followed by,
- A translation of 3 units up and 2 units left.

| ate the domain and range of $g$ . |  |  |  |      |  |
|-----------------------------------|--|--|--|------|--|
|                                   |  |  |  |      |  |
|                                   |  |  |  |      |  |
| ·                                 |  |  |  |      |  |
|                                   |  |  |  | <br> |  |
|                                   |  |  |  | <br> |  |
|                                   |  |  |  |      |  |
|                                   |  |  |  |      |  |
|                                   |  |  |  | <br> |  |
|                                   |  |  |  | <br> |  |
|                                   |  |  |  |      |  |
|                                   |  |  |  |      |  |
|                                   |  |  |  | <br> |  |





## <u>Sub-Section [2.5.4]</u>: Find Transformations of Inverse Functions

| Question 37                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question 37                                                                                                                                                                                                                                                            |
| Consider the function, $f: \mathbb{R}\{1\} \to \mathbb{R}$ , $f(x) = \frac{2}{x-1} + 4$ . The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$ , $T(x,y) = (x+a,y+b)$ maps the graph of $f$ onto the graph of its inverse function. Find the values of $a$ and $b$ . |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
| <u> </u>                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
| Question 38                                                                                                                                                                                                                                                            |
| Consider the one-to-one functions, $f(x)$ and $g(x)$ . The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ , $T(x,y) = (3-x,2y+7)$ maps the graph of $f$ onto the graph of $g$ .                                                                                     |
| Describe a sequence of transformations that maps the graph of $f^{-1}$ onto the graph of $g^{-1}$ .                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |



| <b>Question</b> | 39 |
|-----------------|----|
| Oucsuon         | J  |



Let  $f: [1, \infty] \to \mathbb{R}$ ,  $f(x) = 3x^2 - 6x + 8$  and  $g: [-3, \infty] \to \mathbb{R}$ ,  $g(x) = \sqrt{x + 3} + 4$ .

Describe a sequence of transformations that maps the graph of f onto the graph of  $g^{-1}$ .





## Sub-Section [2.5.5]: Find Multiple Transformations for the Same Functions

| Question 40                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Describe a sequence of transformations that map the graph of $f(x) = 4(x-3)^2 + 5$ to $g(x) = x^2$ without using a dilation from the <i>x</i> -axis. |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |

| Space | for | Personal | Notes |
|-------|-----|----------|-------|
| Space | for | Personal | Note  |



| f - i                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question 41                                                                                                                                                                                                                                             |
| Consider the functions $f(x) = x^2 - 8x + 10$ and $g(x) = 4(x + 2)^2 - 5$ . Find 2 different sets of transformations, one using a dilation from the x-axis and one using a dilation from the y-axis to map the graph of $f(x)$ to the graph of $g(x)$ . |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |
| <del></del>                                                                                                                                                                                                                                             |
| <del></del>                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |
| Space for Personal Notes                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         |



| Question 42                                                                                                                                                              | الأوال |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Consider the functions $f(x) = x^2 + 6x + 7$ and $g(x) = 16x^2 - 32$ transformations, one using a dilation from the x-axis and one using $f(x)$ to the graph of $g(x)$ . |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |
| ·                                                                                                                                                                        |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |
| Space for Personal Notes                                                                                                                                                 |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |
|                                                                                                                                                                          |        |





## **Sub-Section**: Exam 1 Questions

| Question | 43 |
|----------|----|
| Question | 7. |

Consider the transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$ ,  $T(x, y) = \left(\frac{1}{2}x - 3, 4y + 2\right)$ .

- **a.** Find the image of the point (4, 1) under T.
- **b.** Write out what the transformation T does in the order DRT.

**c.** Find the image of the curve  $y = x^3$  under the transformation T. Give your answer in the form  $y = a(x+b)^3 + c$ .



| Qu | Question 44                                                                                                                      |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Co | nsider the function $f: \mathbb{R} \to \mathbb{R}$ , $f(x) = 4x^2 - 16$ .                                                        |  |  |  |  |
| a. | Find the coordinates of all axes intercepts of $f$ .                                                                             |  |  |  |  |
|    |                                                                                                                                  |  |  |  |  |
|    |                                                                                                                                  |  |  |  |  |
|    |                                                                                                                                  |  |  |  |  |
| b. | Let the graph of $g$ be a transformation of the graph of $f$ where the transformations have been applied in the following order: |  |  |  |  |
|    | 1. Dilation by a factor of 2 from the <i>y</i> -axis.                                                                            |  |  |  |  |
|    | 2. Dilation by a factor of 3 from the $x$ -axis.                                                                                 |  |  |  |  |
|    | 3. Translation 6 units to the right.                                                                                             |  |  |  |  |
|    | Find the rule for $g(x)$ .                                                                                                       |  |  |  |  |
|    |                                                                                                                                  |  |  |  |  |
|    |                                                                                                                                  |  |  |  |  |
|    |                                                                                                                                  |  |  |  |  |
|    |                                                                                                                                  |  |  |  |  |
|    |                                                                                                                                  |  |  |  |  |
|    |                                                                                                                                  |  |  |  |  |
|    |                                                                                                                                  |  |  |  |  |
| c. | State the coordinates of the axes intercepts of $g$ .                                                                            |  |  |  |  |
|    |                                                                                                                                  |  |  |  |  |
|    |                                                                                                                                  |  |  |  |  |
|    |                                                                                                                                  |  |  |  |  |
|    |                                                                                                                                  |  |  |  |  |



| Question | 45 |
|----------|----|
|----------|----|

Consider the function  $f(x) = 4\sqrt{3x + 7} + 2$ .

Apply the following transformations to f(x):

- **1.** Dilation by a factor of  $\frac{1}{2}$  from the *x*-axis.
- **2.** Translated 3 units in the positive direction of the *y*-axis.
- 3. Reflection in the x-axis.
- **4.** Translated 2 units in the negative direction of the x-axis.
- **5.** Dilated by a factor of 2 from the *y*-axis.

| Space | for | Personal | Notes |
|-------|-----|----------|-------|

39





## **Sub-Section:** Exam 2 Questions

#### **Question 46**

The graph of the function f passes through the point (2, -3).

If h(x) = 3f(x - 2), then the graph of the function h must pass through the point:

- A. (4, -9)
- **B.** (0, -9)
- C. (4,-1)
- **D.** (0,-1)

#### **Question 47**

The graph of the function  $f: \mathbb{R} \to \mathbb{R}$ ,  $f(x) = 3^x - 1$ , is reflected in the *y*-axis and then translated 2 units to the left and then 3 units up.

Which one of the following is the rule of the transformed graph?

- **A.**  $y = \left(\frac{1}{3}\right)^{x+2} + 2$
- **B.**  $y = \frac{1}{3} \times 3^{x+2} + 3$
- **C.**  $y = 3^{-x} + 3$
- **D.**  $y = 3^{-x+2} + 3$



The graph of the function g is obtained from the transformed graph of the function:

$$f: [-2,6] \to \mathbb{R}, f(x) = 3x^2 + 5x - 2$$

which undergoes a dilation of factor 2 from the *y*-axis, followed by a dilation of factor  $\frac{1}{4}$  from the *x*-axis, followed by a reflection in the *x*-axis, and finally followed by a translation of 6 units in the positive direction of the *y*-axis. The domain and range of *g* are respectively:

- **A.** [-4, 12] and [-12, 4]
- **B.** [-4, 12] and  $\left[-28, \frac{337}{48}\right]$
- C. [-12, 4] and  $\left[-\frac{239}{48}, 40\right]$
- **D.** [-4, 12] and  $\left[-40, \frac{239}{48}\right]$

#### **Question 49**

The image of the function  $f(x) = x^4$  is  $y = -40(x+2)^4$ . The transformations that could have been applied are:

- **A.** Reflection in the *x*-axis, then translation in the positive direction of the *x*-axis by 2 units, followed by a dilation from the *y*-axis by a factor of  $\frac{1}{2}$ .
- **B.** Reflection in the x-axis, then translation in the negative direction of the x-axis by 2 units, followed by a dilation from the x-axis by a factor of 5 and a dilation by factor 2 from the y-axis.
- C. Reflection in the x-axis, then a dilation from the x-axis by a factor of 2, followed by a translation in the positive direction of the x-axis by 2 units, and finally a dilation from the y-axis by a factor of 2.
- **D.** Reflection in the x-axis, then a dilation from the y-axis by a factor of  $\frac{1}{2}$ , followed by a translation in the negative direction of the x-axis by 2 units, and finally a dilation from the x-axis by a factor of  $\frac{5}{2}$ .



Consider the function  $f: (-3,1) \to \mathbb{R}$ , f(x) = (x+3)(x+2)(3x-3).

- **a.** State the range of f, correct to 3 decimal places.
- **b.** The following sequence of transformations, T, map the graph of f onto the graph of g.
  - A dilation by a factor of  $\frac{1}{2}$  from the y-axis, followed by,
  - A translation of 2 units up and 1 unit left, followed by,
  - $\bullet$  A reflection in the *x*-axis.
  - i. State the rule of g.

- ii. State the domain of g.
- iii. State the range of g correct to 3 decimal places.



VCE Methods ½ Questions? Message +61 440 138 726

| iv. Find the image of the | point $(1,0)$ under $T$ . |      |             |
|---------------------------|---------------------------|------|-------------|
|                           |                           | <br> |             |
|                           |                           |      | <del></del> |
|                           |                           |      |             |
| Space for Personal Notes  |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |
|                           |                           |      |             |



Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

#### VCE Mathematical Methods ½

## Free 1-on-1 Support

#### Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

| 1-on-1 Video Consults                                                                                                                                                    | <u>Text-Based Support</u>                                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Book via <u>bit.ly/contour-methods-consult-2025</u> (or QR code below).</li> <li>One active booking at a time (must attend before booking the next).</li> </ul> | <ul> <li>Message <u>+61 440 138 726</u> with questions.</li> <li>Save the contact as "Contour Methods".</li> </ul> |  |

Booking Link for Consults
bit.ly/contour-methods-consult-2025



Number for Text-Based Support +61 440 138 726

