# **CONTOUREDUCATION**

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

# VCE Mathematical Methods ½ Transformations [2.4]

Rei - Contacts

Workbook

• Whatsapp/ 0490 198 272

· email Pej @ Contouvedu artion. com. au

### **Outline:**



### **Introduction to Transformations**

- Image and Pre-Image
- Dilation
- Reflection
- Translation

### **Transformation of Points**

Pg 9-20

Pg 2-8

- Basic Transformation of Points
- The Order of Transformations
- Interpreting the Transformation of Points

### **Transformation of Functions**

Pg 21-28

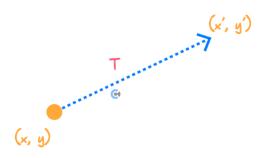
- Applying Transformations to Functions
- Finding the Applied Transformations

# **Learning Objectives:**

- MM12 [2.4.1] Applying x' and y' Notation to Find Transformed Points, Find the Interpretation of Transformations and Altered Order of Transformations
- MM12 [2.4.2] Find Transformed Functions
- MM12 [2.4.3] Find Transformations From Transformed Function (Reverse Engineering)



# Section A: Introduction to Transformations


# Sub-Section: Image and Pre-Image



What do we call an original coordinate and a transformed coordinate?



**Image and Pre-Image** 



- The original coordinate is called the pre-image

Pre-Image: (x, y)

Image: (x', y')

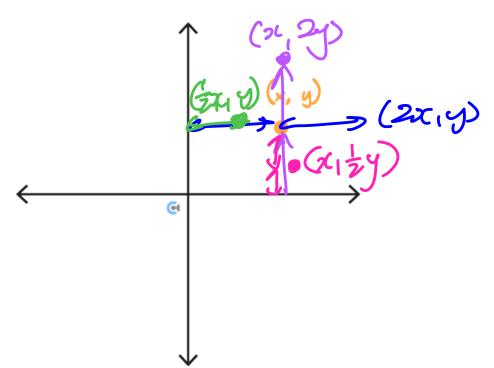
### **Question 1**

It is known that (1,4) transformed into (3,5). State the value of x' and y'.

**NOTE:** The x' and y' notation will be used quite heavily!






# **Sub-Section**: Dilation



# **Exploration: Dilation**



Consider the point below:



- Let's plot the coordinates:
  - $\bigcirc$  P1: Dilation by a factor 2 from the x-axis.
  - P2: Divation by a factor  $\frac{1}{2}$  from the x-axis.
  - P3; Dilation by a factor 2 from the y-axis.
  - P4: Dilation by a factor  $\frac{1}{2}$  from the y-axis.

### **Dilation**

Dilation by a factor a from the x-axis: y' = ay

Dilation by a factor b from the y-axis: x' = bx



### Question 2 Walkthrough.

Find the image (x', y') after applying the following transformations to (x, y).

Dilation by factor 2 from the x-axis. y' = 2y

Dilation by factor  $\frac{1}{3}$  from the y-axis.  $\chi = \frac{1}{3}\chi$ 

$$\left(\frac{1}{3}x,2y\right)$$



Find the image (x', y') after applying the following transformations to (x, y).

Dilation by factor 
$$\frac{1}{2}$$
 from the x-axis

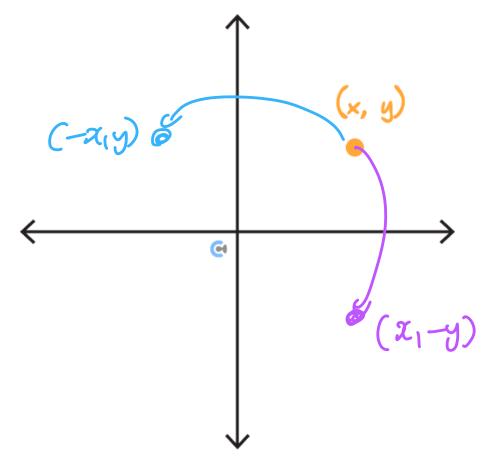
Dilation by factor 
$$\frac{1}{2}$$
 from the x-axis

Dilation by factor 4 from the y-axis.

 $\chi = \frac{1}{2} \varphi$ 

**NOTE:** We are applying the transformations on (x, y) not (x', y').






# **Sub-Section**: Reflection



# **Exploration**: Reflection

Consider the point below:

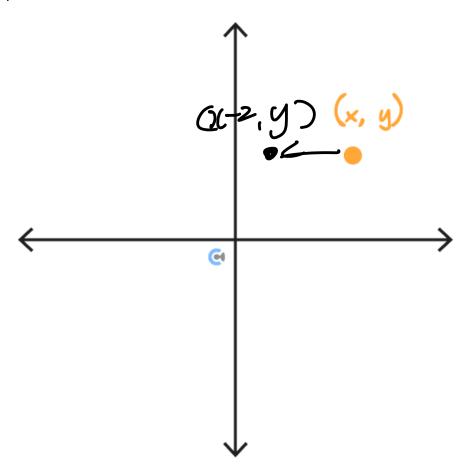


- Let's plot the coordinates:
  - $\bullet$  P1: Reflection in the x-axis
  - P2: Reflection in the *y*-axis.

# Reflection

Reflection in the *x*-axis: y' = -y

Reflection in the *y*-axis: x' = -x




# **Sub-Section: Translation**





Consider the point below:



- Let's plot the coordinates (ignore the scale):
  - $\bullet$  P1: Translation by 2 units in the negative direction of the x-axis.  $\rightarrow$
  - $\bigcirc$  P2: Translation by 3 units in the negative direction of the y-axis.  $\longrightarrow$



### **Translation**

Translation by c units in the positive direction of the x-axis: x' = x + c

Translation by d units in the positive direction of the y-axis: y' = y + d



Find the image (x', y') after applying the following transformations to (x, y).

Translation by 3 units in the positive direction of the x-axis. 
$$\chi = \chi + 3$$

# **Key Takeaways**



- ightharpoonup The transformed point is called the image and is denoted by (x', y').
- ☑ The dilation factor is multiplied by the original coordinates.
- ☑ Reflection makes the original coordinates the negative of their original values.
- ✓ Translation adds a unit to the original coordinates.



# Section B: Transformation of Points

DRT

# **Sub-Section: Basic Transformation of Points**



# Let's try to apply all types of transformations to a point!

Question 5 Walkthrough.

Find the imag (x', y') after applying the following transformations to (x, y).

y 2

Dilation by a factor 2 from the x-axis.

Dilation by a factor 4 from the y-axis.

Reflection in the x-axis.

x'=4x

Translation by 2 units in the negative direction of the x-axis. 21 = 4x - 2

Translation by 3 units in the positive direction of the y-axis.

y1=-2y+3

(42-2, -2y+3)



Find the image (x', y') after applying the following transformations to (x, y).

Translation by 4 units in the positive direction of the x-axis.  $\pi = \pi + \Psi$ 

Translation by 3 units in the negative direction of the y-axis. y = y = 3

Dilation by a factor of  $\frac{1}{5}$  from the *x*-axis.

Dilation by a factor of 2 from the y-axis. z = 2(7+4)

Reflection in the x-axis.

NOTE: Order Matters.





### Question 7 Extension.

Find the image (x', y') after applying the following transformations to (x, y).

Translation by a units in the negative direction of the x-axis.

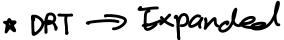
Translation by *b* units in the positive direction of the *y*-axis.

Dilation by a factor c from the x-axis.

Dilation by a factor  $\frac{3}{d}$  from the y-axis.

Reflection in the x-axis.

$$(x',y') = \left(\frac{3}{d}(x-a), -c(y+b)\right)$$




# Sub-Section: The Order of Transformations



<u>Discussion:</u> From the previous question, what happens when the translation is applied first?







# What is the order of transformations the same as?



**The Order of Transformation** 



DAT



Question 8 Walkthrough.

Consider the point (x, y) which was transformed into a point (3x + 6)y by the transformation T.

Isho

Jennifer thinks the transformation was:



"Translation 6 units in the positive direction of the x-axis and dilation by a factor of 3 from the y-axis."

Meanwhile, David thinks the transformation was:

"Dilation by a factor of 3 from the y-axis and translation 6 units in the positive direction of the x-axis."

Who is correct? And why?

David!



Consider the point (x, y) was transformed into a poin (2(x - 5), y) by the transformation T.

ghuraque

Mary thinks the transformation was:

"Translation 5 units in the negative direction of x-axis and dilation by a factor of 2 from the y-axis."

Meanwhile, Samethinks the transformation was:

"Dilation by a factor of 2 from the y-axis and translation 5 units in the negative direction of the x-axis."

Who is correct? And why?

Shuraque



### Question 10 Extension.

Consider the point (x, y) was transformed into a point (2ax + 6a, y) by the transformation T.

Jennifer thinks the transformation was:

"A translation by 3 units in the positive direction of the x-axis, followed by a dilation by a factor 2a from the y-axis."

Meanwhile, David thinks the transformation was:

"A dilation by a factor 2a from the y-axis, followed by a translation by 3a units in the positive direction of the x-axis."

Who is correct? And why?

Jennifer is correct. 2a(x + 3) = 2ax + 6a

<u>Discussion:</u> If the order is the same as the BODMAS order, how do we change the order of transformations?





Question 11 Walkthrough.

18t y= 5y+3

The series of transformations, "a dilation by a factor  $\frac{1}{2}$  from the x-axis and a translation by 3 units up" yields the same result as the series of transformations, "a translation by a units up and a dilation by a factor b from the x-axis." Find the values of a and b.

$$\frac{1}{2}y+3=b(y+a)$$

$$b = \frac{1}{2}$$
  $ab = 3$   $ab = 3$ 

$$a=b, b=\frac{1}{2}$$



The series of transformations, "a dilation by a factor 4 from the y-axis, a reflection in the y-axis and a translation by 8 units left" yields the same result as the series of transformations, "a translation by c units right, a reflection in the y-axis and a dilation by a factor d from the y-axis." Find the values of c and d.

$$\alpha' = -J(x+c)$$

$$-4x-8 = -d(x+c)$$

$$-4x-8 = -d(x+c)$$
  
 $-4(x+2) = -d(x+c)$ 

$$d = 4$$

$$c = 2$$



### **Question 13 Extension.**

The series of transformations, "a dilation by a factor 2 from the y-axis, a reflection in the y-axis, a dilation by a factor 2 from the x-axis, a translation by 4 units left and a translation by 6 units down", yields the same result as the series of transformations, "a translation by c units right, a reflection in the y-axis, a dilation by a factor d from the y-axis, a translation k units down, and a dilation by a factor m from the x-axis." Find the values of c, d, k and m.

$$(-2x'-4,2y'-6) = (-2(x'+2),2(y'-3))$$

Therefore, 
$$c = 2$$
,  $d = 2$ ,  $k = 3$ ,  $m = 2$ 

**NOTE:** Dilation factors don't change!





# **Sub-Section:** Interpreting the Transformation of Points



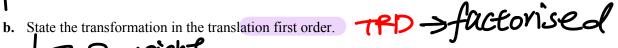
**Active Recall: Order of Transformation** 



Question 14 Walkthrough.

Consider the transformation which maps:

$$x' = 2x + 4$$
 = 201+2


x' = 2x + 4 = 20142) 1-3y+3 y' = -3(y-1) = -3y+3

a. State the transformation in DRT (Dilation, Reflection, Translation) order.

Dilation by factor of 2 from the y-axis
Dilation by factor of 3 from the x-axis
Reflection in 2-axis

Translate 4 right

Translate 3 UP





**NOTE:** Expanding or factorising changes the order of transformation.



### **Question 15**

Consider the transformation which maps:

$$x' = 3x + 6$$
 = 3(x+2)  
 $y' = -2(y + 2)$  = -2y-4

a. State the transformation in DRT (Dilation, Reflection, Translation) order.

**b.** State the transformation in the translation first order.



<u>Discussion:</u> Could the order of *x* and *y* transformations change?



Ves > 2 & y independent

# Key Takeaways



- $\checkmark$  Transformations should be interpreted when x' and y' are isolated.
- ☑ The order of transformation follows the BODMAS order.
- ☑ To change the order of transformations, we either factorise or expand.



# Section C: Transformation of Functions

# **Sub-Section:** Applying Transformations to Functions



# Let's now work with Functions!



### **Transformation of Functions**

- The aim is to get rid of the old variables, x and y, and have the new variables, x' and y', instead.
  - $y = f(x) \rightarrow y' = f(x')$

- > Steps:
  - 1. Transform the points.
  - 2. Make x and y the subjects.
  - 3. Substitute them into the function.

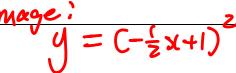
### Question 16 Walkthrough.

Apply the transformations given below to  $y = x^2$ .

Reflect in the y-axis.  $\chi = -\chi$ 

Translate 1 unit to the right. 2l = -2 + l

Dilate by a factor of 2 from the y-axis.  $\chi = 2(-\chi \tau)$ 


y = 7



$$\frac{\chi'}{2} = -\chi \tau |$$

$$y = x^{2}$$

$$y' = (-\frac{1}{2}x'+1)^{2}$$





# Your turn!



### **Active Recall: Transformation of Functions**



The aim is to get rid of the old variables, x and y, and have the new variables, x' and y', instead.

$$y = f(x) \rightarrow y' = f(x')$$

- > Steps:
  - 1. Transform the **point**
  - 2. Make x and y the **Subject**.
  - 3. **Sub** them into the function.



Apply the following transformations to the functions given:

**a.** 
$$f(x) = x^2$$

Dilation by factor 3 from the x-axis. y = 3

Reflect in the  $\gamma$ -axis.

Translate 3 units to the left.

Dilate by a factor of 5 from the y-axis. y = 5(-x-3)

**b.**  $f(x) = \sqrt{x}$ 

) 3) Sub in

まり = (まー3)2

り=3(一番-3)~

f(2) = 3/-= -3)2

= 3 (-(2+3))2

Dilate by a factor of  $\frac{1}{4}$  from the  $\frac{1}{2}$ -axis.

Dilate by a factor of 3 from the x-axis.

41 = 34

Translate 4 units to the left.

メーチメーチ

Translate 1 unit up.

Reflect in the *y*-axis.

y1=3y+1 x1=-(4>1-4)

MM12 [2.4] - Transformations - Workbook



### Question 18 Extension.

Apply the following transformations to  $y = 2^x$ .

Translation by 2 units to the right.

Reflection in the *y*-axis.

Dilation by a factor 3 from the *y*-axis.

Translation by 3 units up.

A dilation by a factor 2 from the x-axis.

A reflection in the x-axis.

$$y = -2^{-1-\frac{x}{3}} - 6$$
or
 $y = -2(2^{-2\frac{x}{3}} + 3)$ 



# **Sub-Section:** Finding the Applied Transformations



# Now let's go backwards!



## Reverse Engineering

- Steps:
  - 1. Add the dashes (') back to the transformed function.
  - **2.** Make f() the subject.
  - 3. Equate the LHS of the original and transformed functions to the RHS of the original and transformed functions.
  - **4.** Make x' and y' the subjects and interpret the transformations.

### Question 19 Walkthrough.

Find the transformations required for  $y = x^2$  to be transformed to  $y = 3\left(\frac{x+3}{2}\right)^2 + 5$ .

$$y^{-5} = (\frac{243}{2})^2$$

$$x = \frac{x+3}{2}$$
  $y = \frac{y-5}{3}$   
 $x' = 2x-3$   $y' = 3y+5$ 



### Your turn!



# Active Recall: Steps for reverse engineering



Steps:

transformed functions.

the subjects and interpret the transformations.





State a series of transformations (in order) that allow f(x) to be transformed into g(x).

a. 
$$f(x) = 2(x+1)^2 + 3$$
 and  $g(x) = 6(x-4)^2 - 3$ .

$$y = 2(x+1) + 3 \text{ and } y(x) = 0(x-4) - 3$$

$$\frac{y-3}{2} = (x+1)^2 \qquad \frac{y+3}{6} = (x-4)^2$$

Pennance for ou' y'  
y'+3 = 3(y-3) 
$$x+1=x-4$$
  
y'= 3y-12  $x!=x+5$ 

**b.** 
$$f(x) = 3(x - 1)^2$$
 and  $g(x) = \frac{1}{2}(2x + 3)^2 + 1$ .

$$\frac{y}{3} = (2x-1)^2 = (2x+3)^2$$

$$\frac{9}{3} = 2cy'-1)$$

$$x-1 = 2x+3$$

$$x' = \frac{x-4}{2}$$

$$\chi' = \frac{\chi - 4}{2}$$

$$x^{1}=\frac{1}{2}x-2$$

walkthrough

$$2D \stackrel{?}{=} from y$$

$$2D \stackrel{?}{=} from x$$

$$2D \stackrel$$



### **Question 21 Extension.**

Find a sequence of transformations required for  $y = 2(x-3)^2 + 4$  to be transformed to  $y = -x^2 - 4x - 9$ .

Complete the square for second function.

$$y = -(x+2)^2 - 5$$

Dilation by factor  $\frac{1}{2}$  from the x-axis.

Reflection in the x-axis.

Translation 3 units down.

Translation 5 units to the left.

# Key Takeaways



- We transform the coordinates first, then transform the function.
- ✓ To transform the function, replace its old variables with the new ones.
- lacktriangleq To find the transformations, simply equate LHS with RHS after separating the transformations of x and y.





# **Contour Checklist**

Learning Objective: [2.4.1] - Applying x' and y' Notation to Find Transformed Points, Find the Interpretation of Transformations and Altered Order of Transformations

| and Altered Order of Transformations                                              |
|-----------------------------------------------------------------------------------|
| Key Takeaways                                                                     |
| The transformed point is called the <u>wage</u> and is denoted by <u>Cally</u> .  |
| The dilation factor is to the original coordinate.                                |
| Reflection makes the original coordinates the of their original values.           |
| Translationadd a unit to the original coordinate.                                 |
| Transformations should be interpreted when are isolated.                          |
| The order of transformation follows the <b>NO BODMAS</b> rder.                    |
| To change the order of transformations, we either factorise/ expand               |
|                                                                                   |
| Learning Objective: [2.4.2] - Find Transformed Functions                          |
| Key Takeaways                                                                     |
| To transform the function replace its \( \frac{1}{2} \tag{5} \) with the new one. |

29



 <u>Learning Objective</u>: [2.4.3] - Find Transformations From Transformed Function (Reverse Engineering)

**Key Takeaways** 

To find the transformations, simply equate the transformations of x and y.



Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

# VCE Mathematical Methods ½

# Free 1-on-1 Consults

### What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!



# **Booking Link**

bit.ly/contour-methods-consult-2025

