

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Transformations [2.4]

Workbook

Outline:

Pg 2-8

Pg 9-20

Introduction to Transformations

- Image and Pre-Image
- Dilation
- Reflection
- Translation

Transformation of Points

- Basic Transformation of Points
- The Order of Transformations
- Interpreting the Transformation of Points

Transformation of Functions

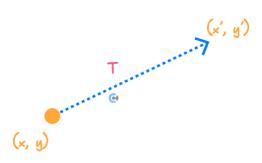
Pg 21-28

- Applying Transformations to Functions
- Finding the Applied Transformations

Learning Objectives:

- \blacksquare MM12 [2.4.1] Applying x' and y' Notation to Find Transformed Points, Find the Interpretation of Transformations and Altered Order of Transformations
- MM12 [2.4.2] Find Transformed Functions
- MM12 [2.4.3] Find Transformations From Transformed Function (Reverse Engineering)

Section A: Introduction to Transformations


Sub-Section: Image and Pre-Image

What do we call an original coordinate and a transformed coordinate?

Image and Pre-Image

- The original coordinate is called the ______.
- The transformed coordinate is called the ______.

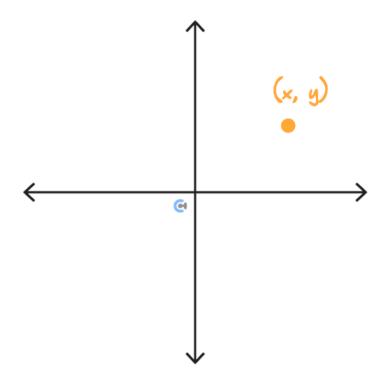
Pre-Image: (x, y)

Image: (x', y')

Question 1

It is known that (1,4) transformed into (3,5). State the value of x' and y'.

NOTE: The x' and y' notation will be used quite heavily!



Sub-Section: Dilation

Exploration: Dilation

Consider the point below:

- Let's plot the coordinates:
 - \bigcirc P1: Dilation by a factor 2 from the x-axis.
 - P2: Dilation by a factor $\frac{1}{2}$ from the x-axis.
 - \bigcirc P3: Dilation by a factor 2 from the y-axis.
 - P4: Dilation by a factor $\frac{1}{2}$ from the y-axis.

Dilation

Dilation by a factor a from the x-axis: y' = ay

Dilation by a factor b from the y-axis: x' = bx

Question 2 Walkthrough.		
Find the image (x', y') after applying the following transformations to (x, y) .		
	Dilation by factor 2 from the x -axis.	
	Dilation by factor $\frac{1}{3}$ from the <i>y</i> -axis.	

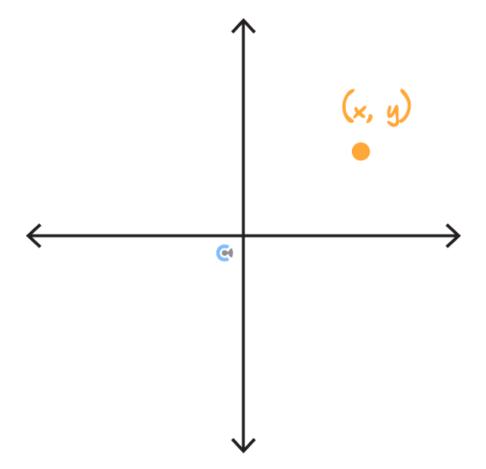
◯ ONT	OUREDU	JCATION

Find the image (x', y') after applying the following transformations to (x, y).

Dilation by factor $\frac{1}{2}$ from the *x*-axis.

Dilation by factor 4 from the *y*-axis.

NOTE: We are applying the transformations on (x, y) not (x', y').



Sub-Section: Reflection

Exploration: Reflection

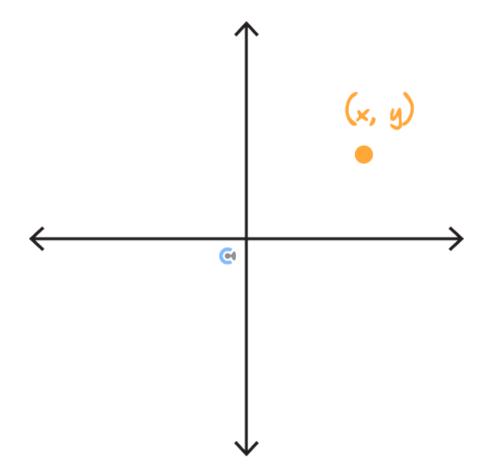
Consider the point below:

- Let's plot the coordinates:
 - \bigcirc P1: Reflection in the x-axis.
 - \bigcirc P2: Reflection in the y-axis.

Reflection

Reflection in the *x*-axis: y' = -y

Reflection in the *y*-axis: x' = -x



Sub-Section: Translation

Exploration: Translation

Consider the point below:

- Let's plot the coordinates (ignore the scale):
 - \bullet P1: Translation by 2 units in the negative direction of the x-axis.
 - \bigcirc P2: Translation by 3 units in the negative direction of the y-axis.

<u>Translation</u>

Translation by c units in the positive direction of the x-axis: x' = x + c

Translation by d units in the positive direction of the y-axis: y' = y + d

Question 4

Find the image (x', y') after applying the following transformations to (x, y).

Translation by 3 units in the positive direction of the x-axis.

Translation by 2 units in the negative direction of the *y*-axis.

Key Takeaways

- \checkmark The transformed point is called the image and is denoted by (x', y').
- ✓ The dilation factor is multiplied by the original coordinates.
- Reflection makes the original coordinates the negative of their original values.
- ✓ Translation adds a unit to the original coordinates.

Section B: Transformation of Points

Sub-Section: Basic Transformation of Points

Let's try to apply all types of transformations to a point!

Question 5 Walkthrough.

Find the image (x', y') after applying the following transformations to (x, y).

Dilation by a factor 2 from the x-axis.

Dilation by a factor 4 from the *y*-axis.

Reflection in the x-axis.

Translation by 2 units in the negative direction of the x-axis.

Translation by 3 units in the positive direction of the y-axis.

Question 6

Find the image (x', y') after applying the following transformations to (x, y).

Translation by 4 units in the positive direction of the x-axis.

Translation by 3 units in the negative direction of the *y*-axis.

Dilation by a factor of $\frac{1}{5}$ from the x-axis.

Dilation by a factor of 2 from the y-axis.

Reflection in the x-axis.

NOTE: Order Matters.

Ouestion 7	Extono	rion

Find the image (x', y') after applying the following transformations to (x, y).

Translation by a units in the negative direction of the x-axis.

Translation by b units in the positive direction of the y-axis.

Dilation by a factor c from the x-axis.

Dilation by a factor $\frac{3}{d}$ from the y-axis.

Reflection in the x-axis.

Sub-Section: The Order of Transformations

<u>Discussion:</u> From the previous question, what happens when the translation is applied first?

What is the order of transformations the same as?

The Order of Transformation

Order = BODMAS Order

Consider the point (x, y) which was transformed into a point (3x + 6, y) by the transformation T.

Jennifer thinks the transformation was:

"Translation 6 units in the positive direction of the x-axis and dilation by a factor of 3 from the y-axis."

Meanwhile, David thinks the transformation was:

"Dilation by a factor of 3 from the y-axis and translation 6 units in the positive direction of the x-axis."

Who is correct? And why?

Question 9
Consider the point (x, y) was transformed into a point $(2(x - 5), y)$ by the transformation T .
Mary thinks the transformation was:
"Translation 5 units in the negative direction of the x -axis and dilation by a factor of 2 from the y -axis."
Meanwhile, Sam thinks the transformation was:
"Dilation by a factor of 2 from the y -axis and translation 5 units in the negative direction of the x -axis."
Who is correct? And why?

A	10	T 4	•
Ouestion	10	HXte	ension.

Consider the point (x, y) was transformed into a point (2ax + 6a, y) by the transformation T.

Jennifer thinks the transformation was:

"A translation by 3 units in the positive direction of the x-axis, followed by a dilation by a factor 2a from the y-axis."

Meanwhile, David thinks the transformation was:

"A dilation by a factor 2a from the y-axis, followed by a translation by 3a units in the positive direction of the x-axis."

Who is correct? And why?

<u>Discussion:</u> If the order is the same as the BODMAS order, how do we change the order of transformations?

Question 11 Walkthrough.		
The series of transformations, "a dilation by a factor $\frac{1}{2}$ from the x-axis and a translation by 3 units up" yields the same result as the series of transformations, "a translation by a units up and a dilation by a factor b from the x-axis." Find the values of a and b.		

Question 12
The series of transformations, "a dilation by a factor 4 from the y -axis, a reflection in the y -axis and a translation by 8 units left" yields the same result as the series of transformations, "a translation by c units right, a reflection in the y -axis and a dilation by a factor d from the y -axis." Find the values of c and d .

Ω	iestion	13	Evt	ancian
W	iesuon	1.3	CXU	ension.

The series of transformations, "a dilation by a factor 2 from the y-axis, a reflection in the y-axis, a dilation by a factor 2 from the x-axis, a translation by 4 units left and a translation by 6 units down", yields the same result as the series of transformations, "a translation by c units right, a reflection in the y-axis, a dilation by a factor d from the y-axis, a translation k units down, and a dilation by a factor m from the x-axis." Find the values of c, d, k and m.

NOTE: Dilation factors don't change!

<u>Sub-Section</u>: Interpreting the Transformation of Points

Active Recall: Order of Transformation

Order = BODMAS Order

Question 14 Walkthrough.

Consider the transformation which maps:

$$x' = 2x + 4$$

$$y' = -3(y-1)$$

a. State the transformation in DRT (Dilation, Reflection, Translation) order.

b. State the transformation in the translation first order.

NOTE: Expanding or factorising changes the order of transformation.

Question 15

Consider the transformation which maps:

$$x' = 3x + 6$$

$$y' = -2(y+2)$$

a. State the transformation in DRT (Dilation, Reflection, Translation) order.

b. State the transformation in the translation first order.

<u>Discussion:</u> Could the order of *x* and *y* transformations change?

Key Takeaways

- \checkmark Transformations should be interpreted when x' and y' are isolated.
- ☑ The order of transformation follows the BODMAS order.
- ✓ To change the order of transformations, we either factorise or expand.

Section C: Transformation of Functions

Sub-Section: Applying Transformations to Functions

Let's now work with Functions!

Transformation of Functions

 \blacktriangleright The aim is to get rid of the old variables, x and y, and have the new variables, x' and y', instead.

$$y = f(x) \rightarrow y' = f(x')$$

- Steps:
 - 1. Transform the points.
 - **2.** Make *x* and *y* the subjects.
 - **3.** Substitute them into the function.

Question 16 Walkthrough.

Apply the transformations given below to $y = x^2$.

Reflect in the *y*-axis.

Translate 1 unit to the right.

Dilate by a factor of 2 from the y-axis.

Your turn!

Active Recall: Transformation of Functions

The aim is to get rid of the old variables, x and y, and have the new variables, x' and y', instead.

$$y = f(x) \rightarrow y' = f(x')$$

- Steps:
 - 1. Transform the ______.
 - **2.** Make *x* and *y* the ______.
 - **3.** _____ them into the function.

Question 17

Apply the following transformations to the functions given:

a.
$$f(x) = x^2$$

Dilation by factor 3 from the x-axis.

Reflect in the *y*-axis.

Translate 3 units to the left.

Dilate by a factor of 5 from the *y*-axis.

b.
$$f(x) = \sqrt{x}$$

Dilate by a factor of $\frac{1}{4}$ from the y-axis.

Dilate by a factor of 3 from the x-axis.

Translate 4 units to the left.

Translate 1 unit up.

Reflect in the *y*-axis.

uestion 18 Extension.		
pply the following transfo	ormations to $y = 2^x$.	
	Translation by 2 units to the right.	
	Reflection in the <i>y</i> -axis.	
	Dilation by a factor 3 from the <i>y</i> -axis.	
	Translation by 3 units up.	
	A dilation by a factor 2 from the x -axis.	
	A reflection in the x -axis.	

Sub-Section: Finding the Applied Transformations

Now let's go backwards!

Reverse Engineering

- Steps:
 - 1. Add the dashes (') back to the transformed function.
 - **2.** Make f() the subject.
 - **3.** Equate the LHS of the original and transformed functions to the RHS of the original and transformed functions.
 - **4.** Make x' and y' the subjects and interpret the transformations.

Question 19 Walkthrough.

Find the transformations required for $y = x^2$ to be transformed to $y = 3\left(\frac{x+3}{2}\right)^2 + 5$.

Your turn!

Active Recall: Steps for reverse engineering

- Steps:
 - 1. Add the dashes (') back to the ______.
 - **2.** Make *f*() the ______.
 - **3.** Equate the LHS of the original and transformed functions to the RHS of the original and transformed functions.
 - **4.** Make _____ the subjects and interpret the transformations.

Question 20

State a series of transformations (in order) that allow f(x) to be transformed into g(x).

a.
$$f(x) = 2(x+1)^2 + 3$$
 and $g(x) = 6(x-4)^2 - 3$.

b.
$$f(x) = 3(x-1)^2$$
 and $g(x) = \frac{1}{2}(2x+3)^2 + 1$.

Ouestion	21	Exter	nsion.

Find a sequence of transformations required for $y = 2(x-3)^2 + 4$ to be transformed to $y = -x^2 - 4x - 9$.

Key Takeaways

- We transform the coordinates first, then transform the function.
- ✓ To transform the function, replace its old variables with the new ones.
- lacktriangleq To find the transformations, simply equate LHS with RHS after separating the transformations of x and y.

Contour Checklist

Learning Objective: [2.4.1] – Applying x' and y' Notation to Find Transformed Points, Find the Interpretation of Transformations and Altered Order of Transformations

Key Takeaways
☐ The transformed point is called the and is denoted by
☐ The dilation factor is to the original coordinate.
□ Reflection makes the original coordinates the of their original values.
☐ Translation a unit to the original coordinate.
☐ Transformations should be interpreted when are isolated.
☐ The order of transformation follows the order.
☐ To change the order of transformations, we either
Learning Objective: [2.4.2] - Find Transformed Functions
Key Takeaways
☐ To transform the function, replace its with the new one.

■ <u>Learning Objective</u>: [2.4.3] – Find Transformations From Transformed Function (Reverse Engineering)

Key Takeaways

 \square To find the transformations, simply equate the _____ after separating the transformations of x and y.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

