

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Transformations [2.4]

Test Solutions

15 Marks. 19 Minutes Writing.

Results:

Test	/15	

Section A: Test Questions (15 Marks)

Question 1 (3 marks)

Tick whether the following statements are **true** or **false**.

		True	False
a.	The image of a transformation is the point before the transformation is applied.		✓
b.	Reflection in the x -axis makes the y value negative of what it was.	✓	
c.	When a point undergoes a dilation by a factor 3 from the y-axis, we can describe it as $x' = 3x$.	✓	
d.	The transformation $x' = 2(x - 2)$, indicates a translation of 2 units left, and a dilation by a factor 2 from the <i>x</i> -axis.		✓
e.	$y' = 2y + 1$ and $y' = 2\left(y + \frac{1}{2}\right)$ result in the same transformed function.	✓	
f.	A transformation that maps $y = x^2$ to $y = 9x^2$ could be a dilation by factor 3 from the y-axis.		√

Space for Personal Notes	
Space for Personal Notes	

On	estion	2	(2	marks)	
νu	esuon	4	ιZ	marksi	١

The series of transformations given by "a dilation by a factor of 3 from the x-axis, followed by a translation of 8 units up", yields the exact same result as the series of transformations given by "a translation by a units up, followed by a dilation by a factor of b from the x-axis".

Find the values of a and b.

 $a = \frac{8}{3}$ and b = 3

Space for Personal Notes

Question 3 (3 marks)

Consider the following function: $f(x) = (x + 1)^2$

Apply the following transformations below to the function above.

Dilation by a factor of $\frac{1}{4}$ from the y-axis

Dilation by a factor of 2 from the x-axis

Translation by 2 units in the negative direction of the x-axis

Translation by 9 units in the positive direction of the y-axis

Reflection in the *y*-axis

$$y = 2(9 - 4x)^2 + 9 = 2(4x - 9)^2 + 9$$

 $ln[82]:= f[x_] := (x + 1)^2$

ln[86]:= 2f[4(-x+2)] + 9// Expand

Out[86]= $171 - 144 \times + 32 \times^2$

 $ln[89] := 171 - 144 x + 32 x^2 == 2 (4 x - 9)^2 + 9 // FullSimplify$

Out[89]= True

Space for Personal Notes

nsider the following funct	ions:	
	66 > \	
	$f(x) = \sqrt{x+2}$	
	$g(x) = -2\sqrt{7 - 2x} + 3$	
	1 ((() () () ()	
ind the set of transformation	ns that maps $f(x)$ to $g(x)$.	
	D1 c 1 C 4 C2 C 4	1
	Dilation by a factor of 2 from the x -axis Reflection in the x -axis	
	Translate 3 units up	
	Dilation by a factor of 1/2 from the y-axis	
	Reflection in the <i>y</i> -axis Translation of $\frac{5}{2}$ units right	
	Translation of $\frac{1}{2}$ units right	

Space fo	r Personal Notes			

Question 5 (2 marks)
Consider the following functions:
$f_1(x) = x^3$
$f_2(x) = -2(3x+1)^3 - 1$
Find the set of transformations that maps the function f_1 into f_2 .
Dilation by a factor of 2 from the <i>x</i> -axis Reflection in the <i>x</i> -axis Translate 1 unit down Dilation by a factor of 1/3 from the <i>y</i> -axis Translation of 1/3 units left

Space for Personal Notes

Question	6	(3	marks)
Question	v	v	marks,

For the function $f(x) = \sqrt{x+2}$, the function f is dilated by a factor of $\frac{5}{4}$ from the x-axis, translated 2 units in the negative x-direction and then is reflected in the y-axis to produce the function g.

Find the rule for g(x).

$$g(x) = \frac{5\sqrt{4-x}}{4}$$

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via <u>bit.ly/contour-methods-consult-2025</u> (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

