

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Transformations [2.4]

Homework Solutions

Homework Outline:

Compulsory Questions	Pg 2 – Pg 19
Supplementary Questions	Pg 20 – Pg 42

Section A: Compulsory Questions

<u>Sub-Section [2.4.1]</u>: Applying x' and y' Notation to Find Transformed Points, Find Interpretation of Transformations and Altered Order of Transformations

Question 1

j

Consider the following transformations on the plane:

- \triangleright S a dilation by a factor 2 from the x-axis.
- T a translation 3 units to the right and 2 units down.
- \blacktriangleright W a reflection in the x-axis.

Find the image, (x', y'), of the point (x, y) and the transformation:

a. S

$$(x',y')=(x,2y)$$

b. *T*

$$(x', y') = (x + 3, y - 2)$$

 \mathbf{c} . S then T.

$$(x,2y)\mapsto (x+3,2y-2)=(x',y')$$

d. T then W then S.

$$(x+3, y-2) \mapsto (x+3, 2-y) \mapsto (2x+6, 2-y) = (x', y')$$

Question 2

A transformation T is applied to points on the plane such that the image is given by (x', y') = (2x + 4, -y + 2).

- **a.** Describe T in words where dilations and reflections occur before translations.
 - A dilation by factor 2 from the y-axis
 - A reflection in the x-axis
 - A translation 4 units to the right
 - A translation 2 units up
- **b.** Describe *T* in words where translations occur before reflections and dilations.

(x', y') = (2(x + 2), -(y - 2))

- A translation 2 units to the right
- A translation 2 units down
- A reflection in the x-axis
- A dilation by factor 2 from the y-axis.

Question 3

The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is described by the following sequence of transformations.

- \blacktriangleright A dilation by factor 2 from the *x*-axis.
- A dilation by factor 3 from the *y*-axis.
- \blacktriangleright A reflection in the x-axis.
- A translation 2 units left.
- A translation 6 units down.
- **a.** Let (x', y') be the image of (x, y) under T. Find (x', y').

$$(x,y) \mapsto (3x,2y) \mapsto (3x,-2y) \mapsto (3x-2,-2y-6) = (x',y')$$

b. Describe in words, the transformations T, in the order of translations, reflections, and dilations.

 $(x', y') = \left(3\left(x - \frac{2}{3}\right), -2(y+3)\right).$

- A translation 2/3 units left
- A translation 3 units up
- A reflection in the x-axis
- A dilation by factor 3 from the y-axis
- A dilation by factor 2 from the x-axis.

Sub-Section [2.4.2]: Find Transformed Functions

Question 4

- **a.** Find the rule for the image of $f(x) = x^2$ under the transformations:
 - \bullet A dilation by factor 2 from the *x*-axis.
 - A translation 1 unit up.

 $y = 2x^2 + 1$

- **b.** Find the rule for the image of $f(x) = \sqrt{x}$ under the transformations:
 - A dilation by factor 4 from the *y*-axis.
 - A translation 1 unit down.

x' = 4x and y' = y - 1. The image is

$$y = \sqrt{\frac{1}{4}x} - 1 = \frac{\sqrt{x}}{2} - 1$$

- **c.** Find the rule for the image of $f(x) = \frac{1}{x}$ under the transformations:
 - \bullet A dilation by factor 2 from the *x*-axis.
 - A translation 1 unit up and 3 units to the left.

 $\frac{1}{x} \mapsto \frac{2}{x} \mapsto \frac{2}{x+3} + 1.$ The image has rule $y = \frac{2}{x+3} + 1$

Question 5

a. Find the rule for the image of $f(x) = 2x^2 + 4$ under the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (2x + 1, -y + 2).

 $x' = 2x + 1 \implies x = \frac{x' - 1}{2}.$

Thus for the image we have $2-y=f\left(\frac{x-1}{2}\right)$ $y=2-\left(2\left(\frac{x-1}{2}\right)^2+4\right)$ $y=2-\frac{1}{2}(x-1)^2-4$ $y=-2-\frac{1}{2}(x-1)^2$

b. Find the rule for the image of $f(x) = \frac{3}{x-3}$ under the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x+1,-2y+2).

 $x' = x + 1 \implies x = x' - 1$ and $y' = -2y + 2 \implies y = \frac{2 - y'}{2}$. So for the image we have

$$\frac{2-y}{2} = \frac{3}{x-4}$$
$$y = 2 - \frac{6}{x-4}$$

c. Find the rule for the image of $f(x) = \sqrt{2x - 4} + 3$ under the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (-2x + 1, 2y + 3).

 $x' = -2x + 1 \implies x = \frac{1 - x'}{2}$ and $y' = 2y + 3 \implies y = \frac{y' - 3}{2}$. So for the image we have

$$\frac{y-3}{2} = \sqrt{1-x-4} + 3$$

$$y = 2\sqrt{-3-x} + 9$$

Question 6

- **a.** Find the rule for the image of $f(x) = 2(x-1)^2 + 3$ under the transformations:
 - \bullet A dilation by factor 2 from the *x*-axis.
 - A translation 3 units to the left.
 - A translation 1 unit up.
 - \bullet A reflection in the *x*-axis.

Sequentially applying the transformations yields

$$f(x) \mapsto 4(x-1)^2 + 6 \mapsto 4(x+2)^2 + 6 \mapsto 4(x+2)^2 + 7 \mapsto -4(x+2)^2 - 7$$

so the image is $y = -4(x+2)^2 - 7$

- **b.** Find the rule for the image of $f(x) = \frac{1}{x-1}$ under the transformations:
 - \bullet A dilation by factor 4 from the *x*-axis.
 - A dilation by factor $\frac{1}{2}$ from the y-axis.
 - \bullet A reflection in the *x*-axis.
 - A translation 2 units right.

Sequentially applying the transformations yields

$$f(x) \mapsto \frac{4}{x-1} \mapsto \frac{4}{2x-1} \mapsto -\frac{4}{2x-1} \mapsto -\frac{4}{2x-5}$$

so the image is $y = -\frac{4}{2x - 5}$

- c. Find the rule for the image of $f(x) = \sqrt{2x+6} 4$ under the transformations:
 - A translation 1 unit up.
 - A translation 4 units to the right.
 - A reflection in the *y*-axis.
 - \bullet A dilation by factor 2 from the *x*-axis.

Sequentially applying the transformations yields

$$f(x) \mapsto \sqrt{2x+6} - 3 \mapsto \sqrt{2x-2} - 3 \mapsto \sqrt{-2-2x} - 3 \mapsto 2\sqrt{-2-2x} - 6$$

so the image is $y = 2\sqrt{-2 - 2x} - 6$

Sub-Section [2.4.3]: Find Transformations from Transformed Function

Question 7

a. Let
$$f(x) = x^2$$
 and $g(x) = 4x^2 + 1$.

Describe a sequence of transformations that maps the graph of f onto the graph of g.

 $f(x) \mapsto 4x^2 \mapsto 4x^2 + 1 = g(x).$

Therefore transformations are

- A dilation by factor 4 from the x-axis (or 1/2 from the y-axis)
- A translation 1 unit up

b. Let
$$f(x) = \sqrt{x}$$
 and $g(x) = 2\sqrt{x+1} - 3$.

Describe a sequence of transformations that maps the graph of f onto the graph of g.

 $f(x) \mapsto 2\sqrt{x} \mapsto 2\sqrt{x+1} \mapsto 2\sqrt{x+1} - 3$. Therefore transformations are

- A dilation by factor 2 from the x-axis
- A translation 1 left
- A translation 3 units down

c. Let $f(x) = \frac{1}{x}$ and $g(x) = \frac{3}{x+2}$.

Describe a sequence of transformations that maps the graph of f onto the graph of g.

 $f(x) \mapsto \frac{3}{x} \mapsto \frac{3}{x+2}$.

Therefore transformations are

- A dilation by factor 3 from the x-axis
- A translation 2 units left.

Question 8

a. Let $f(x) = x^2$ and $g(x) = 4(x-2)^2 + 3$.

Describe a sequence of transformations that maps the graph of f onto the graph of g.

 $f(x) \mapsto 4x^2 \mapsto 4(x-2)^2 \mapsto 4(x-2)^2 + 3.$

Therefore transformations are

- A dilation by factor 4 from the x-axis
- A translation 2 units right
- A translation 3 units up

b. Let $f(x) = \sqrt{2x}$ and $g(x) = 2\sqrt{4x - 2}$.

Describe a sequence of transformations that maps the graph of f onto the graph of g.

 $f(x) \mapsto \sqrt{4x} \mapsto \sqrt{4(x-1/2)} \mapsto 2\sqrt{4x-2}$. Therefore transformations are

- A dilation by factor 1/2 from the y-axis
- A translation 1/2 units to the right
- A dilation by factor 2 from the x-axis.

c. Let $f(x) = \frac{6}{x-1}$ and $g(x) = \frac{3}{x+2} + 1$.

Describe a sequence of transformations that maps the graph of f onto the graph of g.

 $f(x) \mapsto \frac{3}{x-1} \mapsto \frac{3}{x+2} \mapsto \frac{3}{x+2} + 1$

Therefore transformations are

- A dilation by factor 1/2 from the x-axis
- A translation 3 units to the left
- A translation 1 unit up

Question 9

a. Let $f(x) = 2\sqrt{x+1}$ and $g(x) = 5\sqrt{5-3x} + 4$.

Describe a sequence of transformations that maps the graph of f onto the graph of g.

 $f(x) \mapsto 5\sqrt{x+1} \mapsto 5\sqrt{x+5} \mapsto 5\sqrt{5-3x} \mapsto 5\sqrt{5-3x} + 4$. Therefore transformations are

- A dilation by factor 5/2 from the x-axis
- A translation 4 units to the left
- A dilation by factor 1/3 from the y-axis
- A reflection in the y-axis
- A translation 4 units up

b.	Let $f(x)$	$)=2(x-3)^2$	+ 2 and	q(x) =	$x^2 + 4x + 7$.
		, = (1 5)	ı = ana	g(x)	70 1 170 1 7

Describe a sequence of transformations that maps the graph of f onto the graph of g.

Note that $g(x) = (x+2)^2 + 3$. Then $f(x) \mapsto (x-3)^2 + 1 \mapsto (x+2)^2 + 1 \mapsto (x+2) + 3$. Therefore transformations are

- A dilation by factor 1/2 from the x-axis
- A translation 5 units left
- A translation 2 units up

c. Let
$$f(x) = \frac{3}{x^2} + 1$$
 and $g(x) = -\frac{6}{(2x-3)^2} + 4$.

Describe a sequence of transformations that maps the graph of f onto the graph of g.

$$x = 2x' - 3 \implies x' = \frac{x+3}{2}$$

$$f(x) \mapsto \frac{3}{(2x)^2} + 1 \mapsto \frac{3}{(2(x-3/2))^2} + 1 \mapsto -\frac{3}{(2x-3)^2} - 1 \mapsto -\frac{6}{(2x-3)^2} - 2 \mapsto -\frac{6}{(2x-3)^2} + 4$$

Therefore transformations are

- A dilation by factor 1/2 from the y-axis
- A translation 3/2 units right
- A reflection in the x-axis
- A dilation by factor 2 from the x-axis
- A translation 6 units up.

Sub-Section: The 'Final Boss'

Question 10

Consider the function $f(x) = x^2 - 4x + 7$ and the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (3x - 6, -2y + 2).

- **a.** Use words to describe the transformation *T* with:
 - i. Dilations and reflections before translations.
 - A dilation by factor 3 from the y-axis
 - A dilation by factor 2 from the x-axis
 - A reflection in the x-axis
 - A translation 6 units left and 2 units up.
 - ii. Translations before reflections and dilations.

Note that T(x, y) = (3(x - 2), -2(y - 1)). Thus

- A translation 2 units left and 1 unit down
- A reflection in the x-axis
- A dilation by factor 3 from the y-axis
- A dilation by factor 2 from the x-axis.

b. Write f(x) in turning point form.

 $f(x) = (x-2)^2 + 3$

c. Find the rule for the image of f(x) under T.

Sequentially apply the transformations in the order from part a.ii

$$f(x)\mapsto x^2+3\mapsto x^2+2\mapsto -x^2-2\mapsto -\frac{1}{9}x^2-2\mapsto -\frac{2}{9}x^2-4$$

the rule for the image is $y = -\frac{2}{9}x^2 - 4$

d. Determine a sequence of transformations that map f(x) to $g(x) = 2x^2 - 16x + 28$.

Note that $g(x) = 2(x-4)^2 - 4$. Then the sequence

$$g(x) \mapsto (x-4)^2 - 2 \mapsto (x-2)^2 - 2 \mapsto (x-2)^2 + 3 = f(x)$$

is according to the transformations

- A dilation by factor 1/2 from the x-axis
- A translation 2 units to the left
- A translation 5 units up.

Section B: Supplementary Questions

<u>Sub-Section [2.4.1]</u>: Applying x' and y' Notation to Find Transformed Points, Find Interpretation of Transformations and Altered Order of Transformation

Question 11

Find the coordinates of the image point for the following:

a. The point (2,3) undergoes a dilation by a factor of 6 from the *y*-axis, a reflection in the *x*-axis, followed by a translation 1 unit up.

$$x' = 6x, y' = -y + 1$$

$$(x', y') = (6(2), -3 + 1)$$

$$(x', y') = (12, -2)$$

b. The point (1,5) undergoes a translation 2 units left, a dilation by a factor of $\frac{1}{4}$ from the y-axis, a translation 3 units up, followed by a reflection in the x-axis.

$$x' = \frac{1}{4}(x-2), y' = -(y+3)$$

$$(x',y') = \left(\frac{1}{4}(1-2), -(5+3)\right)$$

$$(x',y') = \left(-\frac{1}{4}, -8\right)$$

c. The point (-4,2) is dilated by a factor of 3 from the x-axis, translated 1 unit right, reflected in the x-axis, reflected in the y-axis, dilated by a factor of 2 from the y-axis, and then translated 5 units down.

$$x' = -2(x+1), y' = -3y - 5$$

$$(x', y') = (-2(-4+1), -3(2) - 5)$$

$$(x', y') = (6, -11)$$

Question 12						
Consider the sequence of transf	ormations:					
A dilation by a factor of $\frac{1}{2}$ for	rom the <i>y</i> -axis.					
A reflection in the x -axis.						
A dilation by a factor of 6 f	from the x -axis.					
A translation 4 units down.						
A translation 1 unit right.						
A translation 9 units up.						
a. Rewrite the transformations translation.	s in the order of a dilation, a translation, a dilation,	a reflection, and then a				
		1				
	A dilation by a factor of $\frac{1}{2}$ from the y-axis					
	A translation 1 unit right A dilation by a factor of 6 from the x-axis					
	A reflection in the x -axis					
A translation 5 units up						

b. Express the transformations as a sequence of two translations, followed by two dilations and a reflection.

$x' = \frac{1}{2}x + 1, y' = -6y + 5$
$x' = \frac{1}{2}(x+2), y' = -6\left(y - \frac{5}{6}\right)$
A translation 2 units right

A translation $\frac{5}{6}$ units left

A dilation by a factor of $\frac{1}{2}$ from the y-axis

A dilation by a factor of $\tilde{6}$ from the x-axis

A reflection in the x-axis

c. Express the transformations in the order of a dilation, a translation, a dilation, a translation, and then a reflection.

 $x' = \frac{1}{2}(x+2), y' = -(6y-5)$ A dilation by a factor of $\frac{1}{2}$ from the y-axis

A translation 2 units right A dilation by a factor of 6 from the x-axis

A translation 5 units down

A reflection in the x-axis

Question 13

The transformation *T* is defined as $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (5-2x,6y+1).

a. Evaluate T(-3.8).

$$T(-3.8) = (5 - 2(3), 6(8) + 1)$$

 $T(-3.8) = (11.49)$

b. Find the pre-image of (7, -35) under the transformation T.

$$T(x,y) = (7,-35)$$

$$(5-2x,6y+1) = (7,-35)$$

$$x = -1, y = -6$$

$$(-1,-6)$$

c. Express T as a sequence of two translations, two dilations, and a reflection.

d. Identify a sequence of transformations that maps the point (-3,8) to the image of (-3,8) under T and also maps the point (1,-2) to the point (23,-1).

x' = ax + b, y' = cy + d $(-3,8) \rightarrow (11,49): 11 = a(-3) + b, 8 = c(49) + d$ $(1,-2) \rightarrow (23,-1): 23 = a(1) + b, -1 = c(-2) + d$

Solve equations simultaneously: $a=3,\ b=20,\ c=5,\ d=9$

x' = 3x + 20, y' = 5y + 9

A dilation by a factor of 3 from the y-axis

A translation 20 units right

A dilation by a factor of 5 from the x-axis

A translation 9 units up

CONTOUREDUCATION

Question 14

- **a.** Consider the transformation T described by:
- A translation 2 units left.
- \blacktriangleright A dilation by a factor of 3 from the x-axis.
- A dilation by a factor of $\frac{1}{4}$ from the y-axis.
- \triangleright A reflection in the x-axis.
- A translation 1 unit up.
- \blacktriangleright A reflection in the line y = x.
- A translation 4 units right.
 - **i.** Apply T to the point (5,2).

$x' = -3y + 1 + 4, y' = \frac{1}{4}(x - 2)$
 $(x', y') = \left(-3(2) + 1 + 4, \frac{1}{4}(5-2)\right)$
$(x',y') = \left(-1,\frac{3}{4}\right)$

ii. Express *T* as a sequence of 2 dilations followed by 2 reflections, and then 2 translations.

A reflection in y = x will swap x and y values $x' = -3y + 5, \ y' = \frac{1}{4}x - \frac{1}{2}$ A dilation by a factor of 3 from the x-axis $A \text{ dilation by a factor of } \frac{1}{4} \text{ from the } y\text{-axis}$ A reflection in y = x A reflection in the y-axis A translation 5 units right $A \text{ translation } \frac{1}{2} \text{ units left}$

- **b.** Consider the transformation *S* described by:
- \rightarrow A dilation by a factor of 2 from the *x*-axis.
- A reflection in the y-axis.
- A dilation by a factor of $\frac{1}{3}$ from the y-axis.
- \blacktriangleright A reflection in the line y = 4.
- A translation 5 units down.
- A translation 1 unit right.
 - **i.** S can also be defined $S: \mathbb{R}^2 \to \mathbb{R}^2$, S(x,y) = (ax + b, cy + d). Find the values of a, b, c, and d.

A reflection in the line y=4 can be treated as a translation 4 units down, followed by a reflection in the x axis and then a translation 4 units up

$$x' = -\frac{1}{3}x + 1, y' = -(2y - 4) + 4 - 5$$

$$x' = -\frac{1}{3}x + 1, y' = -2y + 3$$
$$a = -\frac{1}{2}, b = 1, c = -2, d = 3$$

ii. Hence, evaluate S(-2,4).

$$S(-2,4) = \left(-\frac{1}{3}(-2) + 1, -2(4) + 3\right)$$

$$S(-2,4) = \left(\frac{5}{3}, -5\right)$$

c. A point (x, y) undergoes the transformations T followed by S. Find the image point.

 $T(x,y) = \left(-3y + 5, \frac{1}{4}x - \frac{1}{2}\right)$ $S\left(-3y + 5, \frac{1}{4}x - \frac{1}{2}\right) = \left(-\frac{1}{3}(-3y + 5) + 1, -2\left(\frac{1}{4}x - \frac{1}{2}\right) + 3\right)$ $S\left(-3y + 5, \frac{1}{4}x - \frac{1}{2}\right) = \left(y - \frac{2}{3}, -\frac{1}{2}x + 4\right)$ $(x', y') = \left(y - \frac{2}{3}, -\frac{1}{2}x + 4\right)$

d. Given that the image point from **part c.**, is (-4,6), find the pre-image.

 $(-4,6) = \left(y - \frac{2}{3}, -\frac{1}{2}x + 4\right)$ $-4 = y - \frac{2}{3}, 6 = -\frac{1}{2}x + 4$ $y = -\frac{10}{3}, x = -4$ $\left(-4, -\frac{10}{3}\right)$

Sub-Section [2.4.2]: Find Transformed Functions

Question 15

Find the resultant function when:

a. $y = x^2$ is dilated by a factor of 2 from the *y*-axis, reflected in the *x*-axis, translated 3 units up, and translated 1 unit left.

$$x' = 2x - 1, y' = -y + 3$$

$$x = \frac{1}{2}(x' + 1), y = -(y' - 3)$$

$$-(y' - 3) = \left(\frac{1}{2}(x' + 1)\right)^{2}$$

$$y' = -\frac{1}{4}(x' + 1)^{2} + 3$$

b. $y = \frac{1}{x}$ is reflected in the *y*-axis, translated 3 units up, dilated by a factor of 2 from the *x*-axis, dilated by a factor of $\frac{1}{4}$ from the *y*-axis, and translated 2 units right.

$$x' = -\frac{1}{4}x + 2, y' = 2(y+3)$$

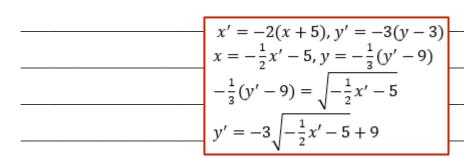
$$x = -4(x'-2), y = \frac{1}{2}(y'-6)$$

$$\frac{1}{2}(y'-6) = \frac{1}{-4(x'-2)}$$

$$y' = -\frac{1}{2(x-2)} + 6$$

CONTOUREDUCATION

c. $y = \sqrt{x}$ is translated 3 units down, translated 5 units right, reflected in the *y*-axis, dilated by a factor of 3 from the *x*-axis, dilated by a factor of 2 from the *y*-axis, and reflected in the *x*-axis.



Question 16

Find the resultant function when:

a. $y = -2(x+5)^2 + 1$ is dilated by a factor of $\frac{1}{3}$ from the x-axis, translated 4 units right, translated 1 unit down, reflected in the y-axis, and dilated by a factor of 2 from the y-axis.

$x' = -2(x + 4), y' = \frac{1}{3}y - 1$ $x = -\frac{1}{2}x' - 4, y = 3(y' + 1)$
$3(y'+1) = -2\left(-\frac{1}{2}x' - 4 + 5\right)^2 + 1$
$y' = -\frac{1}{6}(x'-2)^2 - \frac{2}{3}$

b. $y = \frac{2}{(5-x)^2} + 7$ is reflected in the *x*-axis, translated 2 units up, dilated by a factor of 3 from the *y*-axis, reflected in the *y*-axis, translated 4 units right, and dilated by a factor of $\frac{1}{4}$ from the *x*-axis.

$x' = -3x + 4, y' = \frac{1}{4}(-y + 2)$
$x = -\frac{1}{3}(x'-4), y = -4(y'-\frac{1}{2})$
$-4\left(y'-\frac{1}{2}\right) = \frac{2}{5-\left(-\frac{1}{3}x'-4\right)^2} + 7$
$y' = -\frac{9}{90 - 2(x' + 12)^2} - \frac{5}{4}$

c. $y = 4 - 2(x + 1)^3$ is translated 4 units right, dilated by a factor of 3 from the *x*-axis, reflected in the *y*-axis, translated 5 units up, reflected in the *x*-axis, and dilated by a factor of 2 from the *y*-axis.

$$x' = -2(x+4), y' = -(3y+5)$$

$$x = -\frac{1}{2}x' - 4, y = -\frac{y'+5}{3}$$

$$-\frac{y'+5}{3} = 4 - 2\left(-\frac{1}{2}x' - 4 + 1\right)^{3}$$

$$y' = -\frac{3}{8}(x'+6)^{3} - 17$$

Question 17

Find the resultant function when:

a. $(x-2)^2 + (y+5)^2 = 9$ is dilated by a factor of 3 from the y-axis, reflected in the x-axis, translated 4 units up, translated 1 unit left, and dilated by a factor of 3 from the x-axis.

$$x' = 3x - 1, y' = 3(-y + 4)$$

$$x = \frac{1}{3}x' + \frac{1}{3}, y = -\frac{1}{3}y' + 4$$

$$\left(\frac{1}{3}x' + \frac{1}{3} - 2\right)^{2} + \left(-\frac{1}{3}y' + 4 + 5\right)^{2} = 9$$

$$(x - 5)^{2} + (y - 27)^{2} = 81$$

b. $y = 2x^2 + 3x - 6$ is reflected in the *y*-axis, dilated by a factor of 4 from the *x*-axis, translated 5 units down, translated 1 unit right, dilated by a factor of $\frac{1}{2}$ from the *y*-axis.

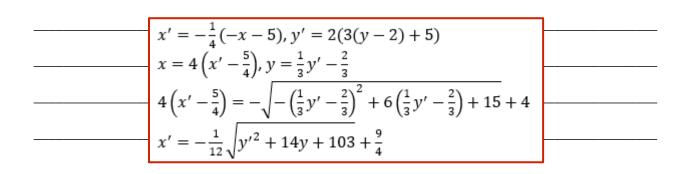
$$x' = \frac{1}{2}(-x+1), y' = 4y - 5$$

$$x = -2x' + 1, y = \frac{y' + 5}{4}$$

$$\frac{y' + 5}{4} = 2(-2x' + 1)^2 + 3(2x' + 1) - 6$$

$$y' = 32x' - 8x' - 9$$

c. $x = -\sqrt{-y^2 + 6y + 15} + 4$ is translated 2 units down, dilated by a factor of 3 from the *x*-axis, reflected in the *y*-axis, translated 5 units left, dilated by a factor of $\frac{1}{4}$ from the *y*-axis, translated 5 units up, reflected in the *y*-axis, and dilated by a factor of 2 from the *x*-axis.



CONTOUREDUCATION

Question 18

- **a.** When the graph $y = 6 2(x + 1)^2$ undergoes the transformation T, described as:
- A translation 4 units right.
- A dilation by a factor of 2 from the *y*-axis.
- A translation 4 units down.
- A reflection in the y-axis.
- \blacktriangleright A dilation by a factor of 3 from the x-axis.

It is mapped onto an equation $y = a(x - h)^2 + k$, where $a, h, k \in \mathbb{R}$.

Find the values of a, h, and k.

 x' = -2(x + 4), y' = 3(y - 4)
 $x = -\frac{1}{2}x' - 4$, $y = \frac{y' + 12}{3}$
$\frac{y'+12}{3} = 6 - 2\left(-\frac{1}{2}x' - 4 + 1\right)^2$
$y' = -\frac{3}{2}(x+6)^2 + 6$
 $a = -\frac{3}{2}, b = -6, k = 6$

b. The graph $y = 6 - 2(x + 1)^2$ can also be mapped to the same equation from **part a.**, by a sequence of 2 dilations, a reflection, and 2 translations. Describe this sequence of transformations.

x' = -2x - 8, y' = 3y - 12

A dilation by a factor of 2 from the *y*-axis.

A dilation by a factor of 3 from the x-axis.

A reflection in the *y*-axis.

A translation 8 units left.

A translation 12 units down.

c. Find the pre-image, that when undergoes the transformation T, results in the equation $y = 6 - 2(x + 1)^2$.

x' = -2x - 8, y' = 3(y - 4) $3(y - 4) = 6 - 2(-2x - 8)^{2}$ $y = -\frac{8}{3}(x + 4)^{2} + 6$

d. The graph of $y = 6 - 2(x + 1)^2$ undergoes the transformation T, followed by a dilation by a factor of 2 from the x-axis, a reflection in the line x = 6, a reflection in the line y = x, and a translation 1 unit up. Find the image equation.

$$x' = 2y, y' = -(x - 6) + 6 + 1$$

$$y = \frac{1}{2}x', x = -y' + 13$$

$$\frac{1}{2}x' = -\frac{3}{2}(-y' + 13 + 6)^{2} + 6$$

$$x' = -3(y' - 19)^{2} + 6$$

<u>Sub-Section [2.4.3]</u>: Find Transformations from Transformed Function (Reverse Engineering)

Ouestion 19

Find the sequence of transformations that map:

a.
$$y = x^2$$
 to $y = -3(x+1)^2 + 7$.

 $\frac{y'-7}{-3} = (x'+1)^2$ $y = \frac{y'-7}{-3}, x = x'+1$ y' = -3y+7, x' = x-1Dilation by a factor of 3 from the x-axis
Reflection in the x-axis
Translation 7 units up
Translation 1 unit down

b.
$$y = \frac{1}{x}$$
 to $y = \frac{3}{5-2x} + 6$.

 $\frac{y'-6}{3} = \frac{1}{5-2x'}$ $y = \frac{y'-6}{3}, x = 5 - 2x'$ $y' = 3y + 6, x' = -\frac{1}{2}x + \frac{5}{2}$ Dilation by a factor of 3 from the x-axis
Translation 6 units up
Dilation by a factor of $\frac{1}{2}$ from the y-axis
Reflection in the y-axis
Translation $\frac{5}{2}$ units right

$y = \sqrt{x}$ to $y =$	$1-\frac{\sqrt{4-3x}}{2}.$	
	$-2(y'-1) = \sqrt{4-3x'}$ $y = -2(y'-1), x = 4-3x'$ $y' = -\frac{1}{2}y + 1, x' = -\frac{1}{3}x + \frac{4}{3}$ Dilation by a factor of $\frac{1}{2}$ from the x -axis	
	Reflection in the x -axis Translation 1 unit up Dilation by a factor of $\frac{1}{3}$ from the y -axis Reflection in the y -axis	
	Translation $\frac{4}{3}$ units right	

Question 20

Find the sequence of transformations that map:

a. $y = 4(x+8)^3 - 5$ to $y = 5 - 2(6x-1)^3$.

	1
$\frac{y+5}{4} = (x+8)^3$	
$\frac{y'-5}{-2} = (6x'-1)^3$	
$\frac{y+5}{4} = (x+8)^3$ $\frac{y'-5}{-2} = (6x'-1)^3$ $\frac{y+5}{4} = \frac{y'-5}{-2}, x+8 = 6x'-1$ $y' = -\frac{1}{2}y + \frac{5}{2}, x' = \frac{1}{6}x + \frac{3}{2}$	
Dilation by a factor of $\frac{1}{2}$ from the x-axis	
Reflection in the x -axis	
Translation $\frac{5}{2}$ units up Dilation by a factor of $\frac{1}{6}$ from the y-axis	
Translation $\frac{3}{2}$ units right	

b.	y = 3	$\sqrt{16 - (x+1)^2}$	+ 5 to y = 1	$-2\sqrt{2}$	16 – ($3x + 5)^2$.

$\frac{y-5}{3} = \sqrt{16 - (x+1)^2}$	
$\frac{y'-1}{-2} = \sqrt{16 - (3x'+5)^2}$ $\frac{y-5}{3} = \frac{y'-1}{-2}, x+1 = 3x'+5$	
 $\frac{y}{x} = \frac{y}{x}$, $x + 1 = 3x' + 5$	H
$y' = -\frac{2}{3}y + \frac{8}{3}, x' = \frac{1}{3}x - \frac{4}{3}$	
3 3 3	Γ
Dilation by a factor of $\frac{2}{3}$ from the x -axis	
Reflection in the x -axis	Γ
 Translation $\frac{8}{3}$ units up	L
Dilation by a factor of $\frac{1}{3}$ from the y-axis	
Translation 4 units left	

c.
$$y = \frac{3}{(4-2x)^2} + 7$$
 to $y = -\frac{6}{(x+1)^2} + 5$.

y-7 _ 1	
$\frac{1}{3} = \frac{1}{(4-2x)^2}$	
y'-5 _ 1	
$\frac{-6}{-6} - \frac{(x_{l+1})^2}{(x_{l+1})^2}$	
$\frac{y-7}{3} = \frac{y'-5}{6}, 4-2x = x'+1$ y' = 2y-9, x' = -2x+3	
3 6 , 4 2x - x 1 1	
y' = 2y - 9, $x' = -2x + 3$	
Dilation by a factor of 2 from the x -axis	
Translation 9 units left	
Dilation by a factor of 2 from the y-axis	
Reflection in the y-axis	
Translation 3 units right	
	•

Question 21

a. The function $y = -2(3(x-1))^4 + 5$ undergoes a sequence of 2 transformations, a reflection, and 2 dilations to become the graph $y = 6(2-x)^4 - 1$.

$\frac{y-5}{-2} = (3(x-1))^4$ $\frac{y'+1}{6} = (x'-2)^4$
$\frac{y-5}{-2} = \frac{y'+1}{6}, 3(x-1) = x'-2$ $y' = -3\left(y - \frac{14}{3}\right), x' = 3(x - \frac{1}{3})$ Translation $\frac{14}{3}$ units down
 Translation $\frac{1}{3}$ units left
Reflection in the x -axis Dilation by a factor of 3 from the x -axis Dilation by a factor of 3 from the y -axis

b. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (ax+b,y+c) maps the equation $y = 11 + 5(x+3)^2$ onto the equation $y = 20(x-6)^2 + 9$. Find the values of a, b, and c.

	$\frac{y-11}{5} = (x+3)^2$
	$\frac{y'-9}{5} = (2(x'-6))^2$
	$\frac{1}{5} = (2(x'-6))$
	$\frac{y-11}{5} = \frac{y'-9}{5}, x+3 = 2(x'-6)$
	.,
	$y' = y - 2, x' = \frac{1}{2}x + \frac{15}{2}$
	$a = \frac{1}{2}$, $b = \frac{15}{2}$, $c = -2$
· · · · · · · · · · · · · · · · · · ·	

c. The graph $y = \frac{\sqrt{6x-4}}{3} + 2$ is mapped onto $y = 5 - 2\sqrt{-1-x}$ by a sequence of 2 dilations and 2 reflections, followed by a translation.

CONTOUREDUCATION

Question 22

Find the sequence of transformations that map:

a. $y = x^2 - 4x + 6$ onto $y = -2x^2 + 10x - 7$.

 $y = (x - 2)^{2} + 2$ $y - 2 = (x - 2)^{2}$ $y' = -2\left(x' - \frac{5}{2}\right)^{2} + \frac{11}{2}$ $\frac{y' - \frac{39}{2}}{-2} = \left(x' + \frac{5}{2}\right)^{2}$ $y - 2 = \frac{y' - \frac{39}{2}}{2} x - 2 = 3$

 $y-2=\frac{y'-\frac{39}{2}}{-2}, x-2=x'+\frac{5}{2}$ $y'=-2y+\frac{47}{2}, x'=x-\frac{1}{2}$ Dilation by a factor of 2 from the x-axis
Reflection in the x-axis
Translation $\frac{47}{2}$ units up
Translation $\frac{1}{2}$ units left

b. $y = 2\sqrt{(x+4)^2 + 1} - 5$ onto $y = 3 - \sqrt{(2x-6)^2 + 9}$.

 $\frac{y+5}{2} = \sqrt{(x+4)^2 + 1}$ $y' = 3 - 3\sqrt{\left(\frac{2}{3}x' - 2\right)^2 + 1}$ $\frac{y'-3}{-3} = \sqrt{\left(\frac{2}{3}x' - 2\right)^2 + 1}$ $\frac{y+5}{2} = \frac{y'-3}{-3}, x + 4 = \frac{2}{3}x' - 2$ $y' = -\frac{3}{2}y - \frac{9}{2}, x' = \frac{3}{2}x + 9$ Dilation by a factor of $\frac{3}{2}$ from the *x*-axis
Reflection in the *x*-axis
Translation $\frac{9}{2}$ units down
Dilation by a factor of $\frac{3}{2}$ from the *y*-axis
Translation 9 units right

c. $f: [-4, \infty) \to \mathbb{R}, f(x) = -x^2 - 8x + 9 \text{ onto } g: (-\infty, 5] \to \mathbb{R}, g(x) = 2x^2 - 20x + 13.$

$y = -(x+4)^2 + 25$
$-(y-25) = (x+4)^2$
$y' = 2(-(x'-5))^2 - 37$
$\frac{y'+37}{2} = (-(x'-5))^2$
$-(y-25) = \frac{y'+37}{2}, x+4 = -(x'-5)$
y' = -2y + 13, $x' = -x + 1$
 Dilation by a factor of 2 from the x -axis
Reflection in the x -axis
 Translation 13 units up
·
Reflection in the y -axis

Translation 1 units right

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit:blue-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

