

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Transformations [2.4]

Homework

Homework Outline:

Compulsory Questions	Pg 2 – Pg 19	
Supplementary Questions	Pg 20 — Pg 42	

Section A: Compulsory Questions

Sub-Section [2.4.1]: Applying x' and y' Notation to Find Transformed Points, Find Interpretation of Transformations and Altered Order of Transformations

on 2
sformation T is applied to points on the plane such that the image is given by $(x', y') = (2x + 4, -y + 2)$
scribe T in words where dilations and reflections occur before translations.
scribe T in words where translations occur before reflections and dilations.
3

Question 3
The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is described by the following sequence of transformations.
\blacktriangleright A dilation by factor 2 from the <i>x</i> -axis.
A dilation by factor 3 from the <i>y</i> -axis.
ightharpoonup A reflection in the x -axis.
A translation 2 units left.
A translation 6 units down.
a. Let (x', y') be the image of (x, y) under T . Find (x', y') .
b. Describe in words, the transformations T , in the order of translations, reflections, and dilations.

<u>Sub-Section [2.4.2]</u>: Find Transformed Functions

Qι	Question 4						
a.	Find the rule for the image of $f(x) = x^2$ under the transformations:						
	\bullet A dilation by factor 2 from the x -axis.						
	A translation 1 unit up.						
b.	Find the rule for the image of $f(x) = \sqrt{x}$ under the transformations:						
	A dilation by factor 4 from the <i>y</i> -axis.						
	A translation 1 unit down.						

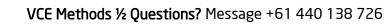
- **c.** Find the rule for the image of $f(x) = \frac{1}{x}$ under the transformations:
 - \bullet A dilation by factor 2 from the *x*-axis.
 - A translation 1 unit up and 3 units to the left.

Question 5

a. Find the rule for the image of $f(x) = 2x^2 + 4$ under the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (2x + 1, -y + 2).

b. Find the rule for the image of $f(x) = \frac{3}{x-3}$ under the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x+1,-2y+2).

c. Find the rule for the image of $f(x) = \sqrt{2x - 4} + 3$ under the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (-2x + 1, 2y + 3).


Question 6			

- **a.** Find the rule for the image of $f(x) = 2(x-1)^2 + 3$ under the transformations:
 - \bullet A dilation by factor 2 from the *x*-axis.
 - A translation 3 units to the left.
 - A translation 1 unit up.
 - \bigcirc A reflection in the *x*-axis.

- **b.** Find the rule for the image of $f(x) = \frac{1}{x-1}$ under the transformations:
 - \bullet A dilation by factor 4 from the *x*-axis.
 - A dilation by factor $\frac{1}{2}$ from the y-axis.
 - \bullet A reflection in the *x*-axis.
 - A translation 2 units right.

c.	Find the rule for the image of $f(x) = \sqrt{2x+6} - 4$ under the transformations:	
	A translation 1 unit up.	
	A translation 4 units to the right.	
	A reflection in the <i>y</i> -axis.	
	A dilation by factor 2 from the x -axis.	
		_
		_
		_
		_
		_
		_
		_
Sp	ce for Personal Notes	

<u>Sub-Section [2.4.3]</u>: Find Transformations from Transformed Function

Question 7

a. Let $f(x) = x^2$ and $g(x) = 4x^2 + 1$.

Describe a sequence of transformations that maps the graph of f onto the graph of g.

b. Let $f(x) = \sqrt{x}$ and $g(x) = 2\sqrt{x+1} - 3$.

Describe a sequence of transformations that maps the graph of f onto the graph of g.

c. Let $f(x) = \frac{1}{x}$ and $g(x) = \frac{3}{x+2}$.

Describe a sequence of transformations that maps the graph of f onto the graph of g.

a. Let $f(x) = x^2$ and $g(x) = 4(x-2)^2 + 3$.

Question 8

Describe a sequence of transformations that maps the graph of f onto the graph of g.

b. Let $f(x) = \sqrt{2x}$ and $g(x) = 2\sqrt{4x - 2}$.

Describe a sequence of transformations that maps the graph of f onto the graph of g.

c. Let $f(x) = \frac{6}{x-1}$ and $g(x) = \frac{3}{x+2} + 1$.

Describe a sequence of transformations that maps the graph of f onto the graph of g.

Question 9

a. Let $f(x) = 2\sqrt{x+1}$ and $g(x) = 5\sqrt{5-3x} + 4$.

Describe a sequence of transformations that maps the graph of f onto the graph of g.

b.	Let $f(x) = 2(x-3)^2$	+	2 and	g(x)	=	x^2	+4x	+ 7	

Describe a sequence of transformations that maps the graph of f onto the graph of g.

c. Let $f(x) = \frac{3}{x^2} + 1$ and $g(x) = -\frac{6}{(2x-3)^2} + 4$.

Describe a sequence of transformations that maps the graph of f onto the graph of g.

Sub-Section: The 'Final Boss'

Question 10 Consider the function $f(x) = x^2 - 4x + 7$ and the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (3x - 6, -2y + 2)$			
i. Dilations and reflections before translations.			
ii. Translations before reflections and dilations.			

b.	Write $f(x)$ in turning point form.
c.	Find the rule for the image of $f(x)$ under T .

d.	Determine a sequence of transformations that map $f(x)$ to $g(x) = 2x^2 - 16x + 28$.

Section B: Supplementary Questions

Sub-Section [2.4.1]: Applying x' and y' Notation to Find Transformed Points, Find Interpretation of Transformations and Altered Order of Transformation

Question 11			
Find the coordinates of the image point for the following:			
a.	The point (2, 3) undergoes a dilation by a factor of 6 from the <i>y</i> -axis, a reflection in the <i>x</i> -axis, followed by a translation 1 unit up.		
b.	The point (1,5) undergoes a translation 2 units left, a dilation by a factor of $\frac{1}{4}$ from the <i>y</i> -axis, a translation 3 units up, followed by a reflection in the <i>x</i> -axis.		
c.	The point $(-4,2)$ is dilated by a factor of 3 from the x-axis, translated 1 unit right, reflected in the x-axis, reflected in the y-axis, dilated by a factor of 2 from the y-axis, and then translated 5 units down.		

Qu	uestion 12
Co	nsider the sequence of transformations:
>	A dilation by a factor of $\frac{1}{2}$ from the y-axis.
>	A reflection in the <i>x</i> -axis.
>	A dilation by a factor of 6 from the x -axis.
>	A translation 4 units down.
>	A translation 1 unit right.
>	A translation 9 units up.
a.	Rewrite the transformations in the order of a dilation, a translation, a dilation, a reflection, and then a translation.

1	
b.	Express the transformations as a sequence of two translations, followed by two dilations and a reflection.
c.	Express the transformations in the order of a dilation, a translation, a dilation, a translation, and then a reflection.
	·
	·
ςr	pace for Personal Notes

Owastian	12
Ouestion	1.3

The transformation *T* is defined as $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (5-2x,6y+1).

a. Evaluate T(-3.8).

b. Find the pre-image of (7, -35) under the transformation T.

c. Express T as a sequence of two translations, two dilations, and a reflection.

Identify a sequence of transformations that maps the point (-3,8) to the image of (-3,8) under <i>T</i> and also maps the point (1, -2) to the point (23, -1).		
	d.	Identify a sequence of transformations that maps the point $(-3,8)$ to the image of $(-3,8)$ under T and also
		maps the point $(1, -2)$ to the point $(23, -1)$.
pace for Personal Notes		
	Sp	ace for Personal Notes

Question 14

- **a.** Consider the transformation T described by:
- A translation 2 units left.
- \triangleright A dilation by a factor of 3 from the x-axis.
- A dilation by a factor of $\frac{1}{4}$ from the y-axis.
- \triangleright A reflection in the x-axis.
- A translation 1 unit up.
- \rightarrow A reflection in the line y = x.
- A translation 4 units right.
 - i. Apply *T* to the point (5,2).
 - ii. Express T as a sequence of 2 dilations followed by 2 reflections, and then 2 translations.

- **b.** Consider the transformation *S* described by:
- \rightarrow A dilation by a factor of 2 from the *x*-axis.
- A reflection in the y-axis.
- A dilation by a factor of $\frac{1}{3}$ from the y-axis.
- A reflection in the line y = 4.
- A translation 5 units down.
- A translation 1 unit right.
 - i. S can also be defined $S: \mathbb{R}^2 \to \mathbb{R}^2$, S(x,y) = (ax + b, cy + d). Find the values of a, b, c, and d.

ii. Hence, evaluate S(-2,4).

c.	A point (x, y) undergoes the transformations T followed by S . Find the image point.	
d.	Given that the image point from part c. , is $(-4,6)$, find the pre-image.	
Sp	pace for Personal Notes	

<u>Sub-Section [2.4.2]</u>: Find Transformed Functions

Qι	estion 15			
Find the resultant function when:				
a.	$y = x^2$ is dilated by a factor of 2 from the y-axis, reflected in the x-axis, translated 3 units up, and translated 1 unit left.			
b.	$y = \frac{1}{x}$ is reflected in the y-axis, translated 3 units up, dilated by a factor of 2 from the x-axis, dilated by a factor of $\frac{1}{4}$ from the y-axis, and translated 2 units right.			

c. $y = \sqrt{x}$ is translated 3 units down, translated 5 units right, reflected in the *y*-axis, dilated by a factor of 3 from the *x*-axis, dilated by a factor of 2 from the *y*-axis, and reflected in the *x*-axis.

Question 16

Find the resultant function when:

a. $y = -2(x+5)^2 + 1$ is dilated by a factor of $\frac{1}{3}$ from the *x*-axis, translated 4 units right, translated 1 unit down, reflected in the *y*-axis, and dilated by a factor of 2 from the *y*-axis.

$y = \frac{2}{(5-x)^2} + 7$ is reflected in the x-axis, translated 2 units up, dilated by a factor of 3 from the y-axis,
reflected in the y-axis, translated 4 units right, and dilated by a factor of $\frac{1}{4}$ from the x-axis.
$y = 4 - 2(x + 1)^3$ is translated 4 units right, dilated by a factor of 3 from the x-axis, reflected in the y-axi translated 5 units up, reflected in the x-axis, and dilated by a factor of 2 from the y-axis.
$y = 4 - 2(x + 1)^3$ is translated 4 units right, dilated by a factor of 3 from the x-axis, reflected in the y-axis translated 5 units up, reflected in the x-axis, and dilated by a factor of 2 from the y-axis.

Question	1	7
Question	1	1

Find the resultant function when:

a. $(x-2)^2 + (y+5)^2 = 9$ is dilated by a factor of 3 from the y-axis, reflected in the x-axis, translated 4 units up, translated 1 unit left, and dilated by a factor of 3 from the x-axis.

b. $y = 2x^2 + 3x - 6$ is reflected in the *y*-axis, dilated by a factor of 4 from the *x*-axis, translated 5 units down, translated 1 unit right, dilated by a factor of $\frac{1}{2}$ from the *y*-axis.

MM12 [2.4] - Transformations - Homework

c.	$x = -\sqrt{-y^2 + 6y + 15} + 4$ is translated 2 units down, dilated by a factor of 3 from the <i>x</i> -axis, reflected in the <i>y</i> -axis, translated 5 units left, dilated by a factor of $\frac{1}{4}$ from the <i>y</i> -axis, translated 5 units up, reflected in the <i>y</i> -axis, and dilated by a factor of 2 from the <i>x</i> -axis.

	Space for Personal Notes
I	
I	
I	

Question 18

- **a.** When the graph $y = 6 2(x + 1)^2$ undergoes the transformation T, described as:
- A translation 4 units right.
- A dilation by a factor of 2 from the y-axis.
- A translation 4 units down.
- A reflection in the y-axis.
- \blacktriangleright A dilation by a factor of 3 from the x-axis.

It is mapped onto an equation $y = a(x - h)^2 + k$, where $a, h, k \in \mathbb{R}$.

Find the values of a, h, and k.

	dilations, a reflection, and 2 translations. Describe this sequence of transformations.
•	Find the pre-image, that when undergoes the transformation T, results in the equation $y = 6 - 2(x + 1)$

The graph of $y = 6 - 2(x + 1)^2$ undergoes the transformation T , followed by a dilation by a factor of 2 from the x -axis, a reflection in the line $x = 6$, a reflection in the line $y = x$, and a translation 1 unit up. Find the image equation.
·

<u>Sub-Section [2.4.3]</u>: Find Transformations from Transformed Function (Reverse Engineering)

Question 19

Find the sequence of transformations that map:

a.
$$y = x^2$$
 to $y = -3(x+1)^2 + 7$.

b. $y = \frac{1}{x}$ to $y = \frac{3}{5-2x} + 6$.		

c. $y = \sqrt{x}$ to $y = 1 - \frac{\sqrt{4-3x}}{2}$.

Question 20

Find the sequence of transformations that map:

a. $y = 4(x+8)^3 - 5$ to $y = 5 - 2(6x-1)^3$.

b. $y = 3\sqrt{16 - (x+1)^2} + 5$ to $y = 1 - 2\sqrt{16 - (3x+5)^2}$.

c. $y = \frac{3}{(4-2x)^2} + 7$ to $y = -\frac{6}{(x+1)^2} + 5$.

Question 21

-				
_				
_				
-				
_				
-				
_				
- -	The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (a)$	ax + b, y + c) maps of a , b , and c .	the equation $y = 11 + 5(x + 3)^2$	ont
- - -	The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (a)$ equation $y = 20(x-6)^2 + 9$. Find the values	ax + b, y + c) maps of a, b , and c .	the equation $y = 11 + 5(x + 3)^2$	ont
- - - -	The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (a)$ equation $y = 20(x - 6)^2 + 9$. Find the values	ax + b, y + c) maps of a , b , and c .	the equation $y = 11 + 5(x + 3)^2$	ont
- - -	The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (a)$ equation $y = 20(x - 6)^2 + 9$. Find the values	ax + b, y + c) maps of a, b , and c .	the equation $y = 11 + 5(x + 3)^2$	onto
- - - -	The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (a)$ equation $y = 20(x - 6)^2 + 9$. Find the values	ax + b, y + c) maps of a , b , and c .	the equation $y = 11 + 5(x + 3)^2$	onto
	The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (a)$ equation $y = 20(x - 6)^2 + 9$. Find the values	ax + b, y + c) maps of a , b , and c .	the equation $y = 11 + 5(x + 3)^2$	onto
- - - -	The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x, y) = (a)$ equation $y = 20(x - 6)^2 + 9$. Find the values	ax + b, y + c) maps of a , b , and c .	the equation $y = 11 + 5(x + 3)^2$	onto
	The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (a)$ equation $y = 20(x - 6)^2 + 9$. Find the values	ax + b, y + c) maps of a , b , and c .	the equation $y = 11 + 5(x + 3)^2$	ont

c. The graph $y = \frac{\sqrt{6x-4}}{3} + 2$ is mapped onto $y = 5 - 2\sqrt{-1-x}$ by a sequence of 2 dilations and 2 reflections, followed by a translation.

Question 22

Find the sequence of transformations that map:

a. $y = x^2 - 4x + 6$ onto $y = -2x^2 + 10x - 7$.

b. $y = 2\sqrt{(x+4)^2 + 1} - 5$ onto $y = 3 - \sqrt{(2x-6)^2 + 9}$.

Space for Personal Notes				

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

