

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Functions & Relations II [2.2]

Workbook

Outline:

Domain and Range Set Notation Interval Notation Maximal Domain Range Functional Notation Hybrid (Piecewise) Functions	Pg 02-16 Pg 17-21	 Inverse Functions Basics of Inverses Swapping x and y Symmetry Around y = x Validity of Inverse Function Intersection Between Inverses 	Pg 22-36

Section A: Domain and Range

Sub-Section: Set Notation

Let's have a look at set notations!

Set Operators

 $A \cap B = What values are in set A AND in set B$.

Union: "OR".

 $A \cup B = What values are in set A OR in set B$.

Set difference: "Except".

 $A \setminus B = What \ values \ are \ in \ set \ A \ except \ those \ also \ in \ set \ B.$

For the sets given below, find:

$$A = \{0, 2, 3, 5, 6, 11\}$$
 and $B = \{0, 1, 2, 3, 5, 7, 9, 10\}$

a.
$$A \cap B =$$

b.
$$A \cup B =$$

c.
$$A \setminus B =$$

d.
$$B \setminus A =$$

Sub-Section: Interval Notation

Now interval notation!

Interval Notation

Parentheses (non-inclusive):

$$x \in (a, b) \Rightarrow a < x < b$$

Square brackets [inclusive]:

$$x \in [a, b] \Rightarrow a \le x \le b$$

Question 2 Walkthrough.

Simplify the following set.

$$A = [-1, 10]$$
 and $B = [-4, 5)$

a. Find $A \cap B$.

b. Find $A \cup B$.

3

NOTE: Use **number lines** to find the intersection and union of sets.

Now your turn!

Question 3

Find the following sets:

a. $[0,5] \cap [1,8]$

b. $[-3,7] \cup \left(-11,\frac{1}{2}\right]$

	_		_
Onestion	4	Exten	sion.

Find the following set.

 $[1,3) \cap [2,6] \cup (-5,2)$

<u>Discussion:</u> What is $\mathbb{R}\setminus[a,b]$ equal to? Is it $(-\infty,a)\cup(b,\infty)$ or $(-\infty,a]\cup[b,\infty)$?

Space for Personal Notes		

Sub-Section: Maximal Domain

What is a maximal domain?

Maximal Domain

- The maximal domain is ______ domain for a rule without committing a
- In Methods, we need to consider 3 important rules:

$$\sqrt{\mathbf{z}}$$
, \mathbf{z} ______

$$log(z)$$
, z _____

NOTE: We will consider log in depth later throughout the year!

Question 5 Walkthrough.

Find the maximal domain of each of the following functions.

a.
$$f(x) = \sqrt{x - 3}$$

b.
$$h(x) = \log_2(x+5)$$

c.
$$h(x) = \frac{1}{x-4}$$

Your turn!

Question 6

Find the maximal domain of the following functions.

a.
$$f(x) = \sqrt{-x - 6} - 5$$

b.
$$h(x) = -\log_2(x+10)$$

$$c. \frac{1}{x^2-25}$$

Now harder ones!

Question 7

Find the maximal domain of the following functions.

a.
$$f(x) = \sqrt{x^2 - 4} - 5$$

b.
$$h(x) = -\log_2(25 - x^2)$$

NOTE: Always sketch the function when solving inequalities for many to one functions.

Calculator Commands

Mathematica

FunctionDomain[func, x]

TI-Nspire

Type up domain (or find it under the book button).

domain(func,x)

Casio Classpad

Sketch the function and analyse.

Question 8 Tech Active.

Find the maximal domain of the following function.

$$f(x) = \sqrt{x^2 - 9} + 1$$

Sub-Section: Range

Now the range!

Range

The range is the possible values for the output of a function.

Question 9 Walkthrough.

Find the range of the following function:

$$f: [-4,4]\setminus\{0\} \to \mathbb{R}, f(x) = \frac{1}{x}$$

TIP: Always sketch the function!

Find the range of the following functions.

a.
$$f: [-4, 6) \to R, f(x) = x^2 - 16$$

b.
$$f:[12,\infty) \to R, f(x) = 2\sqrt{x+4} + 1$$

Question 11 Extension.

Find the range of the following function.

$$f: [-2,8) \to R, f(x) = \frac{1}{2}x^2 - 2x - 2$$

Sub-Section: Functional Notation

How do we represent a function?

Functional Notation

- $f: Domain \rightarrow Codomain, f(x) = Rule$
- Codomain is simply all the values the function works within.
- Codomain is not the same as range.

Analogy: Functional notation is a "business card" for functions.

A function f wants to make a business card for themself.

They decide to put their name, working hours, company associated and their role.

Name: Working Hour \rightarrow Company, Role

- Their name is simply f.
- Their working hours are their "domain".
- Their company is the "CoDomain".
- Their role is the rule!

$f: Domain \rightarrow Codomain, f(x) = Rule$

- Now, does f have to make everything in their company?
- Hence, using this analogy, would his range (their output) be the same as the codomain (company)?

Question	12
Question	14

Consider the following function, written in functional notation:

$$f:[-1,4]\to\mathbb{R}, f(x)=x+5$$

Identify the name, domain, range, and the equation of the function.

Section B: Hybrid (Piecewise) Functions

Analogy: Hybrid functions are like a relay race.

Imagine the functions f(x) and g(x) participating in a relay race as part of the same team.

- f(x) is running for x < 4 and g(x) is running for $x \ge 4$.
- For x = 5 who do we look at?
- This is how hybrid functions work!

Piecewise (Hybrid) Functions

Series of functions.

$$h(x) = \begin{cases} f(x), & Domain_1 \\ g(x), & Domain_2 \end{cases}$$

- ightharpoonup Domain₂ represent the x values for which the two functions are defined.
- > The two domains do not have to join!

Question 13 Walkthrough.

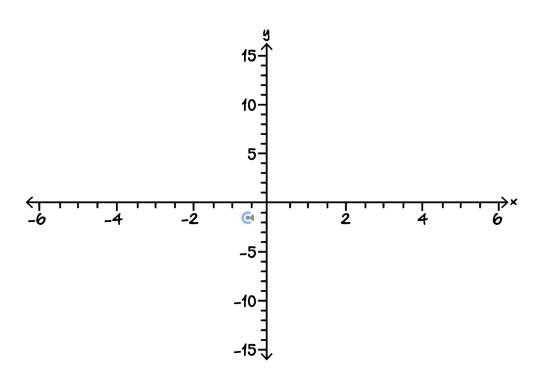
Consider the hybrid function f.

$$f(x) = \begin{cases} x^2 - 5, & x \ge 0 \\ x + 4, & x < 0 \end{cases}$$

a. Find f(-2).

b. Find f(5).

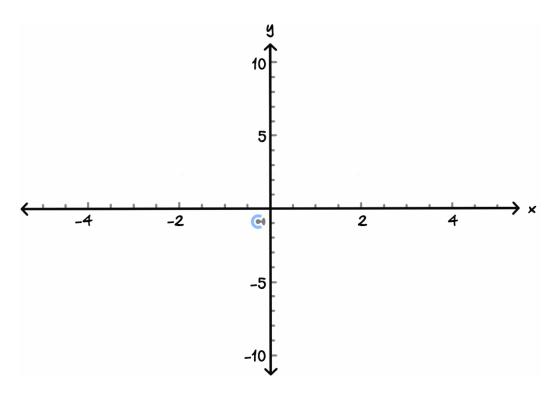
c. Graph y = f(x).



Consider the hybrid function g.

$$g(x) = \begin{cases} x^2 + 1, & x \ge 0 \\ 1 - x, & x < 0 \end{cases}$$

a. Graph y = g(x).



b. Find the range of g(x).

Consider the hybrid function g.

$$g(x) = \begin{cases} x^2 + 4x + 1, & -4 \le x < 0 \\ 2x + 3, & x \ge 0 \end{cases}$$

Find the range of g(x).

Defining Hybrid Functions on CAS

- Mathematica
 - "Esc PW" and Control Enter to create cells.

func1 dom1
func2 dom2

TI-Nspire

G

func 1,dom 1 func 2,dom 2 Casio Classpad

G

A	-	+		4	ans	EXE
al	oc	<u> </u>	2	=	#	
V	ar	,		, ,		
Tr	ig	(>	()	{}	[]
	th3	solve(dSlv	,		1
	th2	Define	f	g	i	90
Ma		Line	昌	√ I	π	⇒

Consider the hybrid function g.

$$g(x) = \begin{cases} x^3 + 6x - 5, & x < 1 \\ x + 4, & x \ge 1 \end{cases}$$

a. Evaluate g(-2).

b. Evaluate g(3).

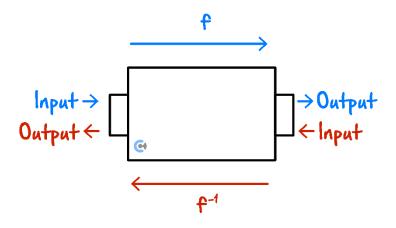
Section C: Inverse Functions

Sub-Section: Basics of Inverses

What does "inverse" mean?

Inverse Relation

Definition: Inverse is a relation which does the _______.



<u>Discussion:</u> What would be the inverse of f(x) = x + 2?

Question 17

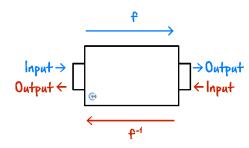
Find the inverse of f(x) = 2x + 1.

Sub-Section: Swapping x and y

Is there a better way of solving for an inverse relation?

Solving For an Inverse Relation

 \blacktriangleright Swap x and y.



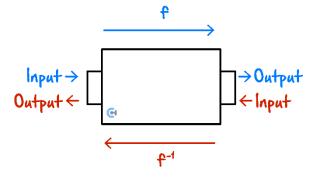
Question 18

Find the inverse of f(x) = 2x + 1 by swapping x and y.

NOTE: f(x) = y.

<u>Discussion:</u> Hence, what would happen to the domain and range of the function when we find its inverse?

Domain and Range of Inverse Functions



$$Dom f^{-1} =$$

$$Ran f^{-1} =$$

Question 19 Walkthrough.

Consider the function $f(x) = \sqrt{x+2} - 1$ defined for its maximal domain.

a. Find the rule for the inverse function.

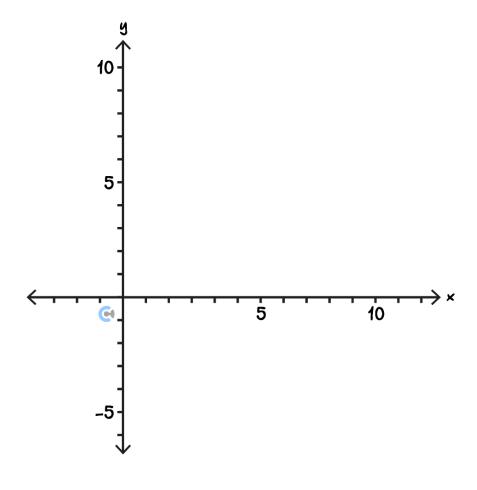
b. State the domain and range of inverse function.

Consider the function $f: [0, 4] \rightarrow R, f(x) = 2x + 1$.

a. Find the rule for the inverse function.

b. State the domain and range of inverse function.

c. Sketch the f(x) and $f^{-1}(x)$ on the axis below.



Question 21 Extension.

Consider the function $f: (-\infty, 2] \to R$, $f(x) = \frac{1}{2}x^2 - 2x + 4$.

a. Find the rule for the inverse function.

b. State the domain and range of inverse function.

 $\underline{\text{Discussion:}} \text{ In the previous question, which line were the two inverses symmetrical to?}$

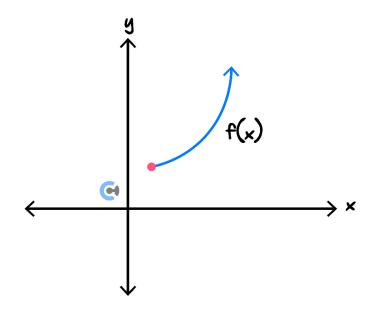
Sub-Section: Symmetry Around y = x

Why does this happen?

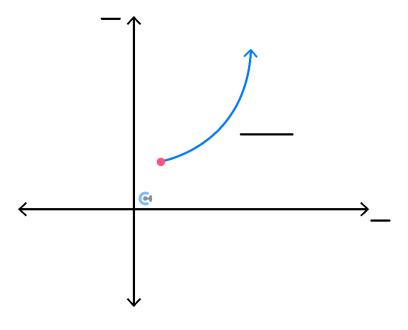
R

Exploration: Symmetry around y = x.

Consider the following function:

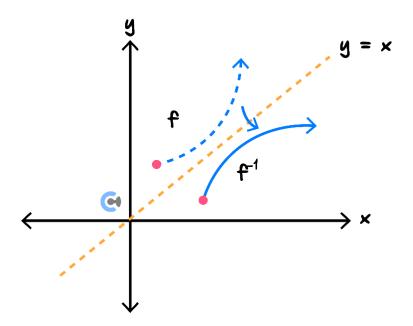


What happens if you swap the x and y-axis on the label on our graph?

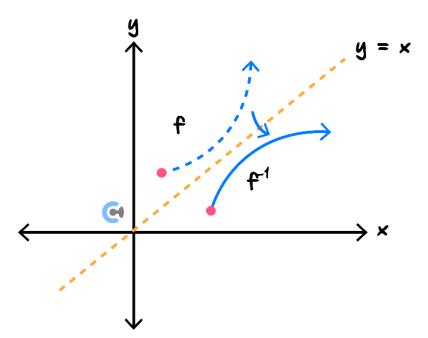


CONTOUREDUCATION

- Wait...do we want the x-axis to be the vertical one? [Yes/No]
- \blacktriangleright How should we reflect the graph so that the x and y-axis becomes horizontal and vertical again?



Symmetry of Inverse Functions



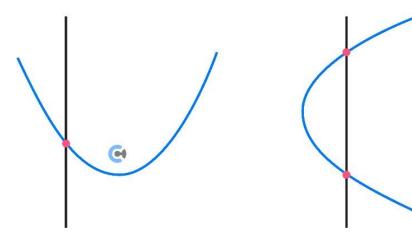
Inverse functions are always symmetrical around y = x.

Sub-Section: Validity of Inverse Function

Does an inverse function always exist?

<u>Discussion:</u> If you find an inverse, can you guarantee that it is always a function? Hence, is it always an inverse function?

REMINDER: Functions

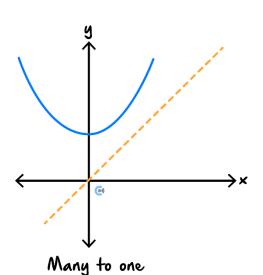


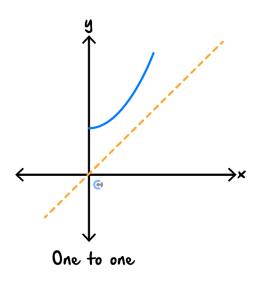
Functions pass a vertical line test.

Fails : Not function

Passes : Function

Exploration: Validity of inverse functions.



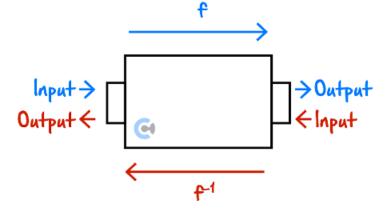


- Reflect them around y = x and sketch the inverse! (Label Above)
- Which inverse is a function? (Passes through a vertical line test?)

[neither] / [left] / [right] / [both]

For an inverse function to exist, what must the original function be? [many to one] / [one to one]

Validity of Inverse Functions



Requirement for Inverse Function:

f needs to be _____

Question 22 Walkthrough.

Consider the function $f: (-\infty, a] \to \mathbb{R}, f(x) = (x - 2)^2 + 3$.

a. Find the largest possible value of a such that the inverse function f^{-1} exists.

b. Find the domain and range of the inverse function. (2 marks)

c. Find the rule for the inverse function. (2 marks)

TIP: Always try sketching the function to find the domain such that an inverse function can exist!

NOTE: You will need to complete the square when finding the inverse of quadratic functions!

7

Your turn!

Question 23

Consider the function $g:[b,\infty) \to \mathbb{R}, g(x) = (x+2)^2 + 1$.

a. Find the smallest possible value of b such that the inverse function g^{-1} exists.

b. Find the domain and range of the inverse function. (2 marks)

 ${f c.}$ Find the rule for the inverse function. (2 marks)

Space for Personal Notes

Question 24 Extension.

Consider the function $g: (-\infty, b] \to \mathbb{R}$, $g(x) = -x^2 + 4x - 3$.

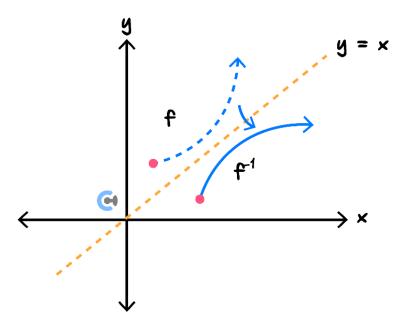
a. Find the largest possible value of b such that the inverse function g^{-1} exists.

b. Find the domain and range of the inverse function. (2 marks)

 ${f c.}$ Find the rule for the inverse function. (2 marks)

Sub-Section: Intersection Between Inverses

Active Recall: Symmetry around y = x.

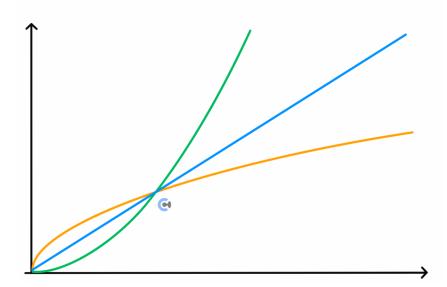


ightharpoonup Inverse functions are always symmetrical around y=x.

<u>Discussion:</u> Where could a function and its inverse meet?

<u>Exploration</u>: Intersections between a function and its inverse.

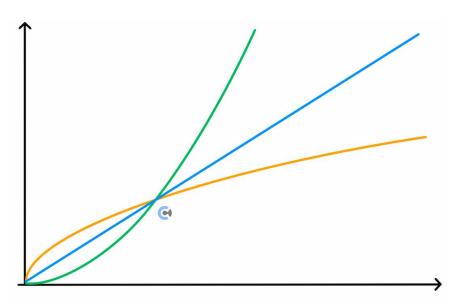
Consider a function and its inverse below.



- Note the symmetry around y = x for inverses!
- Circle the point where the two functions intersect.
- Where does this point also lie?

<u>Discussion:</u> Hence, instead of solving $f(x) = f^{-1}(x)$, what can we solve instead of finding the point where a function and its inverse intersect?

Intersection Between a Function and Its Inverse



$$f(x) = x \text{ OR } f^{-1}(x) = x$$

Question 25

Find the intersection between $f:[0,\infty)\to R$, $f(x)=x^3$ and its inverse, without finding the inverse.

NOTE: We can always equate the function to x instead of the inverse function itself!

ALSO NOTE: This only works for an increasing function, however in VCAA, this is always the case. Something to note for SACS is that there could be intersections that are NOT on y = x.

Contour Checklist

□ Learning Objective: [2.2.1] - Find Domain and Range of Functions

Key Takeaways

Interval Notation:

O Parentheses (non-inclusive):

$$x \in (a, b) \Rightarrow a < x < b$$

Square brackets [inclusive]:

$$x \in [a, b] \Rightarrow a \le x \le b$$

Maximal Domain:

- O Inside of a log must be ______.
- O Inside of a root must be _______
- O Denominator _______

Learning Objective: [2.2.2] - Sketch and Find the Domain and Range of Hybrid Functions

Key Takeaways

Piecewise (Hybrid) Functions:

Series of functions.

$$h(x) = \begin{cases} f(x), & Domain_1 \\ g(x), & Domain_2 \end{cases}$$

- \bigcirc When we have an x intercept for one graph, sum graph intersects the other graph.
- \bigcirc Domain₁ and Domain₂ represent the x values for which the two functions are ______.
- O The two domains do not have to join!
 - Learning Objective: [2.2.3] Find the Rule, Domain, Range, and Intersections Between Inverse Functions

Key Takeaways

- $lue{ }$ f needs to be _____ for f^{-1} to exist.
- O Domain of the inverse function equals to ______ and vice versa.
- Symmetrical around ______.
- For intersections of inverses, we can equate the function to ______.

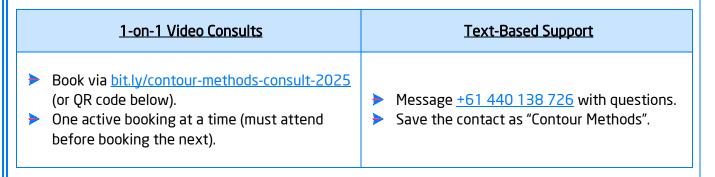
Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.



Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

