

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Functions & Relations II [2.2]

Test Solutions

24 Marks. 29 Minutes Writing.

Results:

Test Questions	/24
Extension Questions	/3

Section A: Test Questions (24 Marks)

Question 1 (4 marks)

Tick whether the following statements are **True** or **False**.

Statement		True	False
a.	A function's domain will always be its maximal domain. It can a subset of that	nt.	✓
b.	The expression inside a square root can only be positive. It can be 0 as well.		✓
c.	c. All hybrid functions must "join together", i.e., be continuous.		✓
d.	d. $f: D \to R, f(x) = x^2 + 4$ has a range of R .		✓
e.	e. A function and its inverse are always symmetrical around $y = x$.		
f.	f. A relation needs to be one to one, for it to have an inverse relation.		✓
g.	g. A function needs to be one to one, for it to have an inverse function.		
h.	h. Instead of equating $f(x)$ with its inverse to find the intersection between $f(x)$ and $f^{-1}(x)$, we can equate $f(x)$ to $y = x$ most of the time.		

Question 2 (4 marks)

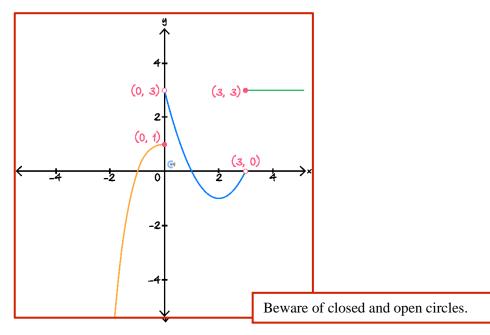
State the implied domain and range for each of the relations below.

a. $y = 1 - \sqrt{1 - x}$. (2 marks)

 $x \le 1, y \le 1$

b. $y = \sqrt{x^2 + 2x + 1}$. (2 marks)

 $x \in R, y \ge 0$


CONTOUREDUCATION

Question 3 (6 marks)

A function g(x) is defined as,

$$g(x) = \begin{cases} x^3 + 1, & x \le 0 \\ (x - 2)^2 - 1, & 0 < x < 3 \\ 3, & x \ge 3 \end{cases}$$

a. Draw the graph of y = g(x) on the axes below. (3 marks)

b. State the number of solutions to $g(x) = -\frac{1}{2}$. (1 mark)

3

c. State the range of g(x). (1 mark)

Range $g:(-\infty,3]$.

d. Solve the equation g(x) = 3. (1 mark)

 $x \ge 3$ NOTE: $x \ne 0$

Question 4 (10 marks)

Consider the function $f: [0, a] \rightarrow R, f(x) = -(x - 2)^2 + 4$.

a. Find the largest value of a such that the inverse function f^{-1} exists. (1 mark)

a = 2

b. State the domain and range of the inverse of f. (2 marks)

Domain: $(f^{-1}) = [0,4]$ Range: $(f^{-1}) = [0,2]$

c. Determine the equation of the inverse function f^{-1} . (3 marks)

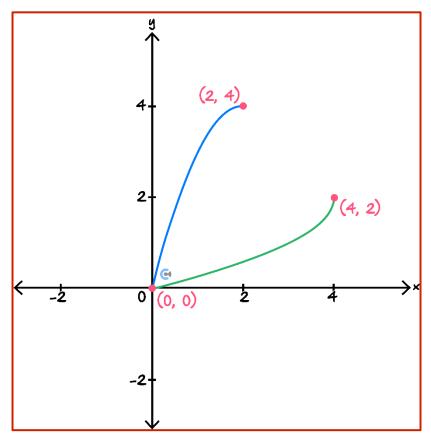
1 mark: Swapping x and y for inverse

1 mark: Finding the equation with +

1 mark: Justifying the rejection

$$f[x_{-}] := -(x-2)^{2} + 4$$

Solve[f[y] = x, y]


풀이 함수

$$\left\{\left.\left\{y\rightarrow2-\sqrt{4-x}\right.\right\}\text{, }\left\{y\rightarrow2+\sqrt{4-x}\right.\right\}\right\}$$

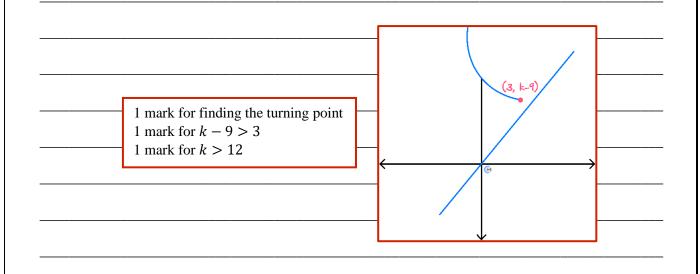
(* Reject 2+ because the range if [0,2] (less than equal to 2)*)

CONTOUREDUCATION

d. The graph of f is shown on the graph below. On the same set of axes, sketch accurately the graph of the inverse of f. (3 marks)

e. Find an intersection point between f and f^{-1} . (1 mark)

(0,0)


Section B: Extension Questions (3 Marks)

Question 5 (3 marks)

Consider the function below.

$$f: [0,3] \to R, f(x) = x^2 - 6x + k$$
, where $k > 0$

Find the value(s) of k such that f and f^{-1} never intersect.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit:blue-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

