

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½
Functions & Relations II [2.2]

Test

24 Marks. 29 Minutes Writing.

Results:

Test Questions	/ 24
Extension Questions	/3

Section A: Test Questions (24 Marks)

Question 1 (4 marks)

Tick whether the following statements are **True** or **False**.

	Statement	True	False
a.	A function's domain will always be its maximal domain.		
b.	The expression inside a square root can only be positive.		
c.	All hybrid functions must "join together", i.e., be continuous.		
d.	$f: D \to R, f(x) = x^2 + 4$ has a range of R .		
e.	A function and its inverse are always symmetrical around $y = x$.		
f.	A relation needs to be one to one, for it to have an inverse relation.		
g.	A function needs to be one to one, for it to have an inverse function.		
h.	Instead of equating $f(x)$ with its inverse to find the intersection between $f(x)$ and $f^{-1}(x)$, we can equate $f(x)$ to $y = x$ most of the time.		

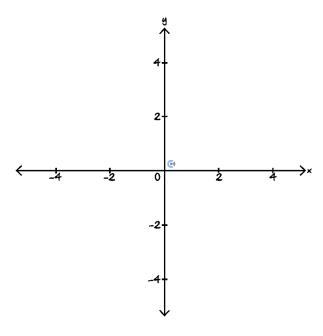
Space	for	Personal	Notes

Question 2 (4 marks)

State the implied domain and range for each of the relations below.

a. $y = 1 - \sqrt{1 - x}$. (2 marks)

b. $y = \sqrt{x^2 + 2x + 1}$. (2 marks)


Space for Personal Notes

Question 3 (6 marks)

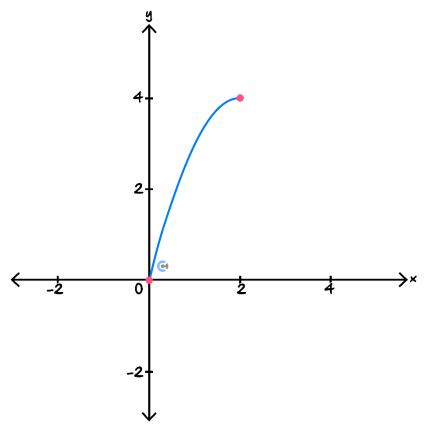
A function g(x) is defined as,

$$g(x) = \begin{cases} x^3 + 1, & x \le 0\\ (x - 2)^2 - 1, & 0 < x < 3\\ 3, & x \ge 3 \end{cases}$$

a. Draw the graph of y = g(x) on the axes below. (3 marks)

b. State the number of solutions to $g(x) = -\frac{1}{2}$. (1 mark)

c. State the range of g(x). (1 mark)


d. Solve the equation g(x) = 3. (1 mark)

Question 4 (10 marks)				
Consider the function $f: [0, a] \to R$, $f(x) = -(x - 2)^2 + 4$.				
a. Find the largest value of a such that the inverse function f^{-1} exists. (1 mark)				
b. State the domain and range of the inverse of f . (2 marks)				
c. Determine the equation of the inverse function f^{-1} . (3 marks)				

d. The graph of f is shown on the graph below. On the same set of axes, sketch accurately the graph of the inverse of f. (3 marks)

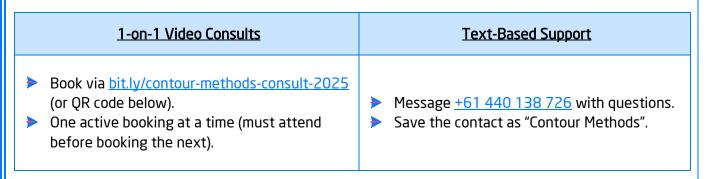
e. Find an intersection point between f and f^{-1} . (1 mark)

Space for Personal Notes

Section B: Extension Questions (3 Marks)

Question 5 (3 marks)				
Consider the function below.				
$f: [0,3] \to R, f(x) = x^2 - 6x + k$, where $k > 0$				
Find the value(s) of k such that f and f^{-1} never intersect.				
· · · · · · · · · · · · · · · · · · ·				

Space for Personal Notes


Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

