

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Functions & Relations II [2.2]

Homework Solutions

Homework Outline:

Compulsory Questions	Pg 2 – Pg 15	
Supplementary Questions	Pg 16 – Pg 27	

Section A: Compulsory Questions

Sub-Section [2.2.1]: Find Domain and Range of Functions

Question 1

For the function $f(x) = \sqrt{x+3}$, find its:

a. Maximal domain.

 $x \ge -3$

b. Range.

 $x \ge 0$

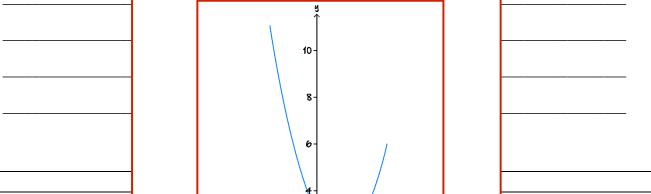
For the function $f:(-2,3] \to \mathbb{R}$, $f(x) = (x-1)^2 + 2$, find its:

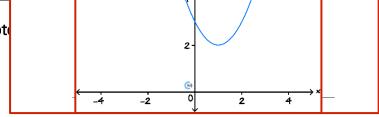
a. Maximal domain.

(-2, 3]

b. Range.

Min value is 2 and max value f(-2) = 11. Therefore range [2, 11).





For the function $f: [-6, -3) \to \mathbb{R}$, $f(x) = \log_3(x^2 - 9)$, find its:

a. Maximal domain.

[-6, -3)

b. Range.

Sub in x = -6. $f(-6) = \log_3(36 - 9) = \log_3(27) = 3$. Therefore range is $(-\infty, 3]$

Question 4 Tech-Active.

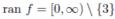
For the function $f(x) = 3\sqrt{\frac{x+2}{x-1}}$, find its:

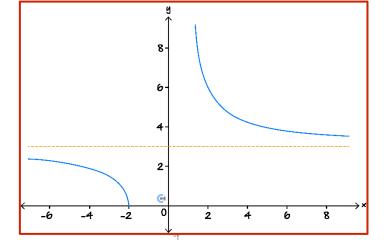
a. Maximal domain.

We require that $\frac{x+2}{x-1} \ge 0$ and $x \ne 1$. This gives dom $f = (-\infty, -2] \cup (1, \infty)$

b. Range.

The graph $y = \frac{x+2}{x-1}$ has an asymptote at y = 1. So f will have an asymptote at





Space for Pers

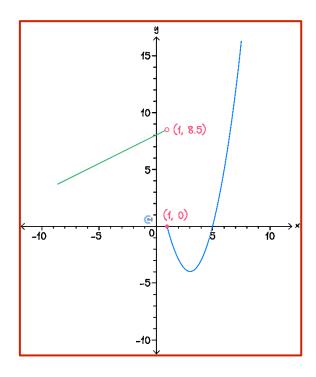
<u>Sub-Section [2.2.2]</u>: Sketch and Find the Domain and Range of Hybrid Functions

Question 5

Consider the hybrid function g.

$$g(x) = \begin{cases} (x-3)^2 - 4, & x \ge 1\\ \frac{x}{2} + 8, & x < 1 \end{cases}$$

a. Sketch the graph y = g(x).



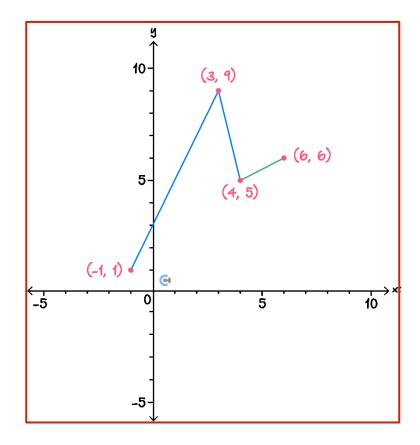
b. Find the range of g(x).

R

Consider the hybrid function g.

$$g(x) = \begin{cases} 2x+3, & -1 \le x \le 3\\ 21-4x, & 3 < x < 4\\ \frac{1}{2}x+3, & 4 \le x \le 6 \end{cases}$$

a. Sketch the graph y = g(x).



b. Find the range of g(x).

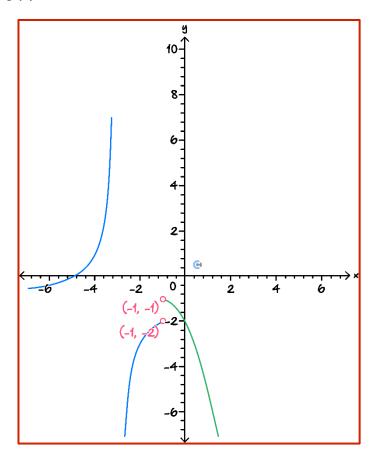
[1, 9]

أزازا

Consider the hybrid function g.

$$g(x) = \begin{cases} -\frac{2}{x+3} - 1, & x < -1\\ -x^2 - 2x - 2, & x > -1 \end{cases}$$

a. Sketch the graph y = g(x).



b. Find the range of g(x).

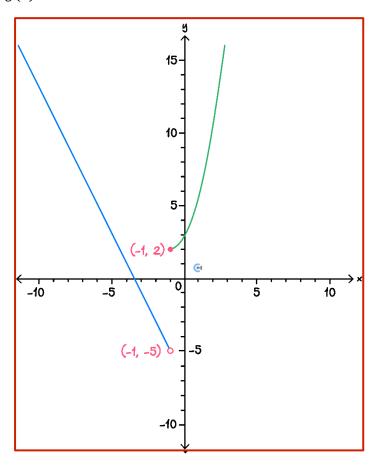
 $R\setminus\{-1\}$

Question 8 Tech-Active.

Consider the hybrid function g.

$$g(x) = \begin{cases} (x+1)^2 + 2, & x \ge -1\\ -7 - 2x, & x < -1 \end{cases}$$

a. Sketch the graph y = g(x).



b. Find the range of g(x).

 $(-5,\infty)$

<u>Sub-Section [2.2.3]</u>: Find the Rule, Domain, Range, and Intersections between Inverse Functions

Question 9

D

Consider the function f(x) = 4x - 1.

a. Find the rule for the inverse function f^{-1} .

$$f^{-1}(x) = \frac{x+1}{4}$$

b. State the domain and range of f^{-1} .

dom $f^{-1} = \mathbb{R}$ and ran $f^{-1} = \mathbb{R}$

c. Find the coordinates for any points of intersection between f and f^{-1} .

Solve $4x - 1 = x \implies 3x = 1 \implies x = \frac{1}{3}$. Intersection at $\left(\frac{1}{3}, \frac{1}{3}\right)$

CONTOUREDUCATION

Question 10

Consider the function $f : [-2, 4] \to \mathbb{R}, f(x) = -3x + 1$.

a. Find the rule for the inverse function f^{-1} .

$$f^{-1}(x) = \frac{1-x}{3}$$

b. State the domain and range of f^{-1} .

dom
$$f^{-1} = \text{ran } f = [-11, 7]$$

ran $f^{-1} = \text{dom } f = [-2, 4]$

c. Find the coordinates for any points of intersection between f and f^{-1} .

Solve $-3x + 1 = x \implies 4x = 1 \implies x = \frac{1}{4}$.

Itersection at $\left(\frac{1}{4}, \frac{1}{4}\right)$

Consider the function $f(x) = -2\sqrt{4-x} + 5$.

a. Find the rule for the inverse function f^{-1} .

 Let $y = f^{-1}(x)$.	
	$x = -2\sqrt{4 - y} + 5$
	$-\frac{1}{2}(x-5) = \sqrt{4-y}$
	$4 - y = \frac{1}{4}(x - 5)^2$
	$y = -\frac{1}{4}(x-5)^2 + 4$
 so $f^{-1}(x) = -\frac{1}{4}(x-5)^2 + 4$	

b. State the domain and range of f^{-1} .

dom
$$f^{-1} = \text{ran } f = (-\infty, 5]$$

ran $f^{-1} = \text{dom } f = (-\infty, 4]$

c. Find the coordinates for any points of intersection between f and f^{-1} .

Solve $x = -2\sqrt{4-x} + 5$. This yields $\frac{1}{4}(x-5)^2 = 4-x$ $x^2 - 10x + 25 = 16-4x$ $x^2 - 6x + 9 = 0$ $(x-3)^2 = 0$ x = 3Therefore intersection at (3,3)

Question 12 Tech-Active.

Consider the function $f(x) = \frac{1}{x-5} + 2$.

a. Find the rule for the inverse function f^{-1} .

Define function on cas then solve f(y) = x for y. $f^{-1}(x) = \frac{1}{x-2} + 5$

b. State the domain and range of f^{-1} .

 $dom f^{-1} = ran f = \mathbb{R} \setminus \{2\}$ $ran f^{-1} = dom f = \mathbb{R} \setminus \{5\}$

c. Find the coordinates for any points of intersection between f and f^{-1} .

Solve f(x) = x or $f(x) = f^{-1}(x)$ on CAS. This yields $x = \frac{1}{2} (7 - \sqrt{13}), \frac{1}{2} (\sqrt{13} + 7)$ Therefore intersections at

 $\left(\frac{1}{2}\left(7 - \sqrt{13}\right), \frac{1}{2}\left(7 - \sqrt{13}\right)\right) \text{ and } \left(\frac{1}{2}\left(\sqrt{13} + 7\right), \frac{1}{2}\left(\sqrt{13} + 7\right)\right)$

Sub-Section: Final Boss

Question 13

Consider the function $f: [a, \infty) \to \mathbb{R}, f(x) = x^2 - 6x + 10$.

a. Write f(x) in turning point by completing the square.

$$f(x) = (x - 3)^2 + 1$$

b. Hence, state the smallest value of α such that, the inverse function f^{-1} exists.

$$a = 3$$

c. Use functional notation to define f^{-1} .

Let
$$y = f^{-1}(x)$$
. Then

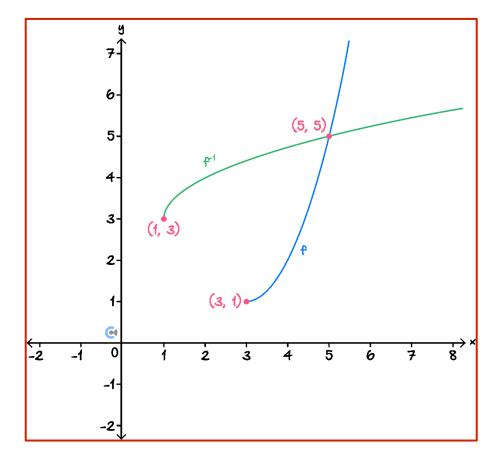
$$x = (y-3)^2 + 1 \implies y-3 = \pm \sqrt{x-1} \implies y = \pm \sqrt{x-1} + 3$$

note that dom $f^{-1}=\operatorname{ran} f=[1,\infty)$ and $\operatorname{ran} f^{-1}=\operatorname{dom} f=[3,\infty)$. This implies we take the positive root. Therefore

$$f^{-1}:[1,\infty)\to \mathbb{R},\, f^{-1}(x)=\sqrt{x-1}+3$$

CONTOUREDUCATION

d. Sketch the graphs of f and f^{-1} on the axes below. Label endpoints and any points of intersection with coordinates.



Intersection occurs when $x^2-6x+10=x \implies x^2-7x+10=0 \implies (x-5)(x-2)=0$. So x=2 or x=5. But note that x=2 is not in the domain of f. Therefore only point of intersection is (5,5).

e. Let g be a one-to-one function with the same rule as f but a different domain. g is defined as:

$$g:(k,\infty)\to\mathbb{R}, g(x)=x^2-6x+10.$$

Find the smallest value of k such that, g and g^{-1} do not intersect each other.

By looking at the graph from the previous part we see that k = 5.

Section B: Supplementary Questions

Sub-Section [2.2.1]: Find Domain and Range of Functions

Question 14

Find the domain of the following functions:

a. $y = \sqrt{5 - 2x}$.

 $5 - 2x \ge 0$ $5 \ge 2x$ $x \le \frac{5}{2}$

b. $y = -\frac{3}{x^2 + 4x - 12}$.

 $x^{2} + 4x - 12 \neq 0$ (x + 6)(x - 2) \neq 0 x \neq -6,2

c. $y = 2\log_e(x+1)$.

 $\begin{array}{c} x+1>0\\ x>-1 \end{array}$

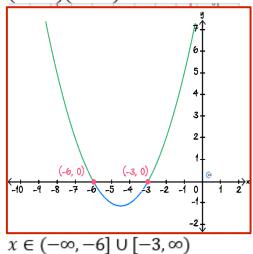
CONTOUREDUCATION

Question 15

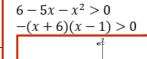
Find the maximal domain of the following functions:

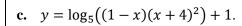
a. $y = \frac{(\sqrt{x^2 + 9x + 18})}{2}$.

 $x^{2} + 9x + 18 \ge 0$ $(x+6)(x+3) \ge 0$

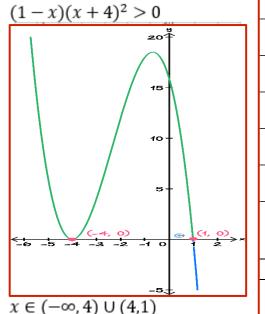


b. $y = \frac{3}{\sqrt{6-5x-x^2}} - 4$





 $x \in (-6,1)$

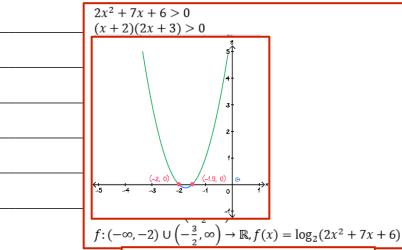


CONTOUREDUCATION

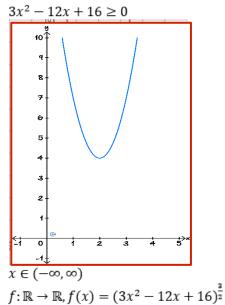
Question 16

Express f(x) in full function mapping notation:

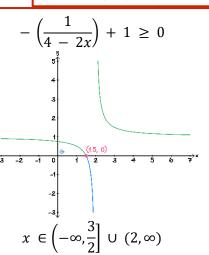
a.
$$f(x) = \log_2(2x^2 + 7x + 6)$$
.



b.
$$f(x) = (3x^2 - 12x + 16)^{\frac{3}{2}}$$
.



c.
$$f(x) = 3\sqrt{-\frac{1}{4-2x}+1}$$
.



$$f: \left(-\infty, \frac{3}{2}\right] \cup (2, \infty) \rightarrow \mathbb{R}, f(x) = 3\sqrt{-\frac{1}{4-2x}+1}$$

MM12 [2.2] - Fu

Find the maximal domain of the function $f(x) = x^2 + 4x + 12$ such that, the range of f(x) is [8,17).

$$f(x) = 8 \Rightarrow x = -2$$

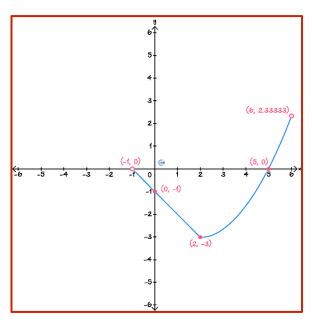
 $f(x) = 17 \Rightarrow x = -5,1$
 $x \in (-5,1)$

<u>Sub-Section [2.2.2]</u>: Sketch and Find the Domain and Range of Hybrid Functions

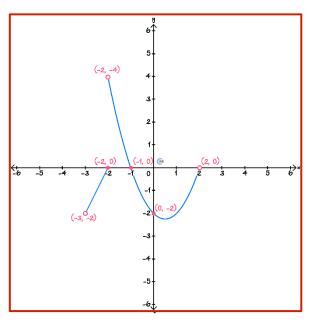
Question 18

Sketch the following graphs. Label all intercepts and endpoints.

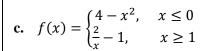
a.
$$f(x) = \begin{cases} \frac{1}{3}(x-2)^2 - 3, & 2 \le x < 6 \\ -x - 1, & -1 < x < 2 \end{cases}$$

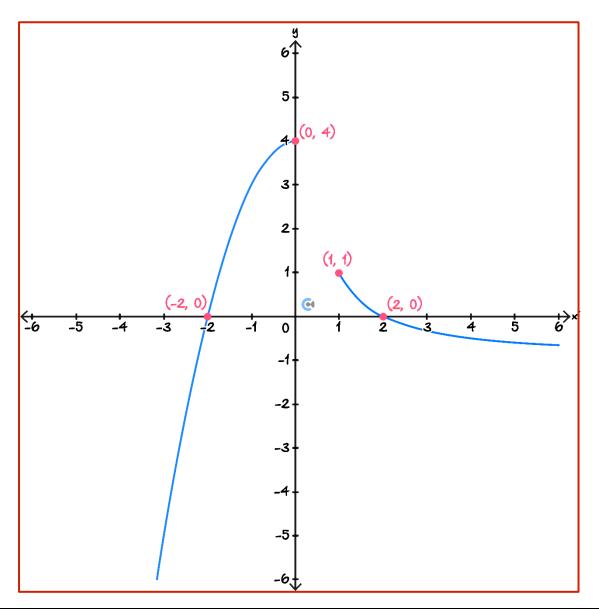


b.
$$f(x) = \begin{cases} 2x+4, & -3 < x \le -2 \\ x^2 - x - 2, & -2 < x < 2 \end{cases}$$



ONTOUREDUCATION





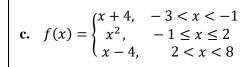
Find the range of the following piecewise functions.

a.
$$f(x) = \begin{cases} x - 2, & -4 \le x < 1 \\ 2x - 2, & 1 \le x \le 3 \end{cases}$$

Range of x-2, $-4 \le x < 1$ is $y \in [-6, -1)$ Range of 2x-2, $1 \le x \le 3$ is $y \in [0,4]$ Range of f(x) is $y \in [-6, -1) \cup [0,4]$

b.
$$f(x) = \begin{cases} x^2 - 4x + 6, & 0 < x < 5 \\ \frac{1}{2}x + 6, & -6 < x < 0 \end{cases}$$

Range of $x^2 - 4x + 6$, 0 < x < 5 is $y \in [2,11)$ Range of $\frac{1}{2}x + 6$, -6 < x < 0 is $y \in [3,6]$ Range of f(x) is y = [2,11)



Range of x + 4, -3 < x < -1 is $y \in (1,3)$ Range of x^2 , $-1 \le x \le 2$ is $y \in [0,4]$ Range of x - 4, 2 < x < 8 is $y \in (-2,4)$ Range of f(x) is $y \in (-2,4]$

Question 20

Find the maximal domain of the function $f(x) = \begin{cases} \sqrt{8 - 2x} \\ \log_e(-x^2 + 5x + 6) \end{cases}$.

For $\sqrt{8-2x}$ to be defined, $8-2x\geq 0$. Therefore $x\in (-\infty,4]$ For $\log_e(-x^2+5x+6)$ to be defined, $-x^2+5x+6>0$. Therefore $x\in (-1,6)$ Maximal domain is $(-\infty,6)$

<u>Sub-Section [2.2.3]</u>: Find the Rule, Domain, Range, and Intersections Between Inverse Functions

Question 21

The function f(x) is defined as $f: [-5,1) \to \mathbb{R}$, $f(x) = \frac{2}{3-x} + 6$.

a. Find the equation of $f^{-1}(x)$.

$$f^{-1}(x) = -\frac{2}{x-6} + 3$$

b. Determine the domain of $f^{-1}(x)$.

Domain of $f^{-1}(x)$ is Range of f(x)_ $x \in \left[\frac{25}{4}, 7\right)$

c. State the range of $f^{-1}(x)$.

Range of $f^{-1}(x)$ is Domain of f(x) $y \in [-5,1)$

Consider the function $g: (-\infty, 0] \to \mathbb{R}, g(x) = 2x^2 - 12x + 16$.

a. Find the equation of the inverse function.

$$y = \pm \sqrt{\frac{1}{2}(x+2)} + 3$$

Range of $g^{-1}(x)$ must be Domain of g(x). Therefore we take the negative root

$$g^{-1}(x) = -\sqrt{\frac{1}{2}(x+2)} + 3$$

b. Find the domain of the inverse function.

Domain of $g^{-1}(x)$ is Range of g(x) $x \in [16, \infty)$

c. State the range of the inverse function.

Range of $g^{-1}(x)$ is Domain of g(x) $y \in (-\infty, 0]$

Consider the function $f(x) = 1 - \sqrt{7 - x}$.

a. Define the inverse function of f(x), using full function mapping notation.

 $y = -x^2 + 2x + 6$ Domain of $f^{-1}(x)$ is Range of f(x). Therefore $x \in (-\infty, 1]$ $f: (-\infty, 1] \to \mathbb{R}, f(x) = -x^2 + 2x + 6$

b. Find the point of intersection between f(x) and $f^{-1}(x)$.

Intersection between f(x) and $f^{-1}(x)$ is the intersection between $f^{-1}(x)$ and y = x

$$-x^2 + 2x + 6 = x$$

$$x = -2,3$$

 $x \neq 3$ since $x \in (-\infty, 1]$

Intersection at (-2, -2)

Find the values of k such that, the graph $f:[0,\infty)\to\mathbb{R}$, $f(x)=x^2+k$ and $f^{-1}(x)$ have 2 solutions.

Maximum k value occurs when $y = x^2 + k$ has 1 solution with y = x

$$x^2 + k = x$$

$$x^2 - x + k = 0$$

$$\Delta = (-1)^2 - 4(1)(k)$$

$$\Delta = 1 - 4k$$

$$\Delta = 0$$

$$k = \frac{1}{4}$$

Minimum k value occurs when endpoint of f(x) occurs on y=x Endpoint of f(x) is (0,k)

$$k = 0$$

$$k \in \left[0, \frac{1}{4}\right)$$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

