

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Functions & Relations II [2.2]

Homework

Homework Outline:

Compulsory Questions	Pg 2 – Pg 15	
Supplementary Questions	Pg 16 – Pg 27	

Section A: Compulsory Questions

<u>Sub-Section [2.2.1]</u>: Find Domain and Range of Functions

Qu	estion 1			
For the function $f(x) = \sqrt{x+3}$, find its:				
a.	Maximal domain.			
b.	Range.			
Sp	ace for Personal Notes			

Question	2
Question	_

For the function $f:(-2,3] \to \mathbb{R}$, $f(x) = (x-1)^2 + 2$, find its:

a. Maximal domain.

_	_
b.	Range

$\mathbf{\alpha}$	4.	
Ou	estion	J

For the function $f: [-6, -3) \to \mathbb{R}$, $f(x) = \log_3(x^2 - 9)$, find its:

a. Maximal domain.

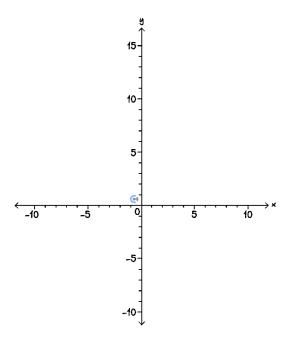
b. Range.

Question 4 Tech-Active.

For the function $f(x) = 3\sqrt{\frac{x+2}{x-1}}$, find its:

a. Maximal domain.

b. Range.

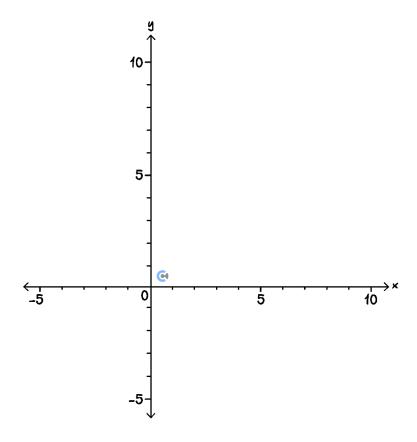

<u>Sub-Section [2.2.2]</u>: Sketch and Find the Domain and Range of Hybrid Functions

Question 5

Consider the hybrid function g.

$$g(x) = \begin{cases} (x-3)^2 - 4, & x \ge 1\\ \frac{x}{2} + 8, & x < 1 \end{cases}$$

a. Sketch the graph y = g(x).

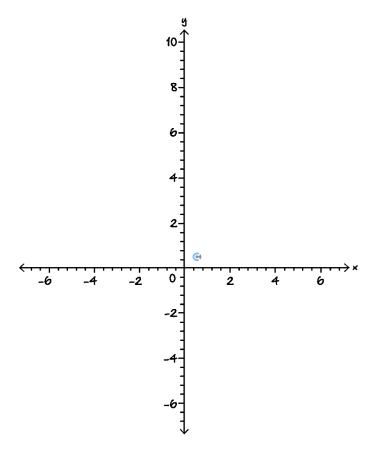


Consider the hybrid function g.

$$g(x) = \begin{cases} 2x+3, & -1 \le x \le 3\\ 21-4x, & 3 < x < 4\\ \frac{1}{2}x+3, & 4 \le x \le 6 \end{cases}$$

a. Sketch the graph y = g(x).

CONTOUREDUCATION

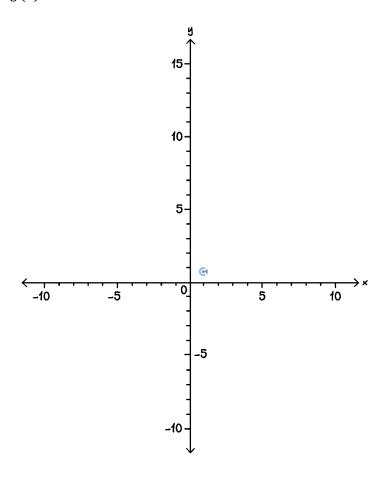

Question 7

أزار

Consider the hybrid function g.

$$g(x) = \begin{cases} -\frac{2}{x+3} - 1, & x < -1 \\ -x^2 - 2x - 2, & x > -1 \end{cases}$$

a. Sketch the graph y = g(x).



Question 8 Tech-Active.

Consider the hybrid function g.

$$g(x) = \begin{cases} (x+1)^2 + 2, & x \ge -1 \\ -7 - 2x, & x < -1 \end{cases}$$

a. Sketch the graph y = g(x).

<u>Sub-Section [2.2.3]</u>: Find the Rule, Domain, Range, and Intersections between Inverse Functions

Qu	Question 9			
Co	Consider the function $f(x) = 4x - 1$.			
a.	Find the rule for the inverse function f^{-1} .			
b.	State the domain and range of f^{-1} .			
c.	Find the coordinates for any points of intersection between f and f^{-1} .			

Qu	uestion 10	
Co	nsider the function $f: [-2, 4] \to \mathbb{R}, f(x) = -3x + 1.$	
a.	Find the rule for the inverse function f^{-1} .	
b.	State the domain and range of f^{-1} .	
c	Find the coordinates for any points of intersection between f and f^{-1} .	
с.	That the coordinates for any points of intersection between f and f	

Question	11
Question	11

Consider the function $f(x) = -2\sqrt{4-x} + 5$.

a. Find the rule for the inverse function f^{-1} .

b. State the domain and range of f^{-1} .

c. Find the coordinates for any points of intersection between f and f^{-1} .

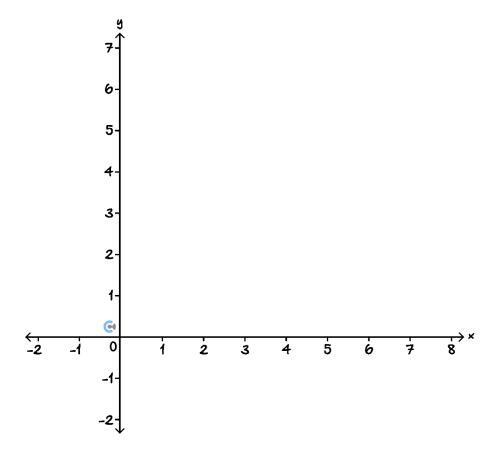
Question 12 Tech-Active.

Consider the function $f(x) = \frac{1}{x-5} + 2$.

a. Find the rule for the inverse function f^{-1} .

b. State the domain and range of f^{-1} .

c. Find the coordinates for any points of intersection between f and f^{-1} .



Sub-Section: Final Boss

Question 13			
Co	nsider the function $f: [a, \infty) \to \mathbb{R}, f(x) = x^2 - 6x + 10$.		
a.	Write $f(x)$ in turning point by completing the square.		
b.	Hence, state the smallest value of a such that, the inverse function f^{-1} exists.		
	**		
c.	Use functional notation to define f^{-1} .		

d. Sketch the graphs of f and f^{-1} on the axes below. Label endpoints and any points of intersection with coordinates.

e. Let g be a one-to-one function with the same rule as f but a different domain. g is defined as:

$$g:(k,\infty)\to\mathbb{R}, g(x)=x^2-6x+10.$$

Find the smallest value of k such that, g and g^{-1} do not intersect each other.

Section B: Supplementary Questions

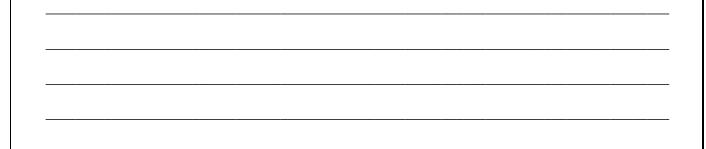
<u>Sub-Section [2.2.1]</u>: Find Domain and Range of Functions

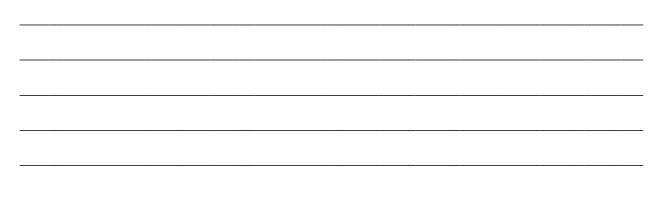
Question 14	1
Find the domain of the following functions:	
a. $y = \sqrt{5 - 2x}$.	
	- -
	_
b. $y = -\frac{3}{x^2 + 4x - 12}$.	
	_
	-
c. $y = 2 \log_e(x+1)$.	
	- -
	-

Find the maximal domain of the following functions:

a. $y = \frac{(\sqrt{x^2 + 9x + 18})}{2}$.

- **b.** $y = \frac{3}{\sqrt{6-5x-x^2}} 4$
- c. $y = \log_5((1-x)(x+4)^2) + 1$.




Express f(x) in full function mapping notation:

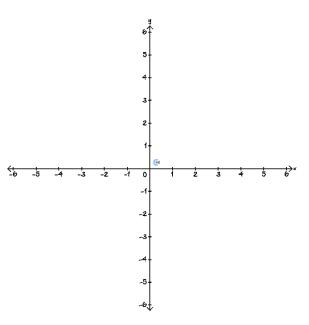
a. $f(x) = \log_2(2x^2 + 7x + 6)$.

b. $f(x) = (3x^2 - 12x + 16)^{\frac{3}{2}}$.

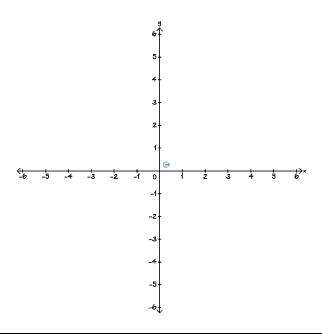
c. $f(x) = 3\sqrt{-\frac{1}{4-2x} + 1}$.

Question 17
Find the maximal domain of the function $f(x) = x^2 + 4x + 12$ such that, the range of $f(x)$ is [8,17).

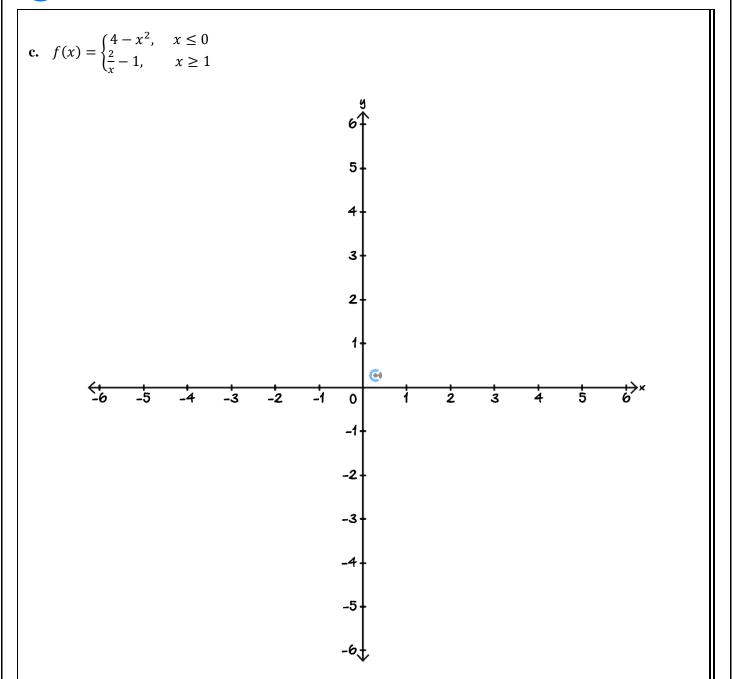
Space for Personal Notes	



<u>Sub-Section [2.2.2]</u>: Sketch and Find the Domain and Range of Hybrid Functions


Question 18

Sketch the following graphs. Label all intercepts and endpoints.


a.
$$f(x) = \begin{cases} \frac{1}{3}(x-2)^2 - 3, & 2 \le x < 6 \\ -x - 1, & -1 < x < 2 \end{cases}$$

b.
$$f(x) = \begin{cases} 2x+4, & -3 < x \le -2 \\ x^2 - x - 2, & -2 < x < 2 \end{cases}$$

CONTOUREDUCATION

Find the range of the following piecewise functions.

a.
$$f(x) = \begin{cases} x - 2, & -4 \le x < 1 \\ 2x - 2, & 1 \le x \le 3 \end{cases}$$

b. $f(x) = \begin{cases} x^2 - 4x + 6, & 0 < x < 5 \\ \frac{1}{2}x + 6, & -6 < x < 0 \end{cases}$

c.	f(x) =	$\begin{cases} x+4, \\ x^2, \\ x-4, \end{cases}$	$-3 < x < -2$ $-1 \le x \le 2$ $2 < x < 8$

Find the maximal domain of the function $f(x) = \begin{cases} \sqrt{8 - 2x} \\ \log_e(-x^2 + 5x + 6) \end{cases}$.

<u>Sub-Section [2.2.3]</u>: Find the Rule, Domain, Range, and Intersections Between Inverse Functions

Question 21

The function f(x) is defined as $f: [-5,1) \to \mathbb{R}, f(x) = \frac{2}{3-x} + 6$.

a. Find the equation of $f^{-1}(x)$.

b. Determine the domain of $f^{-1}(x)$.

c. State the range of $f^{-1}(x)$.

Ques	stion	2.2
Ouc	mon	44

Consider the function $g:(-\infty,0] \to \mathbb{R}$, $g(x)=2x^2-12x+16$.

a. Find the equation of the inverse function.

b. Find the domain of the inverse function.

c. State the range of the inverse function.

Question	23
Question	

Consider the function $f(x) = 1 - \sqrt{7 - x}$.

a. Define the inverse function of f(x), using full function mapping notation.

b. Find the point of intersection between f(x) and $f^{-1}(x)$.

Question 24	
Find the values of k such that, the graph $f:[0,\infty)\to\mathbb{R}$, $f(x)=x^2+k$ and $f^{-1}(x)$ have 2 solutions.	
Space for Personal Notes	

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

