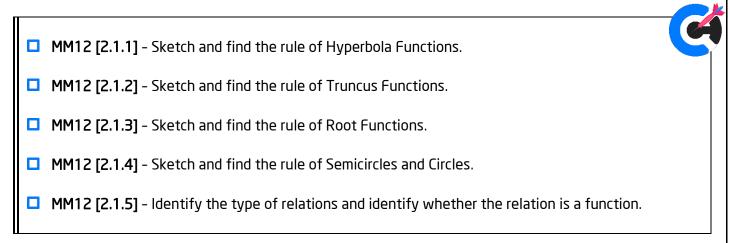
CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au


VCE Mathematical Methods ½ Functions & Relations I [2.1]

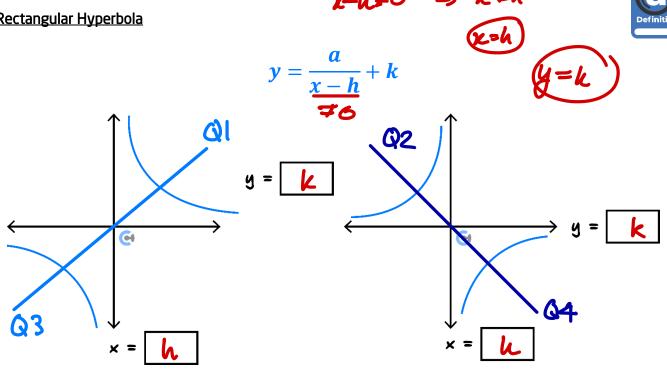
Workbook

Outline:

Hyperbola Pg 2-11 Sketching Hyperbolas Finding the Rule of a Hyperbola **Circles and Semicircles** Pg 28-40 Sketching Circles and Semi Circles Pg 12-20 Finding a Rule for Circles and Semicircles Truncus **Sketching Truncus** Finding the Rule of a Truncus Pg 41-48 **Functions and Relations** Relations Functions **Root Functions** Pg 21-27 Sketching Root Functions Finding a Rule of a Root Function

Learning Objectives:

Section A: Hyperbola


Sub-Section: Sketching Hyperbolas

Hands up if you remember what a hyperbola looks like!

Rectangular Hyperbola

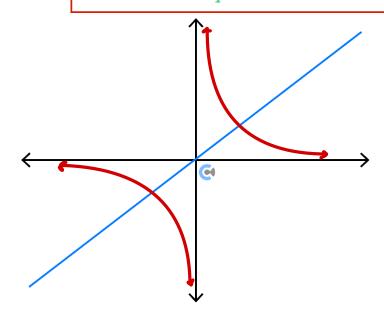
where a < 0

- Steps
 - 1. Find the horizontal and vertical asymptotes and plot them on the axis.
 - Find the x- and y- intercepts and plot on the axes (if they exist).
 - Identify the shape of the graph by considering any reflections, and sketch the curve.

Space for Personal Notes

where a > 0

Question 1 Walkthrough. Graph the following: -5


Why does the hyperbola look like this?

Exploration: Shape of a Hyperbola

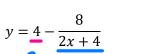
Consider the graph of y = x.

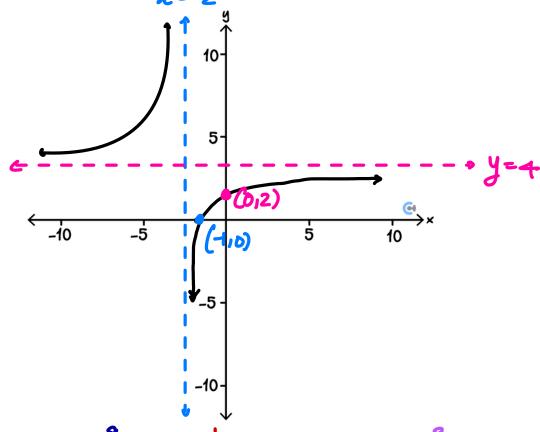
<u>TUTORS</u>: "As y = x is the DENOMINATOR (no. of ppl you share pizza with), if y = x gets bigger, $y = \frac{1}{x}$ gets smaller (you have less pizza for yourself)."

- Let's sketch $\frac{1}{x}$ on the same axes with the cues below!
- The graph of y = x is the **denominator** of $y = \frac{1}{x}$.
- What happens to $\frac{1}{x}$ when x increases? [Increases/Decreases]
- 27 1
- What happens to $\frac{1}{x}$ when x decreases? [Increases/Decreases]
- n!
- Remembering that we cannot divide by 0, what happens to $\frac{1}{x}$ when x = 0?

Co underfind. Asymptote!

Active Recall: Steps for sketching hyperbolas




- 1. Find the horizontal and vertical ___ asymptotes ___ and plot them on the axis.
- **2.** Find the x- and y- intercepts ___ and plot on the axes (if they exist).
- 3. Identify the ____ shape ____ of the graph by considering any reflections and sketch the curve.

Question 2

x-asymptote: x = -2

Graph the following, labelling all intercepts and asymptotes.

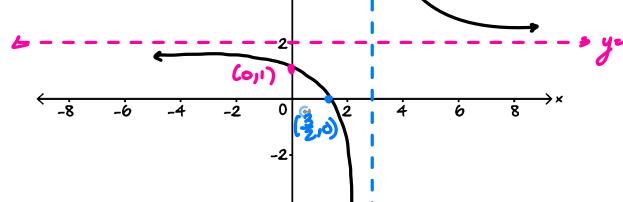
$$x-int: 0 = 4 - \frac{8}{2x+4}$$
 $y=4-\frac{1}{2x+4}$ $y=4-\frac{1}{2}$

:. 2x+4=2

2x=-2

CONTOUREDUCATION

Question 2 Extension.

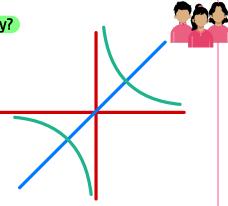

z-asymptote: z=3

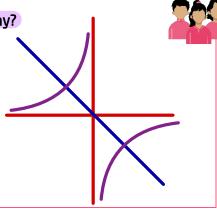
y-asymptote: y= 2


Graph the following, labelling all intercepts and asymptotes.

$$y = -\frac{3}{3-x} + 2$$

:X= 3- = = = = =


Active Recall: Hyperbolas and Linears


<u>Discussion:</u> In which quadrants, can you find positive hyperbolas and why?

$$y = +\infty \Rightarrow +ve$$
 hyperbola $\Rightarrow Q_{1/3}$

<u>Discussion:</u> In which quadrants, can you find negative hyperbolas and why?

$$y = -x \Rightarrow -ve$$
 hyperbola $\Rightarrow Q2,4$

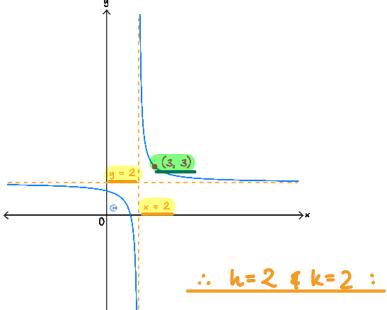
Sub-Section: Finding the Rule of a Hyperbola

Let's try the other way around!

Finding the Equation of a Hyperbola from its Graph

We generally need three facts (h, k, and a) about the hyperbola.

$$y = \frac{a}{x - h} + k$$

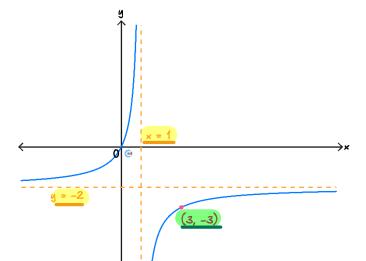

- Steps
 - 1. Look for the asymptotes.
 - **2.** Sub in a point to find the value of *a*.

Question 4 Walkthrough.

Find the rule for the following graph, given they are in the form, $y = \frac{a}{x+h} + \frac{k}{k}$.

$$\frac{Sub(3,3):}{3 = \frac{a}{3-2} + 2}$$

$$1 = \frac{a}{1} \Rightarrow a = 1$$



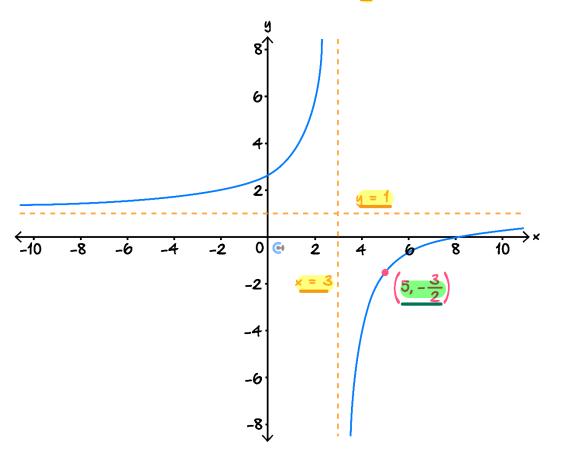
R

Your turn!

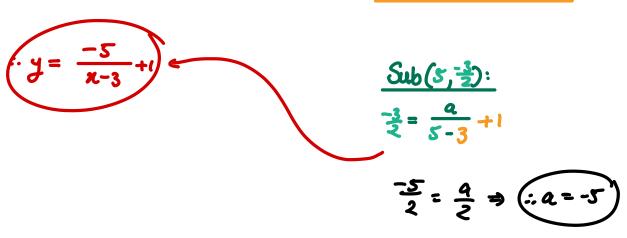
Question 5

Find the rule for the following graph, given they are in the form, $y = \frac{a}{x+h} + \frac{k}{k}$.

$$(xy = \frac{-2}{x-1}-2)$$


$$-3 = \frac{a}{3-1} - 2$$

$$-1 = \frac{a}{2} \Rightarrow (: a = -2)$$



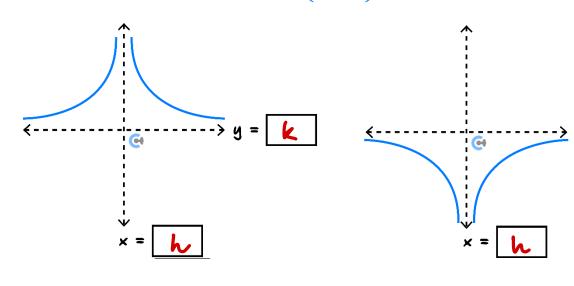
Question 6

Find the rule for the following graph, given they are in the form, $y = \frac{a}{x+h} + k$.

: h=3 { k=1 :

Section B: Truncus

Sub-Section: Sketching Truncus


Now, truncus!

Truncus

$$y = \frac{a}{(x-h)^2} + k$$

where a > 0

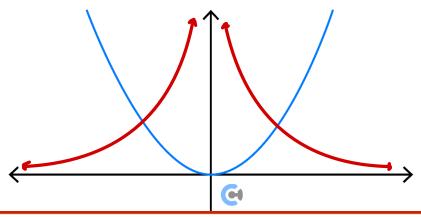
where a < 0

- Steps
 - 1. Find the horizontal and vertical asymptotes and plot them on the axis.
 - **2.** Find the x- and y- intercepts and plot on the axes (if they exist).
 - 3. Identify the shape of the graph by considering any reflections and sketch the curve.

Question 7 Walkthrough.

Graph the following:

$$y = \frac{4}{(x+1)^2}$$



Exploration: Shape of a Truncus

ightharpoonup Consider the graph of $y = x^2$.

TUTORS: "As $y=x^2$ is the DENOMINATOR (no. of ppl you share pizza with), if $y=x^2$ gets bigger, $y=\frac{1}{x^2}$ gets smaller (you have less pizza for yourself)."

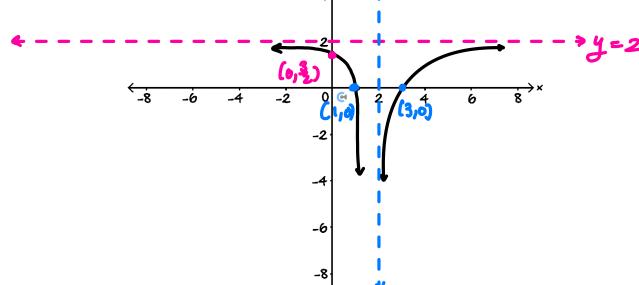
- Let sketch $\frac{1}{x^2}$ on the same axes with the cues below!
- The graph of y = x is the **denominator** of $y = \frac{1}{x}$.
- The graph of $y = x^2$ is the **denominator** of $y = \frac{1}{x^2}$.
- What happens to the $\frac{1}{x^2}$ when x^2 increases?

What happens to the $\frac{1}{x^2}$ when x^2 decreases?

• What happens to the $\frac{1}{x^2}$ when $x^2 = 0$?

underfred.

Asymptote


CONTOUREDUCATION

Active Recall

- 1. Find the horizontal and vertical _____asymptotes ____ and plot them on the axis.
- 2. Find the x- and y- ____ and plot on the axes (if they exist).
- 3. Identify the ___ shape ___ of the graph by considering any reflections and sketch the curve.

Question 8 Graph the following, labelling all intercepts and asymptotes. $y = \frac{-8}{(2x-4)^2} + 2$ $y = \frac{-8}{(2x-4)^2} + 2$

$$\frac{2-iut: 0 = \frac{-8}{(2u-4)^2} + 2}{(2u-4)^2}$$

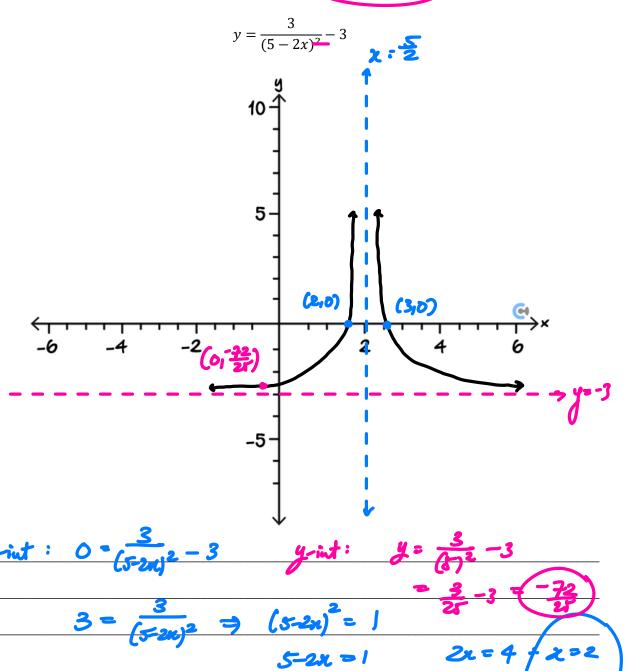
$$\frac{6}{(2u-4)^2} = 2$$

$$\frac{6}{(2u-4)^2} = 2$$

$$\frac{6}{(2u-4)^2} = 2$$

2x-4 = 2 or 2x-4=-2

MM12 [2.1] - Functions & Relations I - Workbook



Question 9 Extension.

Graph the following, labelling all intercepts and asymptotes.

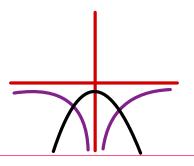
Active Recall: Truncus and Quadratics

Trunci are reciprocals of <u>quadratic equations</u>.

Discussion: In which quadrants, can you find positive trunci and why?

trus truscus => tree porabole

Q1,2



<u>Discussion:</u> In which quadrants, can you find negative trunci and why?

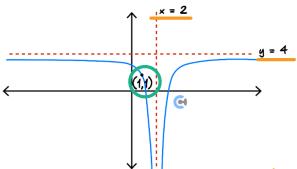
-ne truncus ⇒ -ne perabola

Q3,4

Sub-Section: Finding the Rule of a Truncus

Let's try the other way around!

Finding the Equation of a Truncus from its Graph


 \blacktriangleright We generally need three facts (h, k, and a) about the truncus.

$$y = \frac{a}{(x-h)^2} + k$$

- Steps
 - 1. Look for the asymptotes.
 - **2.** Sub in a point to solve the value of *a*.

Question 10 Walkthrough.

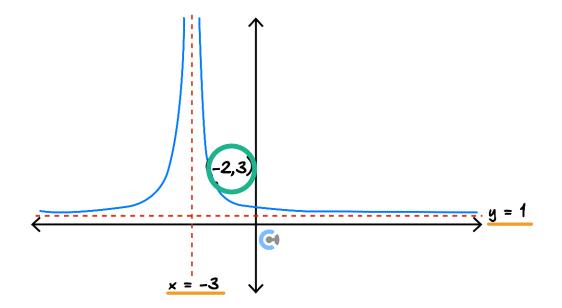
Find the rule for the following graph, given they are in the form, $y = \frac{a}{(x-h)^2} + k$.

: h=2 { k=4 :

$$y = \frac{-3}{(x-2)^2} + 4$$

Sub(1,1):

$$1 = \frac{a}{(1-2)^2} + 4$$



Question 11

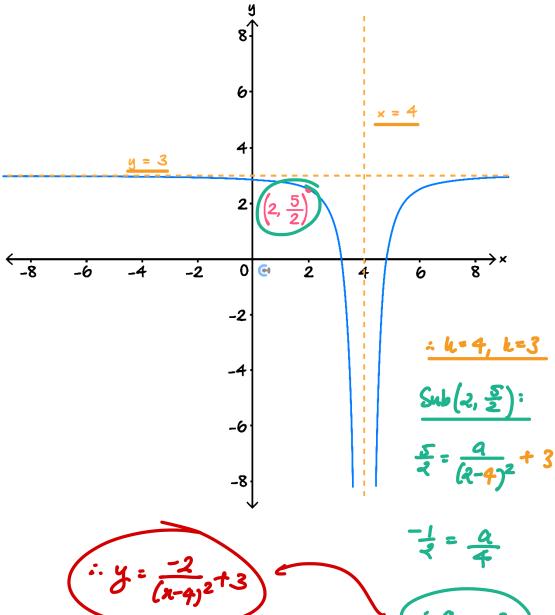
Find the rule for the following graph, given they are in the form, $y = \frac{a}{(x-h)^2} + k$.

$$y = \frac{2}{(x+3)^2+1}$$

$$\frac{Sub(-2,3):}{3 = \frac{a}{(-2-(-1))^{2}} \cdot 1}$$

$$2 = 9$$

$$(-2+3)^2 \Rightarrow (-2+3)^2$$


TUTORS:

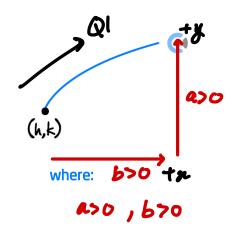
- 1. Find h and k from asymptotes.
- 2. Find the value of a from the other point.

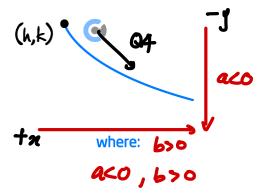
Question 12 Extension.

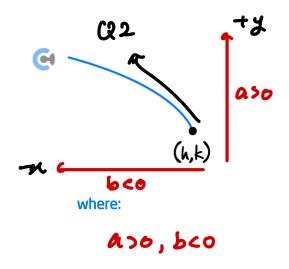
Find the rule for the following graph, given they are in the form, $y = \frac{a}{(x-h)^2} + \underline{k}$.

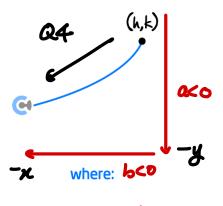
Section C: Root Functions

Sub-Section: Sketching Root Functions




Now, root functions!




Square Root Functions

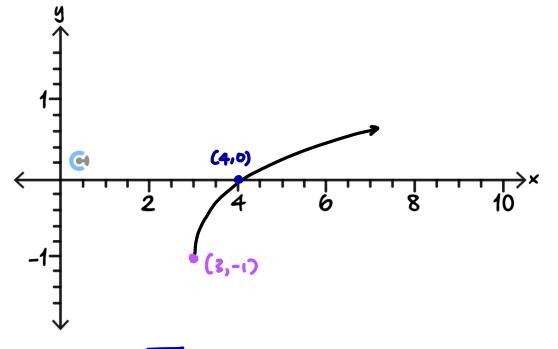
$$y = \underline{a}\sqrt{\underline{b}(x-h)} + k$$

CONTOUREDUCATION

Steps for sketching roots

- **1.** Find the starting point (h, k).
- **2.** Find the x- and y- intercepts and plot on the axes (if they exist).
- 3. Identify the shape of the graph by considering any reflections and sketch the curve.

Question 13 Walkthrough.

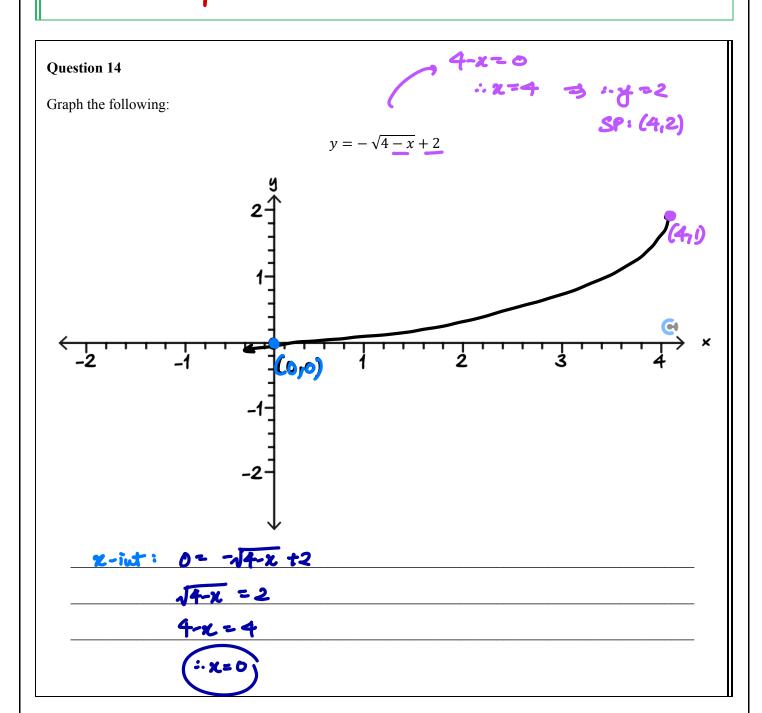

Graph the following:

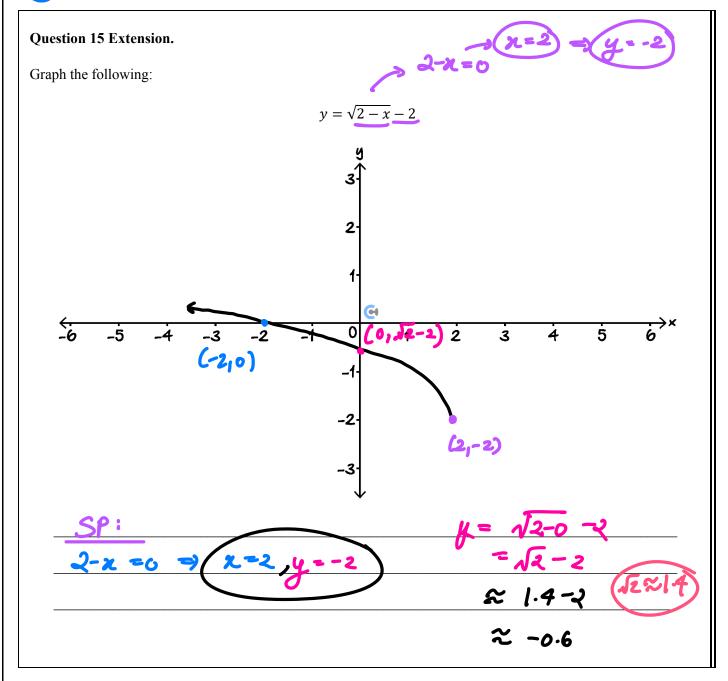
$$y = \sqrt{x-3} - 1$$

Step 1: Find the starting point of the graph and plot it on the axis.

Step 2: Find the x- and y- intercepts and plot on the axes (if they exist).

Step 3: Nentify the shape of the graph by considering any reflections and sketch the curve.




Active Recall: Steps for sketching roots

- 1. Find the **Starting**
- **2.** Find the x- and y- and plot on the axes (if they exist).
- 3. Identify the ______ of the graph by considering any reflections and sketch the curve.

Space for Personal Notes
$$2 - i x^{2}$$

$$0 = \sqrt{2-x} - 2$$

$$2 = \sqrt{2-x}$$

$$4 - 2 - x$$

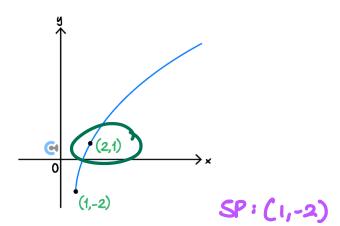
$$(x = -2)$$

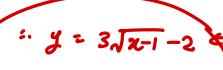
Sub-Section: Finding a Rule of a Root Function

Let's try the other way around!

Finding the Equation of a Root Function from its Graph

We generally need three facts about the root function.

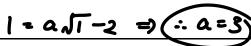

$$y = a\sqrt{\pm(x-h)} + k$$


- Steps
 - 1. Look for the starting point (h, k).
 - 2. Sub in a point to solve the value of *a*.

3. Look at Shope to determine = (2-h)

Question 16 Walkthrough.

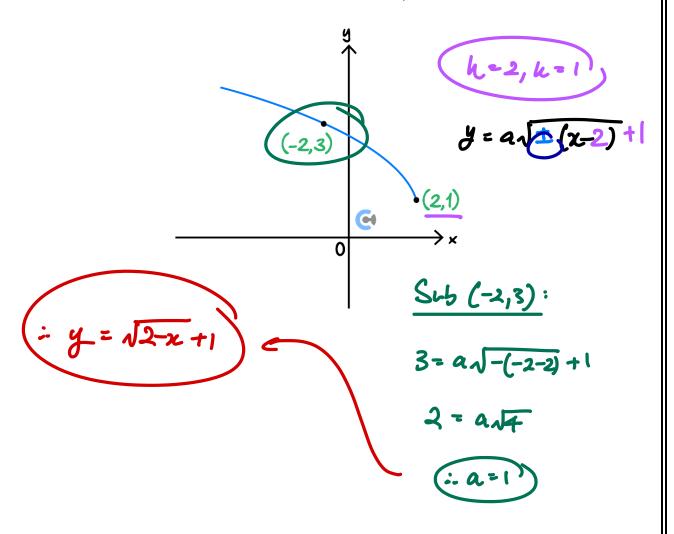
Find the rule for the following graph, given they are in the form, $y = a\sqrt{\pm(x-h)} + k$.



y=an=(x-1) -2 Sub (2,1):

1= a 1+(2-1) -

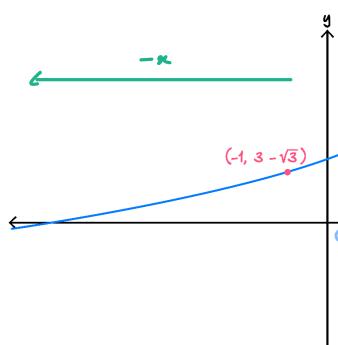
MM12 [2.1] - Functions & Relations I - Workbook

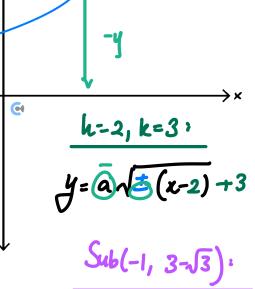

Active Recall: Steps for finding the rule for a root function

- 1. Look for the starting point _______.
- 2. Sub in a point to solve the value of a.

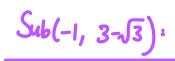
Question 17

Find the rule for the following graph, given they are in the form, $y = a\sqrt{\pm(x-h)} + k$.




CONTOUREDUCATION

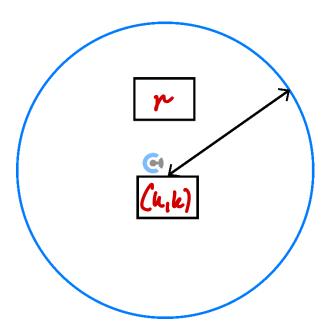
: y - - 1-(x-2)+3


Question 18 Extension.

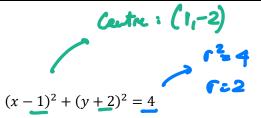
Find the rule for the following graph, given they are in the form, $y = a\sqrt{\pm(x-h)} + k$.

(2, 3)

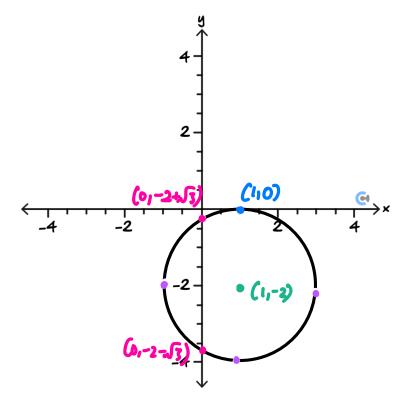
Section D: Circles and Semicircles


Sub-Section: Sketching Circles and Semi Circles

Circles


$$(x-h)^2 + (y-k)^2 = r^2$$

where $r > 0$

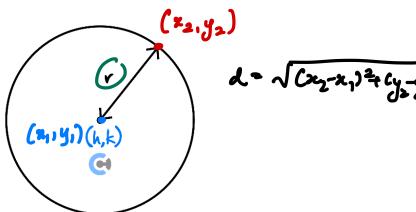

- Centre: (h,k)
- Radius:
- Steps
 - 1. Find the centre of the circle.
 - 2. Find the radius of the circle.
 - **3.** Find axes intercepts (if they exist).
 - **4.** Identify the shape of the graph and sketch the curve.

Graph the following circle:

$$\frac{y - i d :}{(0 - 1)^{2} + (y + 2)^{2} = 4}$$

$$(y + 2)^{2} = 3$$

$$y + 2 = 1 \sqrt{3}$$



Discussion: What do all the points on the circle have in common?

Exploration: Derivation of Circle Equation

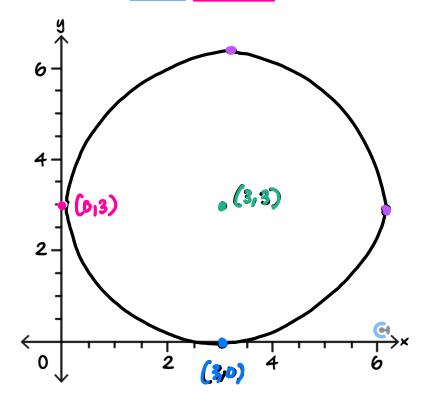
The common property of all points on the circle can be written by using ______

$$\sqrt{(x_2 - k)^2 + (y_2 - k)^2} = r$$

Finally, what happens if you square both sides?

$$(x-h)^2+(y-h)^2=r^2$$

Active Recall: Steps for sketching a circle



- 1. Find the _____ of the circle.
- 2. Find the ______ of the circle.
- 3. Find axes ___ixtempls__ (if they exist).
- 4. Identify the _____ of the graph and sketch the curve.

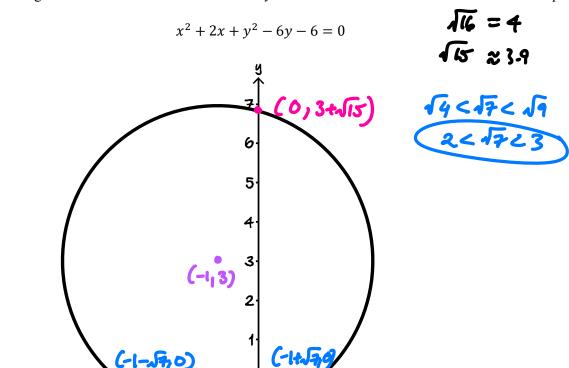
Question 20

Graph the following relation and state the values of x and y over which it stretches. Include all axes intercepts.

$$x^2 - 6x + y^2 - 6y + 9 = 0$$

$$(x-3)^{2}-9+(y-3)^{2}=0$$

$$(x-3)^{2}+(y-3)^{2}=9$$
Centre: (3,3)


NOTE: You will need to complete the square!

ONTOUREDUCATION

Question 21 Extension.

Graph the following relation and state the values of x and y over which it stretches. Include all axes intercepts.

1 (0,3-515)

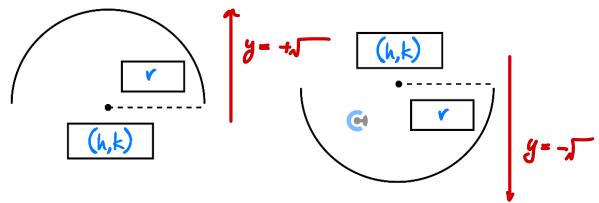
 $(x+1)^{\frac{q}{2}}-1+(y-3)^{\frac{q}{2}}-9-6=0$ $(2+1)^{\frac{q}{2}}+(y-3)^{\frac{q}{2}}=16$

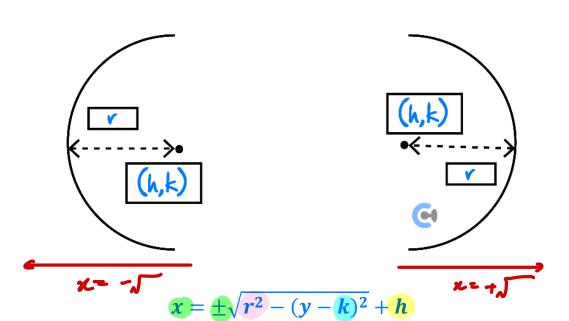
$$(2+1)^{2}+(y-3)^{2}=16$$

y-int: (1) + (y-3) = 16

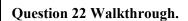
y= 3±15

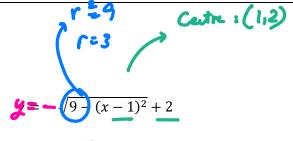
(g-s)= 15 /12 × 3.

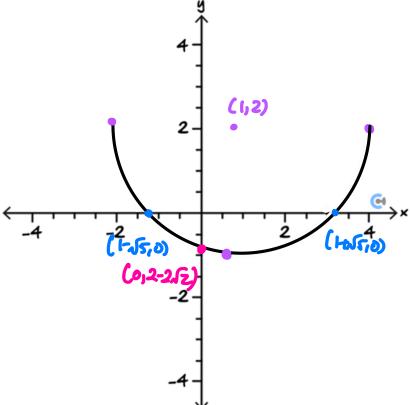



Now, semicircles!

Semicircles




 $y = \pm \sqrt{r^2 - (x - h)^2} + k$


- Steps
 - 1. Find the centre of the semicircle.
 - **2.** Find the radius of the circle.
 - 3. Find axes intercepts if they exist.
 - **4.** Identify the shape of the graph and sketch the curve.

CONTOUREDUCATION

Graph the following semicircle:

2-int:

$$\sqrt{9-(x-1)^2} = 2$$

Exploration: Derivation of Semicircle Equations

Consider the circle equation:

$$(x-h)^2 + (y-k)^2 = r^2$$

Try making y the subject!

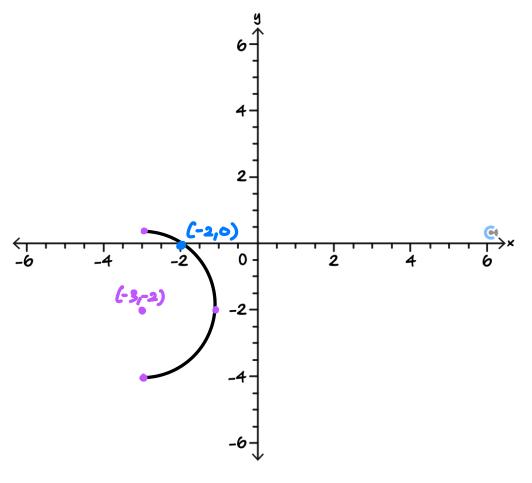
$$(y-k)^2 = r^2 (x-h)^2$$

 $y-k = \pm \sqrt{r^2 (x-h)^2}$
 $z = k \pm \sqrt{r^2 (x-h)^2}$

What would happen when we pick one sign over the other?

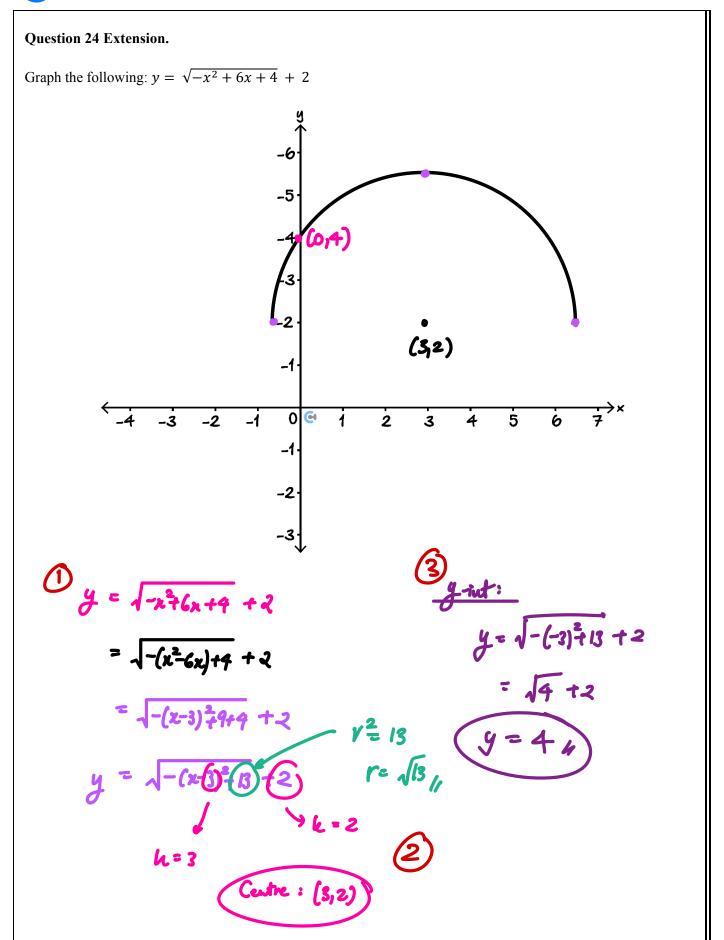
- \triangleright So, by making y the subject, we get top and bottom semicircles!
- \triangleright Similarly, what would happen if we make x the subject?

Active Recall: Steps for sketching a semicircle


?

- 1. Find the ______ of the semicircle.
- 2. Find the <u>radius</u> of the circle.
- 3. Find axes ______ if they exist.
- **4.** Identify the _____ of the graph and sketch the curve.

Question 23


Graph the following: $x = \sqrt{-y^2 - 4y + 1} - 3$

NOTE: You need to complete the square for the function that is inside the root!

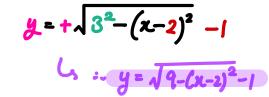
Sub-Section: Finding a Rule for Circles and Semicircles

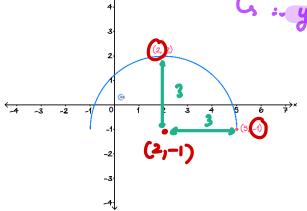
Again, another way!

Finding the Equation of a Root Function from its Graph

We need generally three facts about the circles/semicircles.

$$(x-h)^2 + (y-k)^2 = r^2$$

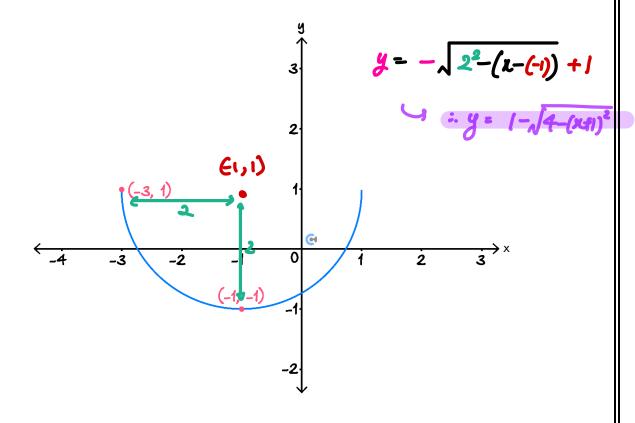

$$y = \pm \sqrt{r^2 - (x - h)^2} + k$$


$$x = \pm \sqrt{r^2 - (y - k)^2} + h$$

- Steps
 - **1.** Identify the center, (h, k).
 - **2.** Identify the radius, *r*.

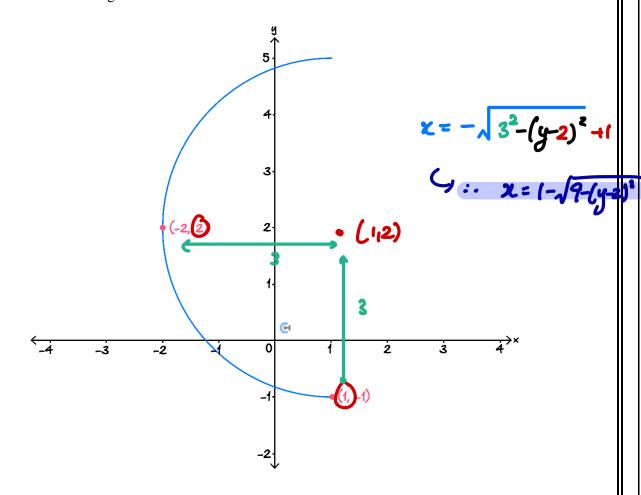
Question 25 Walkthrough.

Find the rule for the following semicircle.


Active Recall: Steps for finding the rule of circles and semicircles

- 2. Identify the radius, _______.

Question 26

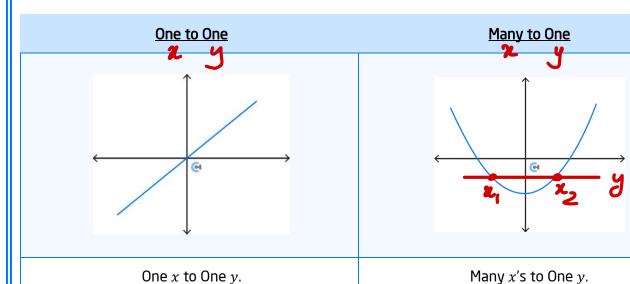

Find the rule for the following semicircle.

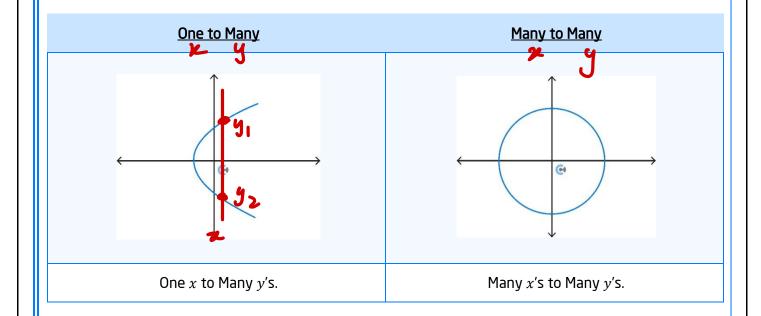
Find the rule for the following semicircle.

Section E: Functions and Relations

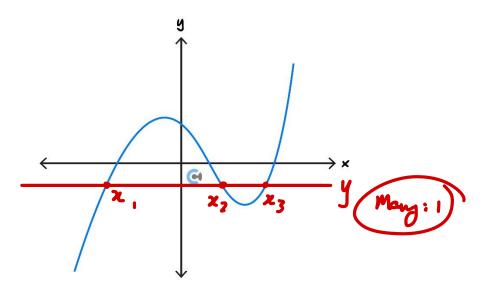
Sub-Section: Relations

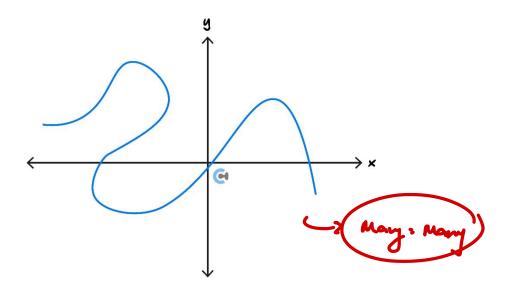
Let's take a look at all types of relations!


Types of Relations



There are four types of relations:





State the type of relation for each of the following graphs.

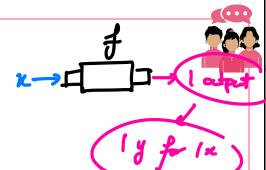
a.

b.

Sub-Section: Functions

What is a function?

Functions



$$y = f(x)$$

Functions are relations which make one y-value at any given x-value.

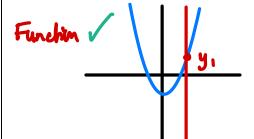
<u>Discussion:</u> What types of relations are functions?

Misconception

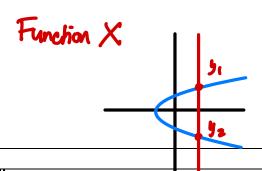
Misconception: "An equation between x and y can either be a function or a relation. In other words, functions are not relations."

Truth: Functions are in fact a subset of relations. All functions are relations.

BUT all relations are NOT necessarily functions.


{All Functions} ⊆ *{All Relations}*

Space for Personal Notes



State whether the following relations are also a function.

a.
$$y = x^2$$

b.
$$y^2 = x^2$$

Space for Personal Notes

For the following tables of inputs and outputs, identify which are (i) valid relations, and (ii) valid functions.

a.

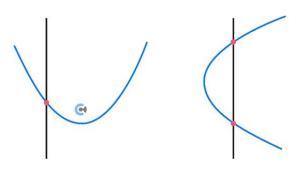
x	у
-1	6
2	6
6	-1
-1	2

Relation Function

b.

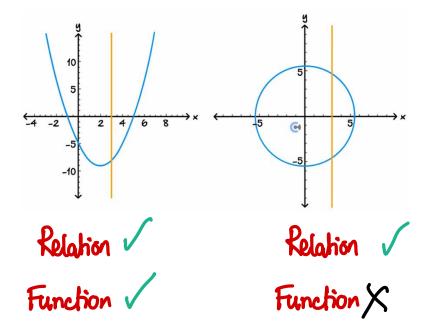
x	у
- 1	2
-1	1
1	1
1	-2

Discussion: What is the maximum number of times a function can hit any vertical line?



Vertical Line Test

Definition: Tells apart between functions and non-function relations.



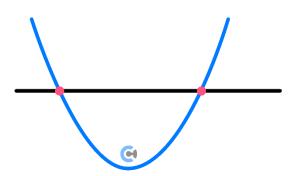
Passes: Function Fails: Not function

Every function only intersects a vertical line once.

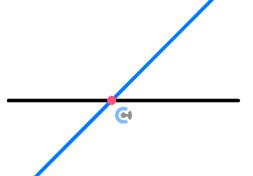
Question 31

Which of the following graph(s) describes a function? Which of the following graph(s) show a relation?

Discussion: How many times would a many to one and one to one function hit a horizontal line?



CONTOUREDUCATION

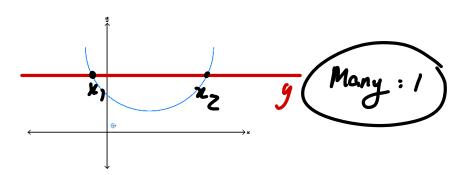

Horizontal Line Test

Definition: Tells apart between many to one and one to one functions. (And relations.)

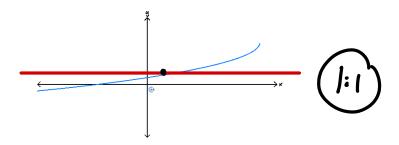
Fails: Many to one

Passes: One to one

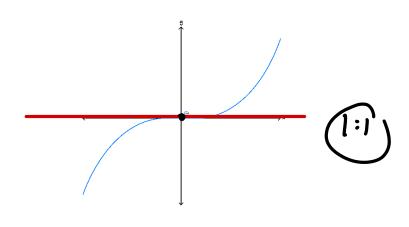
NOTE: One to one function hits **any** horizontal line drawn maximum once.



Space for Personal Notes



Which of the following graph(s) are one to one, and which are many to one?


a.

b.

c.

Contour Check

Learning Objective: [2.1.1] - Sketch and find the rule of hyperbola Functions

Key Takeaways

Rectangular Hyperbola

$$y = \frac{a}{x - h} + k$$

- Steps for sketching:
 - 1. Find the horizontal and vertical ______ and plot them on the axis.
 - 2. Find the x- and y- and plot on the axes (if they exist).
 - 3. Identify the _____ of the graph by considering any reflections and sketch the curve.
- Finding the Equation of a Hyperbola from its Graph
 - We need generally three facts about the hyperbola.

$$y = \frac{a}{x - h} + k$$

- Steps

Learning Objective: [2.1.2] - Sketch and find the rule of Truncus Functions

Key Takeaways

Truncus

$$y = \frac{a}{(x-h)^2} + k$$

- Steps for sketching:
 - 1. Find the horizontal and vertical ______ and plot them on the axis.
 - 2. Find the x- and y- and plot on the axes (if they exist).
 - 3. Identify the _____ of the graph by considering any reflections and sketch the curve.
- ☐ Finding the Equation of a Truncus from its Graph
 - We need generally three facts about the Truncus.

$$y = \frac{a}{(x-h)^2} + k$$

- Steps
 - 1. Look for the _____
 - **2.** Sub in a ______ to find the value of a.

Learning Objective: [2.1.3] - Sketch and find the rule of Root Functions

Key Takeaways

Square Root Functions

$$y = a\sqrt{b(x-h)} + k$$

Steps for sketching

1. Find the Starking pollut.

2. Find the x- and y- and plot on the axes (if they exist).

3. Identify the ______ of the graph by considering any reflections and sketch the curve.

☐ Finding the Equation of a Root Function from its Graph

• We need generally three facts about the root function.

$$y = a\sqrt{\pm(x-h)} + k$$

Steps

1. Look for the starting point _______.

2. Sub in a point to solve the value of ______.

Learning Objective: [2.1.4] - Sketch and find the rule of Semicircles and Circles

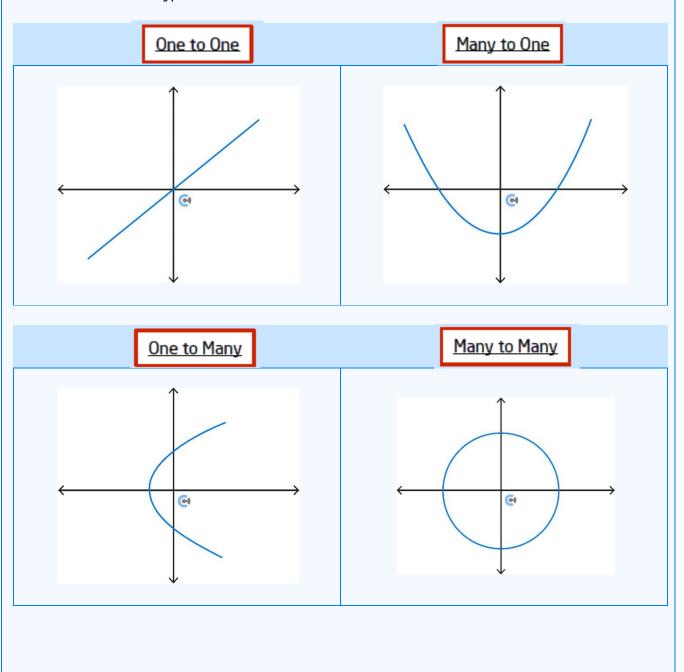
Circles

$$(x-h)^2 + (y-k)^2 = r^2$$
where $r > 0$

- □ Centre: (h,k)
- Radius:
- □ Steps
 - 1. Find the _____ of the circle.
 - 2. Find the ______ of the circle.
 - 3. Find axes ______ (if they exist).
 - 4. Identify the ______ of the graph and sketch the curve.
- Semicircles

$$y = \pm \sqrt{r^2 - (x - h)^2} + k$$

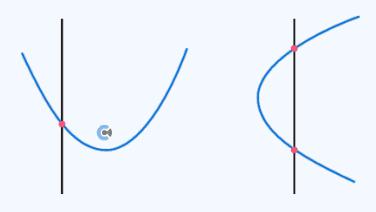
$$x = \pm \sqrt{r^2 - (y - k)^2} + h$$


- ☐ Steps for finding the rule of circles and semicircles
 - 1. Identify the centre, ________.
 - 2. Identify the radius, ______.

<u>Learning Objective:</u> [2.1.5] - Identify the type of relations and identify whether the relation is a function

Key Takeaways

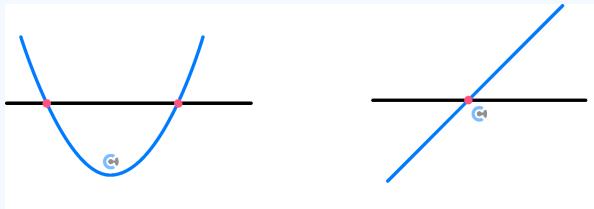
- Types of Relations
 - O There are four types of relations:



Functions

$$y = f(x)$$

- \circ Functions are relations which make one *y*-value at any given *x*-value.
- Vertical Line Test
 - O **Definition**: Tells apart between functions and non-function relations.



Passes : Function

Fails : Not function

Every function only intersects a vertical line ______

- Horizontal Line Test
 - O Definition: Tells apart between many to one and one to one functions. (And relations.)

Fails: Many to one

Passes: One to one

One to one function hits **any** horizontal line drawn at most _______.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- **Who Can Join?** Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-methods-consult-2025

