CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

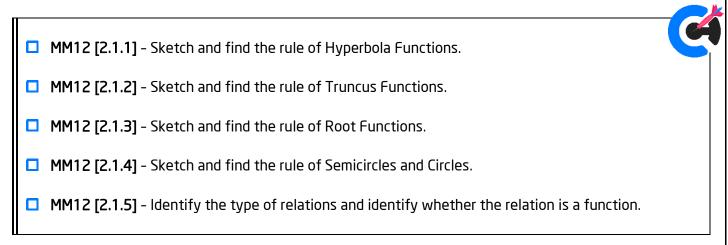
VCE Mathematical Methods ½ Functions & Relations I [2.1]

Workbook

Outline:

Hyperbola Pg 2-11 Sketching Hyperbolas Finding the Rule of a Hyperbola **Circles and Semicircles** Pg 28-40 Sketching Circles and Semi Circles Pg 12-20 Finding a Rule for Circles and Semicircles Truncus **Sketching Truncus** Finding the Rule of a Truncus Pg 41-48 **Functions and Relations** Relations **Functions Root Functions** Pg 21-27 Sketching Root Functions Finding a Rule of a Root Function

Learning Objectives:

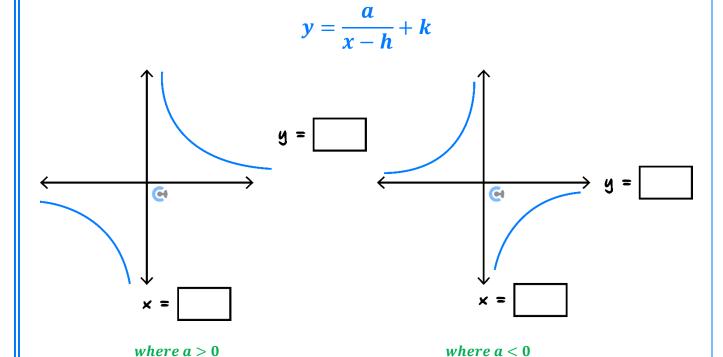


Section A: Hyperbola

Sub-Section: Sketching Hyperbolas

Hands up if you remember what a hyperbola looks like!

Rectangular Hyperbola



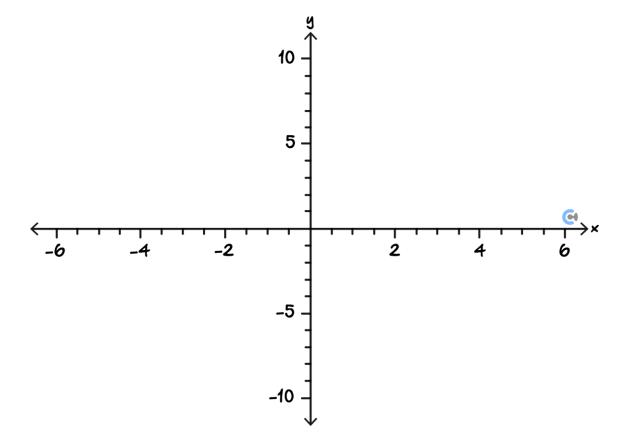
Steps

- 1. Find the horizontal and vertical asymptotes and plot them on the axis.
- 2. Find the x- and y- intercepts and plot on the axes (if they exist).
- 3. Identify the shape of the graph by considering any reflections, and sketch the curve.

Question 1 Walkthrough.

Graph the following:

$$y = \frac{3}{x+2} - 3$$

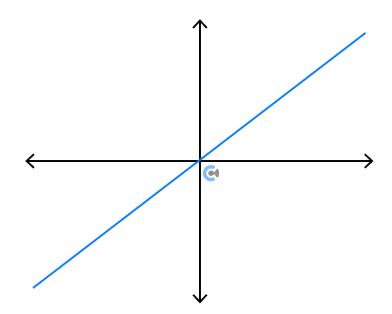


Solve $\left[\theta = \frac{3}{x+2} - 3\right]$ $\left\{\left\{x \to -1\right\}\right\}$ Solve $\left[y = \frac{3}{0+2} - 3\right]$

Why does the hyperbola look like this?

Exploration: Shape of a Hyperbola

Consider the graph of y = x.



- Let's sketch $\frac{1}{x}$ on the same axes with the cues below!
- The graph of y = x is the _____ of $y = \frac{1}{x}$.
- ▶ What happens to $\frac{1}{x}$ when x increases? [Increases/Decreases]
- What happens to $\frac{1}{x}$ when x decreases? [Increases/Decreases]
- Remembering that we cannot divide by 0, what happens to $\frac{1}{x}$ when x = 0?

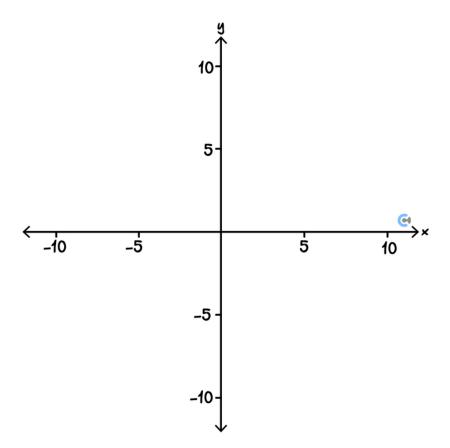
Active Recall: Steps for sketching hyperbolas

- 1. Find the horizontal and vertical _____ and plot them on the axis.
- 2. Find the x- and y- _____ and plot on the axes (if they exist).
- 3. Identify the _____ of the graph by considering any reflections and sketch the curve.

Question 2

Graph the following, labelling all intercepts and asymptotes.

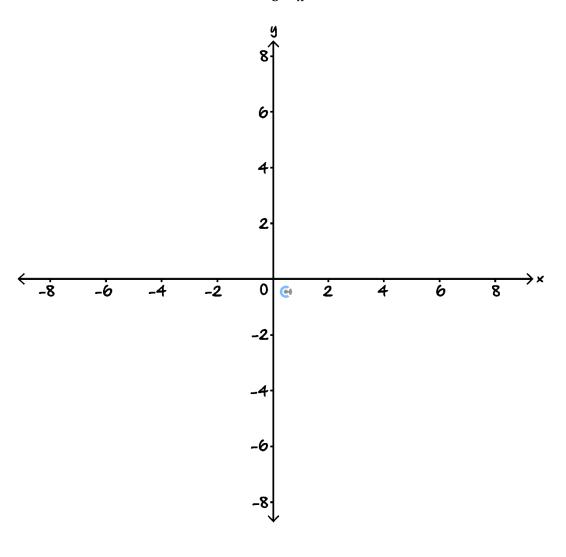
$$y = 4 - \frac{8}{2x+4}$$



Question 3 Extension.

Graph the following, labelling all intercepts and asymptotes.

$$y = -\frac{3}{3-x} + 2$$



Active Recall: Hyperbolas and Linears

?

<u>Discussion:</u> In which quadrants, can you find positive hyperbolas and why?

<u>Discussion:</u> In which quadrants, can you find negative hyperbolas and why?

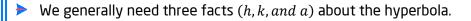
Sub-Section: Finding the Rule of a Hyperbola

Solve $\left[0 = \frac{3}{x+2} - 3\right]$ $\left\{\left(x \to -1\right)\right\}$ Solve $\left[y = \frac{3}{x+2} - 3\right]$

 $\{\{y \rightarrow -\frac{3}{2}\}\}$

Let's try the other way around!

Finding the Equation of a Hyperbola from its Graph

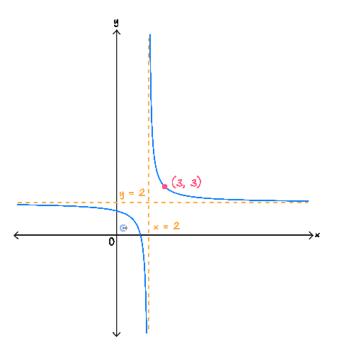


$$y = \frac{a}{x - h} + k$$

- Steps
 - 1. Look for the asymptotes.
 - **2.** Sub in a point to find the value of a.

Question 4 Walkthrough.

Find the rule for the following graph, given they are in the form, $y = \frac{a}{x-h} + k$.

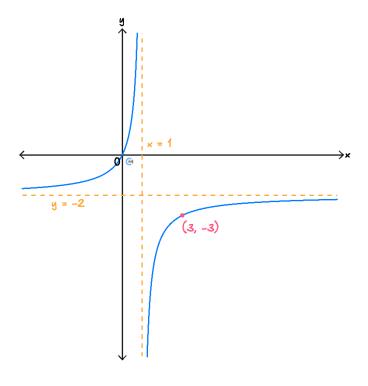


Solve $\left[\theta = \frac{3}{x+2} - 3\right]$

Your turn!

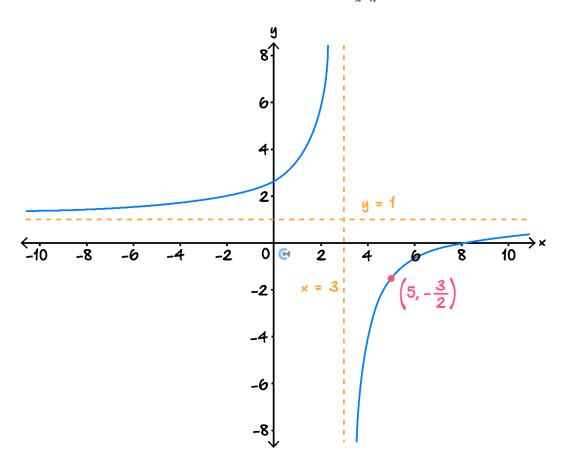
Question 5

Find the rule for the following graph, given they are in the form, $y = \frac{a}{x-h} + k$.



Question 6

Find the rule for the following graph, given they are in the form, $y = \frac{a}{x-h} + k$.



Section B: Truncus

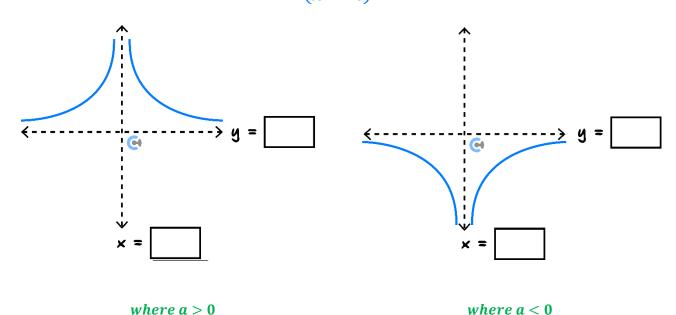
Sub-Section: Sketching Truncus

 $\{\{x \to -1\}\}$ Solve $[y = \frac{3}{x+1}]$

Now, truncus!

Truncus

$$y = \frac{a}{(x-h)^2} + k$$



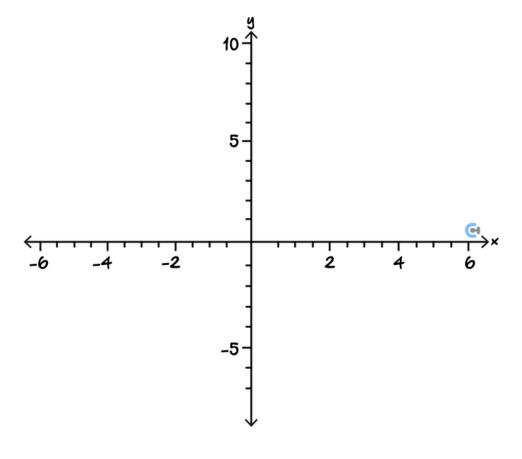
Steps

- 1. Find the horizontal and vertical asymptotes and plot them on the axis.
- **2.** Find the x- and y- intercepts and plot on the axes (if they exist).
- **3.** Identify the shape of the graph by considering any reflections and sketch the curve.

Question 7 Walkthrough.

Graph the following:

$$y = \frac{4}{(x+1)^2}$$

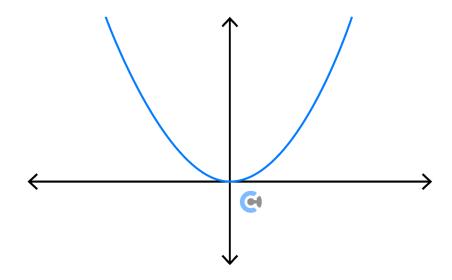


Solve $\left[0 = \frac{3}{x+2} - 3\right]$ $\left\{\left\{x \to -1\right\}\right\}$ Solve $\left[y = \frac{3}{a+2} - 3\right]$

Why is the truncus shaped like it is?

Exploration: Shape of a Truncus

 \blacktriangleright Consider the graph of $y = x^2$.



- Let sketch $\frac{1}{x^2}$ on the same axes with the cues below!
- The graph of y = x is the _____ of $y = \frac{1}{x}$.
- The graph of $y = x^2$ is the _____ of $y = \frac{1}{x^2}$.
- What happens to the $\frac{1}{x^2}$ when x^2 increases?
- What happens to the $\frac{1}{x^2}$ when x^2 decreases?
- What happens to the $\frac{1}{x^2}$ when $x^2 = 0$?

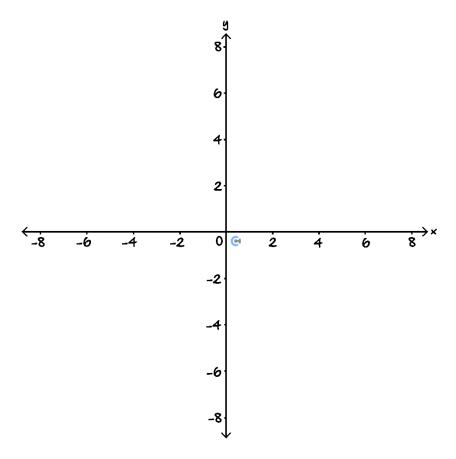
Active Recall

- 1. Find the horizontal and vertical _____ and plot them on the axis.
- 2. Find the x- and y- _____ and plot on the axes (if they exist).
- **3.** Identify the _____ of the graph by considering any reflections and sketch the curve.

Question 8

Graph the following, labelling all intercepts and asymptotes.

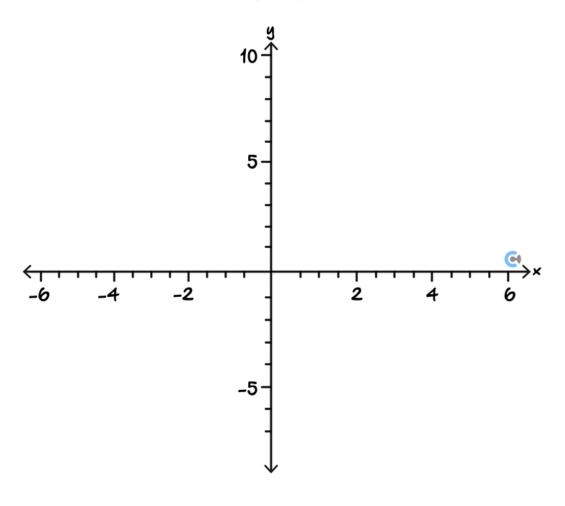
$$y = \frac{-8}{(2x-4)^2} + 2$$



Question 9 Extension.

Graph the following, labelling all intercepts and asymptotes.

$$y = \frac{3}{(5 - 2x)^2} - 3$$



Active Recall: Truncus and Quadratics

Trunci are reciprocals of _____

<u>Discussion:</u> In which quadrants, can you find positive trunci and why?

<u>Discussion:</u> In which quadrants, can you find negative trunci and why?

Sub-Section: Finding the Rule of a Truncus

Solve $\left[\theta = \frac{3}{x+2} - 3\right]$ $\left\{\left\{x \to -1\right\}\right\}$

Solve $y = \frac{3}{\theta + 2}$

Let's try the other way around!

Finding the Equation of a Truncus from its Graph

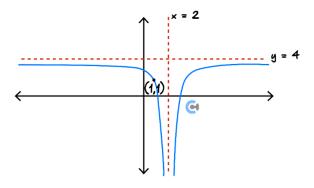
We generally need three facts (h, k, and a) about the truncus.

$$y = \frac{a}{(x-h)^2} + k$$

- Steps
 - 1. Look for the asymptotes.
 - **2.** Sub in a point to solve the value of a.

Question 10 Walkthrough.

Find the rule for the following graph, given they are in the form, $y = \frac{a}{(x-h)^2} + k$.

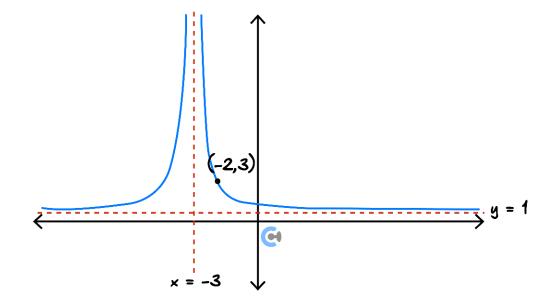


Solve $\left[0 = \frac{3}{x+2} - 3\right]$

Your turn!

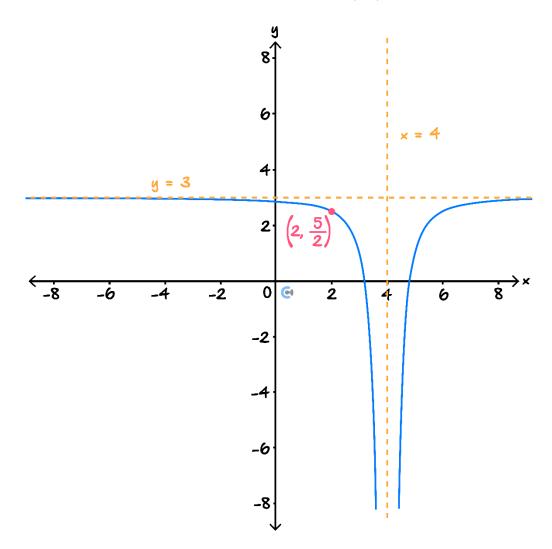
Question 11

Find the rule for the following graph, given they are in the form, $y = \frac{a}{(x-h)^2} + k$.



Question 12 Extension.

Find the rule for the following graph, given they are in the form, $y = \frac{a}{(x-h)^2} + k$.



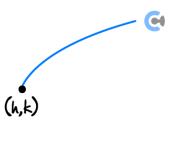
Section C: Root Functions

Sub-Section: Sketching Root Functions

Now, root functions!

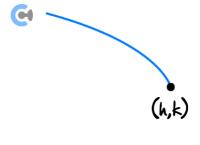
Square Root Functions

$$y = a\sqrt{b(x-h)} + k$$

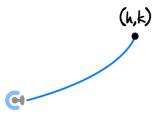


where:

where:



where:



where:

Steps for sketching roots

- **1.** Find the starting point (h, k).
- **2.** Find the x- and y- intercepts and plot on the axes (if they exist).
- 3. Identify the shape of the graph by considering any reflections and sketch the curve.

Question 13 Walkthrough.

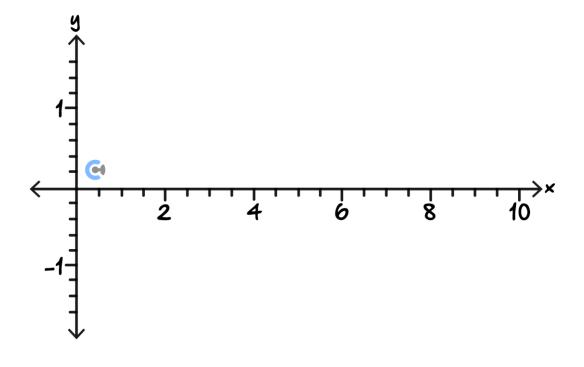
Graph the following:

$$y = \sqrt{x - 3} - 1$$

Step 1: Find the starting point of the graph and plot it on the axis.

Step 2: Find the x- and y- intercepts and plot on the axes (if they exist).

Step 3: Identify the shape of the graph by considering any reflections and sketch the curve.



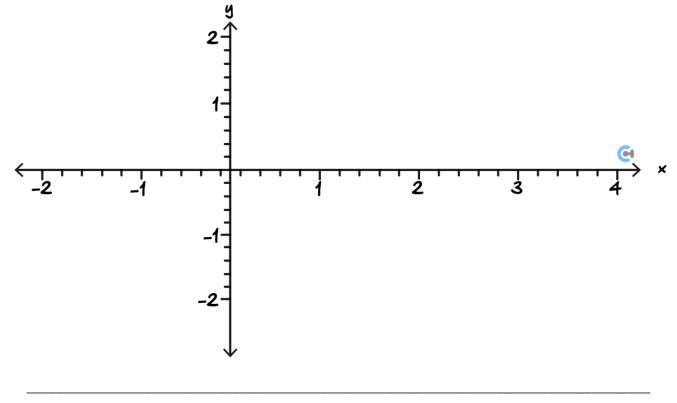
Active Recall: Steps for sketching roots

- 1. Find the _____.
- 2. Find the x- and y- _____ and plot on the axes (if they exist).
- **3.** Identify the _____ of the graph by considering any reflections and sketch the curve.

Question 14

Graph the following:

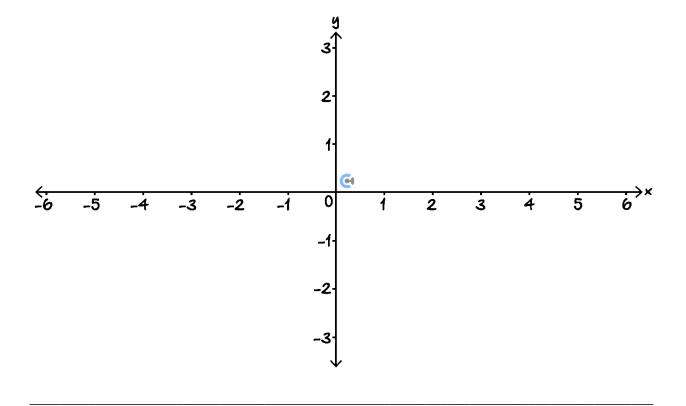
$$y = -\sqrt{4 - x} + 2$$



Question 15 Extension.

Graph the following:

$$y = \sqrt{2 - x} - 2$$



Sub-Section: Finding a Rule of a Root Function

Solve $\left[\theta = \frac{3}{x+2} - 3\right]$

Solve $\left[y = \frac{3}{\theta + 2} - 3\right]$

Let's try the other way around!

Finding the Equation of a Root Function from its Graph

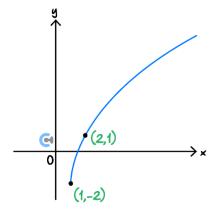
We generally need three facts about the root function.

$$y = a\sqrt{\pm(x-h)} + k$$

- Steps
 - **1.** Look for the starting point (h, k).
 - **2.** Sub in a point to solve the value of a.

Question 16 Walkthrough.

Find the rule for the following graph, given they are in the form, $y = a\sqrt{\pm(x-h)} + k$.

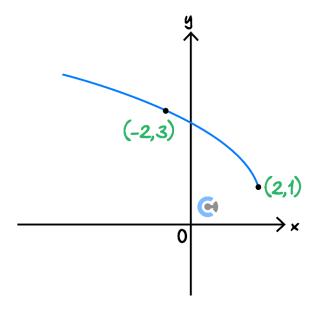


Active Recall: Steps for finding the rule for a root function

- 1. Look for the starting point ______.
- **2.** Sub in a ______ to solve the value of a.

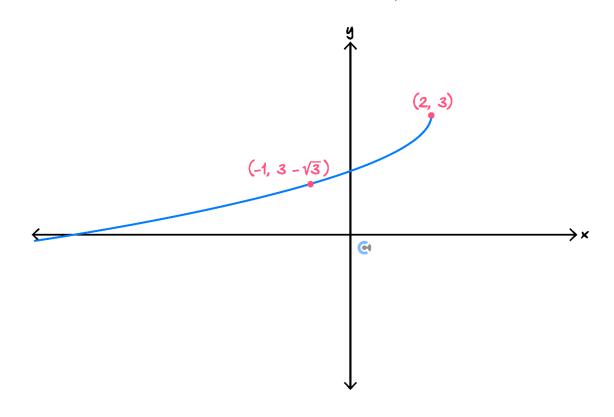
Question 17

Find the rule for the following graph, given they are in the form, $y = a\sqrt{\pm(x-h)} + k$.



Question 18 Extension.

Find the rule for the following graph, given they are in the form, $y = a\sqrt{\pm(x-h)} + k$.

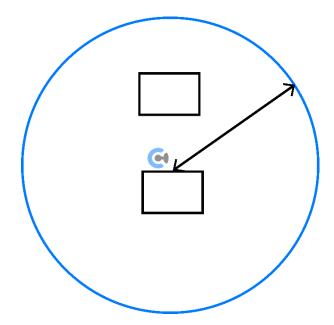


Section D: Circles and Semicircles

Sub-Section: Sketching Circles and Semi Circles

Now, circles!

Circles



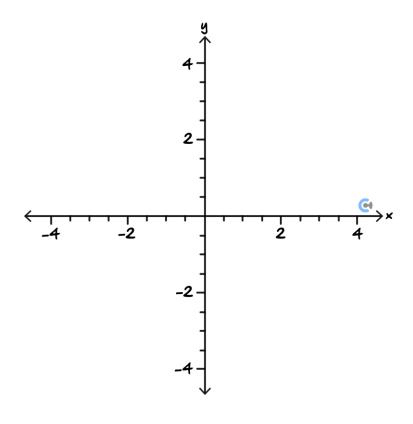
$$(x-h)^2 + (y-k)^2 = r^2$$
where $r > 0$

- Centre:
- Radius:
- Steps
 - 1. Find the centre of the circle.
 - 2. Find the radius of the circle.
 - **3.** Find axes intercepts (if they exist).
 - **4.** Identify the shape of the graph and sketch the curve.

Question 19 Walkthrough.

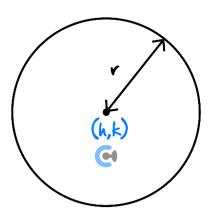
Graph the following circle:

$$(x-1)^2 + (y+2)^2 = 4$$



<u>Discussion:</u> What do all the points on the circle have in common?

Exploration: Derivation of Circle Equation



The common property of all points on the circle can be written by using ______

$$\sqrt{(_{)}^2 + (_{)}^2} =$$

Finally, what happens if you square both sides?

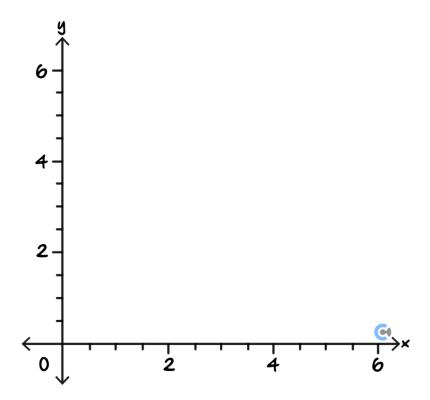
Active Recall: Steps for sketching a circle

- 1. Find the _____ of the circle.
- 2. Find the ______ of the circle.
- 3. Find axes _____ (if they exist).
- **4.** Identify the _____ of the graph and sketch the curve.

Question 20

Graph the following relation and state the values of x and y over which it stretches. Include all axes intercepts.

$$x^2 - 6x + y^2 - 6y + 9 = 0$$

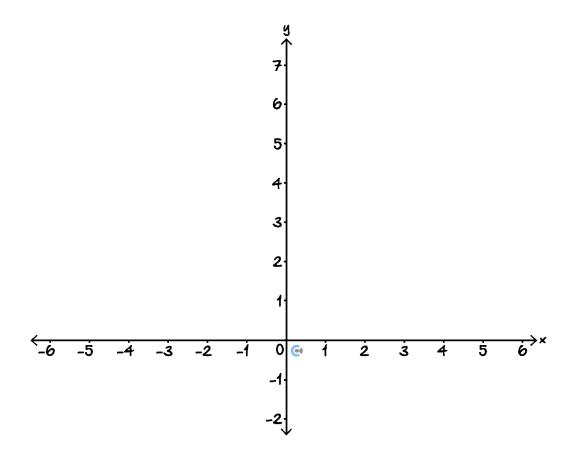


NOTE: You will need to complete the square!

Question 21 Extension.

Graph the following relation and state the values of x and y over which it stretches. Include all axes intercepts.

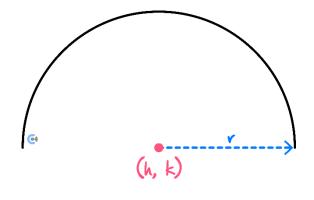
$$x^2 + 2x + y^2 - 6y - 6 = 0$$

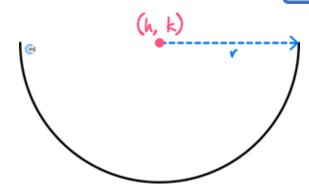


Now, semicircles!

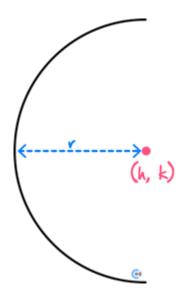
Solve $\left[\theta = \frac{3}{x+2} - 3\right]$ $\left\{\left\{x \to -1\right\}\right\}$ Solve $\left[y = \frac{3}{\theta+2} - 3\right]$

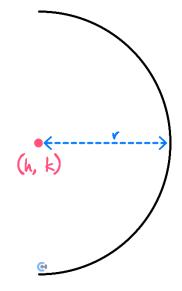
Semicircles





$$y = \pm \sqrt{r^2 - (x - h)^2} + k$$





$$x = \pm \sqrt{r^2 - (y - k)^2} + h$$

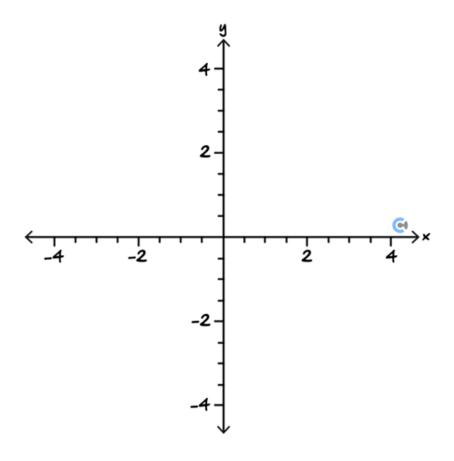
Steps

- 1. Find the centre of the semicircle.
- 2. Find the radius of the circle.
- **3.** Find axes intercepts if they exist.
- **4.** Identify the shape of the graph and sketch the curve.

Question 22 Walkthrough.

Graph the following semicircle:

$$y = -\sqrt{9 - (x - 1)^2} + 2$$



Solve $\left[0 = \frac{3}{x+2} - 3\right]$ $\left\{\left\{x \to -1\right\}\right\}$

Solve $\left[y = \frac{3}{\theta + 2} - 3\right]$

Where do the semicircle equations come from?

$\underline{\textbf{Exploration}} \textbf{: Derivation of Semicircle Equations}$

Consider the circle equation:

$$(x-h)^2 + (y-k)^2 = r^2$$

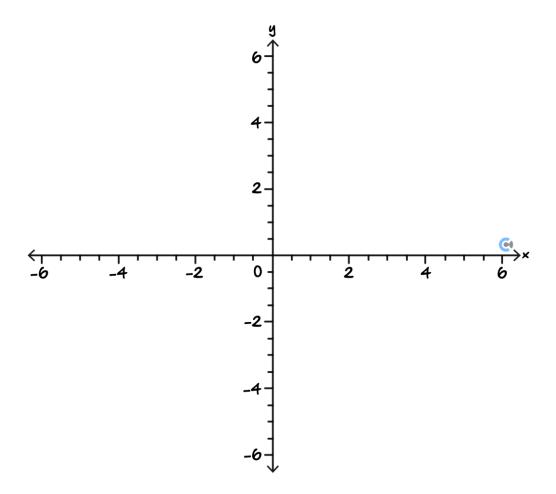
Try making y the subject!

- What would happen when we pick one sign over the other?
- So, by making y the subject, we get top and bottom semicircles!
- \blacktriangleright Similarly, what would happen if we make x the subject?

Active Recall: Steps for sketching a semicircle

- 1. Find the _____ of the semicircle.
- 2. Find the ______ of the circle.
- 3. Find axes ______ if they exist.
- **4.** Identify the _____ of the graph and sketch the curve.

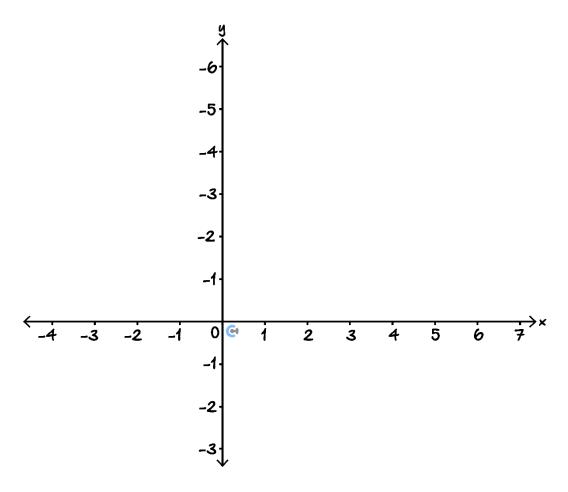
Graph the following: $x = \sqrt{-y^2 - 4y + 1} - 3$



NOTE: You need to complete the square for the function that is inside the root!

Question 24 Extension.

Graph the following: $y = \sqrt{-x^2 + 6x + 4} + 2$



Sub-Section: Finding a Rule for Circles and Semicircles

Solve $\left[0 - \frac{3}{x+2} - 3\right]$ $\left\{\left\{x \to -1\right\}\right\}$

Solve $y = \frac{3}{9+2}$

Again, another way!

Finding the Equation of a Root Function from its Graph

We need generally three facts about the circles/semicircles.

$$(x-h)^2 + (y-k)^2 = r^2$$

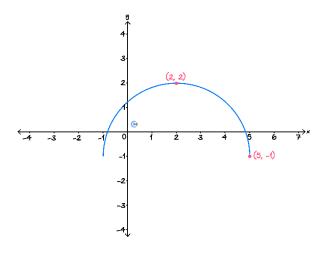
$$y = \pm \sqrt{r^2 - (x - h)^2} + k$$

$$x = \pm \sqrt{r^2 - (y - k)^2} + h$$

- Steps
 - **1.** Identify the center, (h, k).
 - **2.** Identify the radius, r.

Question 25 Walkthrough.

Find the rule for the following semicircle.

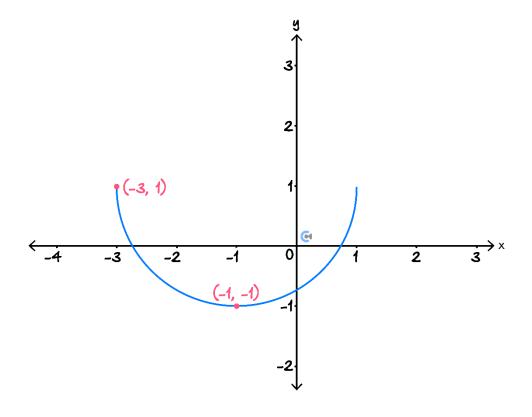


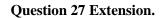
Active Recall: Steps for finding the rule of circles and semicircles

- 1. Identify the centre, ______.
- 2. Identify the radius, _____.

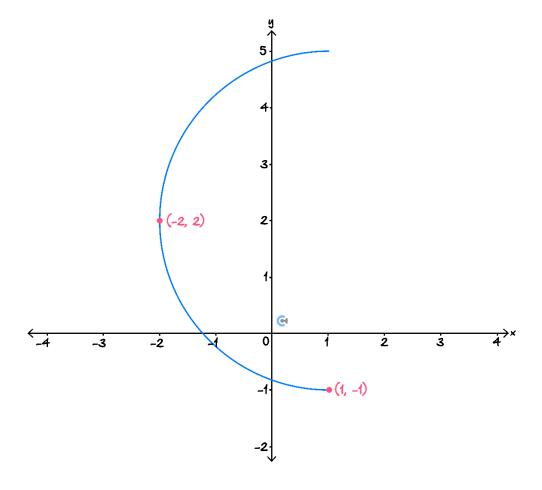
Question 26

Find the rule for the following semicircle.





Find the rule for the following semicircle.



Section E: Functions and Relations

Sub-Section: Relations

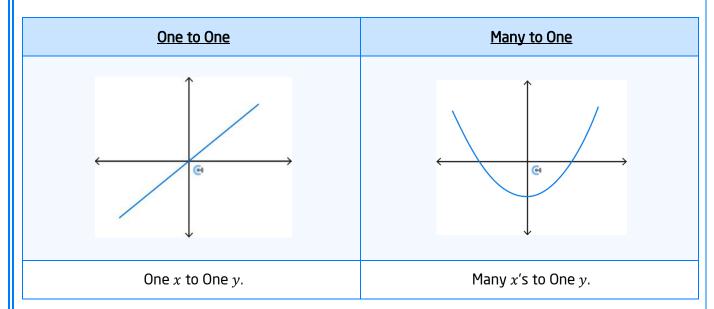
Solve $\left[0 = \frac{3}{x+2} - 3\right]$ $\left\{\left\{x \to -1\right\}\right\}$ Solve $\left[y = \frac{3}{\theta+2} - 3\right]$

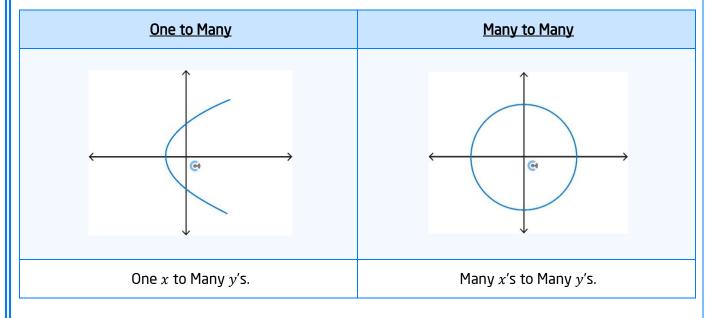
Let's take a look at all types of relations!

Definition

Types of Relations

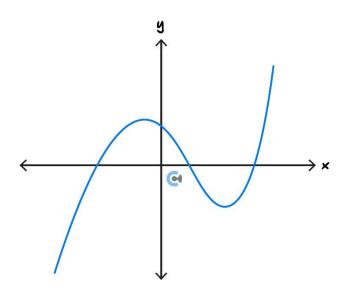
There are four types of relations:



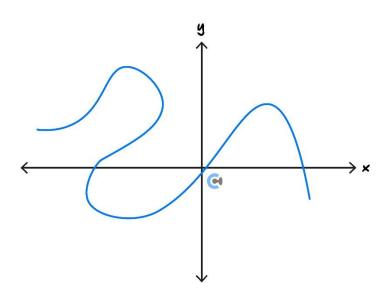


State the type of relation for each of the following graphs.

a.



b.



Sub-Section: Functions

What is a function?

Functions

$$y = f(x)$$

Functions are relations which make one y-value at any given x-value.

Discussion: What types of relations are functions?

Misconception

Misconception: "An equation between x and y can either be a function or a relation. In other words, functions are not relations."

Truth: Functions are in fact a subset of relations. All functions are relations.

BUT all relations are NOT necessarily functions.

{All Functions} ⊆ {All Relations}

Space for Personal Notes

State whether the following relations are also a function.

a.
$$y = x^2$$

b.
$$y^2 = x$$

Space for Personal Notes

For the following tables of inputs and outputs, identify which are (i) valid relations, and (ii) valid functions.

a.

x	у
-1	6
2	6
6	-1
-1	2

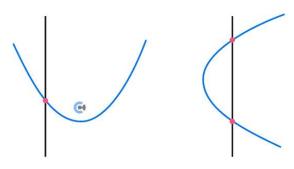
b.

x	у
-1	2
-1	1
1	1
1	-2

<u>Discussion:</u> What is the maximum number of times a function can hit any vertical line?

Vertical Line Test

Definition: Tells apart between functions and non-function relations.



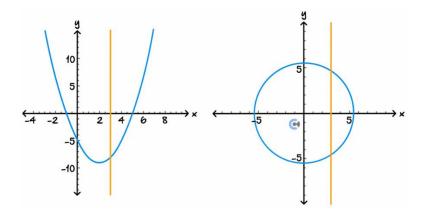
Passes : Function

Fails : Not function

Every function only intersects a vertical line once.

Question 31

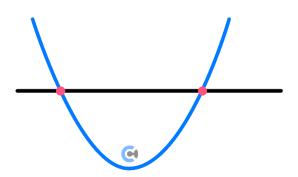
Which of the following graph(s) describes a function? Which of the following graph(s) show a relation?



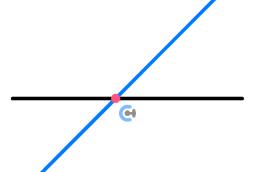
Discussion: How many times would a many to one and one to one function hit a horizontal line?

Horizontal Line Test

Definition: Tells apart between many to one and one to one functions. (And relations.)



Fails: Many to one



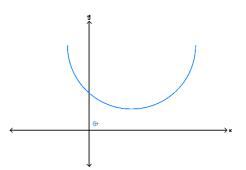
Passes: One to one

NOTE: One to one function hits **any** horizontal line drawn maximum once.

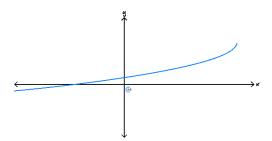
Space for Personal Notes

Which of the following graph(s) are one to one, and which are many to one?

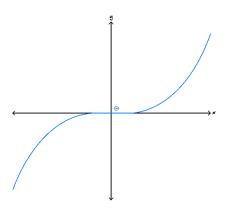
a.



b.



c.



Contour Check

Learning Objective: [2.1.1] - Sketch and find the rule of hyperbola Functions

Key Takeaways

Rectangular Hyperbola

$$y = \frac{a}{x - h} + k$$

- Steps for sketching:
 - 1. Find the horizontal and vertical _____ and plot them on the axis.
 - 2. Find the x- and y- _____ and plot on the axes (if they exist).
 - 3. Identify the _____ of the graph by considering any reflections and sketch the curve.
- ☐ Finding the Equation of a Hyperbola from its Graph
 - We need generally three facts about the hyperbola.

$$y = \frac{a}{x - h} + k$$

- Steps
 - 1. Look for the ______.
 - **2.** Sub in a _____ to find the value of a.

Learning Objective: [2.1.2] - Sketch and find the rule of Truncus Functions

Key Takeaways

Truncus

$$y = \frac{a}{(x-h)^2} + k$$

■ Steps for sketching:

1. Find the horizontal and vertical _____ and plot them on the axis.

2. Find the x- and y- _____ and plot on the axes (if they exist).

3. Identify the _____ of the graph by considering any reflections and sketch the curve.

☐ Finding the Equation of a Truncus from its Graph

• We need generally three facts about the Truncus.

$$y = \frac{a}{(x-h)^2} + k$$

Steps

1. Look for the _____

2. Sub in a _____ to find the value of a.

Learning Objective: [2.1.3] - Sketch and find the rule of Root Functions

Key Takeaways

Square Root Functions

$$y = a\sqrt{b(x-h)} + k$$

Steps for sketching

1. Find the ______.

2. Find the x- and y- _____ and plot on the axes (if they exist).

3. Identify the _____ of the graph by considering any reflections and sketch the curve.

☐ Finding the Equation of a Root Function from its Graph

• We need generally three facts about the root function.

$$y = a\sqrt{\pm(x-h)} + k$$

Steps

1. Look for the starting point ______.

2. Sub in a point to solve the value of _____.

Learning Objective: [2.1.4] - Sketch and find the rule of Semicircles and Circles

Circles

$$(x-h)^2 + (y-k)^2 = r^2$$

where $r > 0$

- Centre:
- Radius:
- Steps
 - 1. Find the _____ of the circle.
 - 2. Find the _____ of the circle.
 - 3. Find axes _____ (if they exist).
 - **4.** Identify the _____ of the graph and sketch the curve.
- Semicircles

$$y = \pm \sqrt{r^2 - (x - h)^2} + k$$

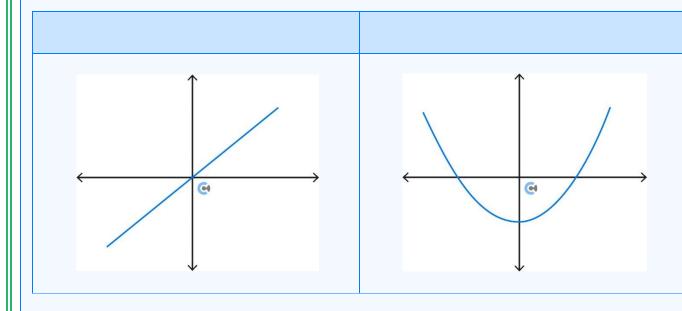
$$x = \pm \sqrt{r^2 - (y - k)^2} + h$$

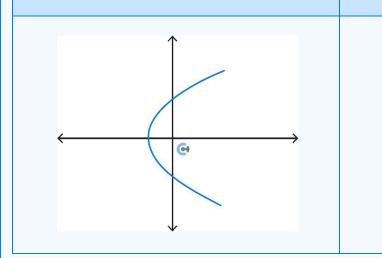
- Steps for finding the rule of circles and semicircles
 - 1. Identify the centre, ______.
 - 2. Identify the radius, _____.

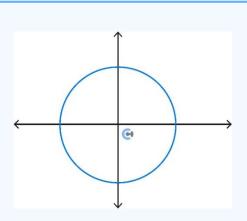
<u>Learning Objective:</u> [2.1.5] - Identify the type of relations and identify whether the relation is a function

Key Takeaways

- Types of Relations
 - O There are four types of relations:



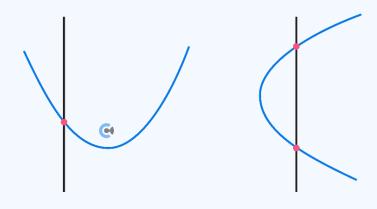




Functions

$$y = f(x)$$

- \circ Functions are relations which make one *y*-value at any given *x*-value.
- Vertical Line Test
 - O **Definition**: Tells apart between functions and non-function relations.

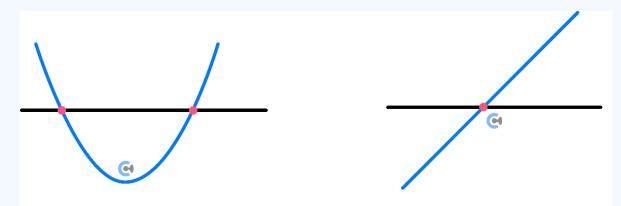


Passes : Function

Fails : Not function

Every function only intersects a vertical line ______.

- Horizontal Line Test
 - O **Definition**: Tells apart between many to one and one to one functions. (And relations.)



Fails: Many to one

Passes: One to one

One to one function hits **any** horizontal line drawn at most ______.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

