

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Functions & Relations I [2.1]

Test Solutions

37 Marks. 39 Minutes Writing.

Results:

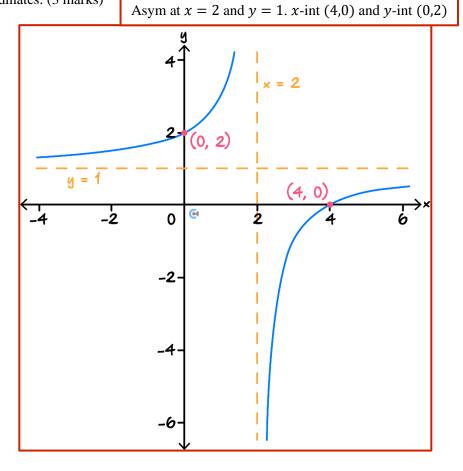
Test Questions	/29
Extension Test Questions	/8

Section A: Test Questions (29 Marks)

Question 1 (5 marks)

Tick whether the following statements are **true** or **false**.

		Statement	True	False
a. Positive hyperbolas generally take up the 1 st and 3 rd quadrants.		✓		
b. To find the equation of a hyperbola, you can use three points that it passes through.		✓		
c. Truncus can be both above and below the asymptote at the same time.				✓
d.	d. All points on the circle can have different distances from the centre.			✓
e.	The graph of $y = -\sqrt{2 - x}$ the quadrant 4.	1 starts from (2,1) and continues infinitely into It goes southwest.		✓
f.		it travels towards positive or negative infinity.		✓
g.	g. Left and right semicircles are given by making the <i>x</i> value the subject from the circle.		✓	
h.	$y = \pm \sqrt{r^2 - (x - h)^2} + k$ is			✓
If we keep both ± then it's a circle. i. Circles do not pass a vertical line test and a horizontal line test.		✓		
j. All functions are relations, but not all relations are functions.		✓		

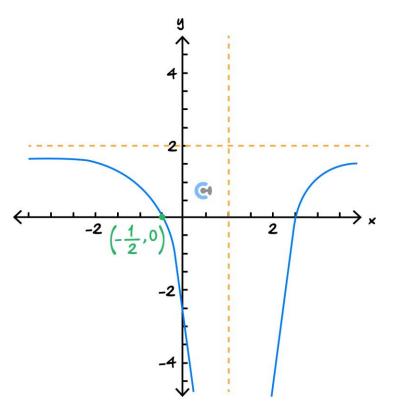

Question 2 (5 marks)

Let
$$f: D \to R$$
, $f(x) = \frac{x-4}{x-2}$.

a. Express f in the form $a + \frac{b}{x-2}$, stating the values of a and b. (1 mark)

$$a = 1$$
 and $b = -2$

b. Sketch the graph of $y = 1 - \frac{2}{x-2}$ on the axes below. Label asymptotes with their equations and axis intercepts with their coordinates. (3 marks)


c. Find the values of x for which $1 - \frac{2}{x-2} \ge 3$. (1 mark)

 $1 \le x < 2$

Question 3 (3 marks)

Part of the graph of the function with the equation $y = \frac{a}{(x+b)^2} + c$ is shown below. Find the values of a, b, c. Show your working.

$$a = -\frac{9}{2}$$
, $b = -1$, $c = 2$

Comparing the equation with the standard form $y = \frac{a}{(x-h)^2} + k$

$$y = \frac{a}{(x-h)^2} + k$$

h, k are vertical and horizontal asymptotes respectively.

Therefore,
$$h = 1, k = 2$$

Therefore, h = 1, k = 2On comparing with $y = \frac{a}{(x+b)^2} + c \Rightarrow b = -1, c = 2$

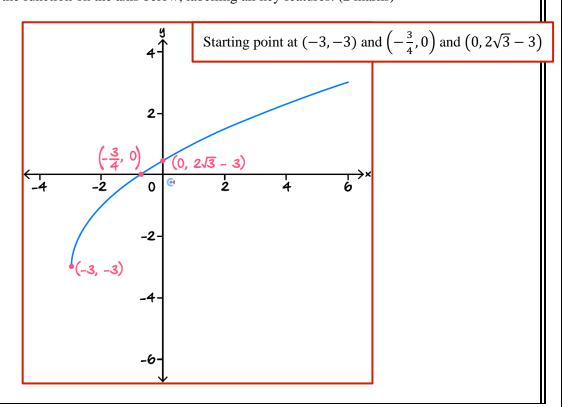
$$At y = 0, x = -\frac{1}{2}$$

$$0 = \frac{a}{\left(-\frac{1}{2} - 1\right)^2} + 2$$

$$a = -\frac{9}{2}$$

Question 4 (6 marks)

The function defined by $y = a\sqrt{x - h} + k$, where a, h and k are non-zero integers, has a y-intercept at $(0, 2\sqrt{3} - 3)$ and has an endpoint at (-3, -3).

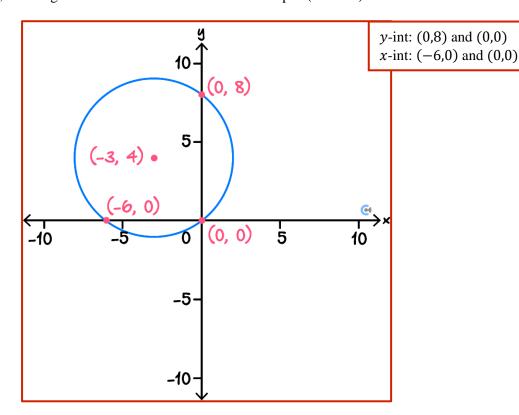

a. Determine the values of a, h and k. (2 marks)

$$a = 2, h = -3 \text{ and } k = -3$$

b. Find the coordinates of the x-intercept. (2 marks)

$$\left(-\frac{3}{4},0\right)$$

c. Sketch the graph of the function on the axis below, labelling all key features. (2 marks)


Question 5 (7 marks)

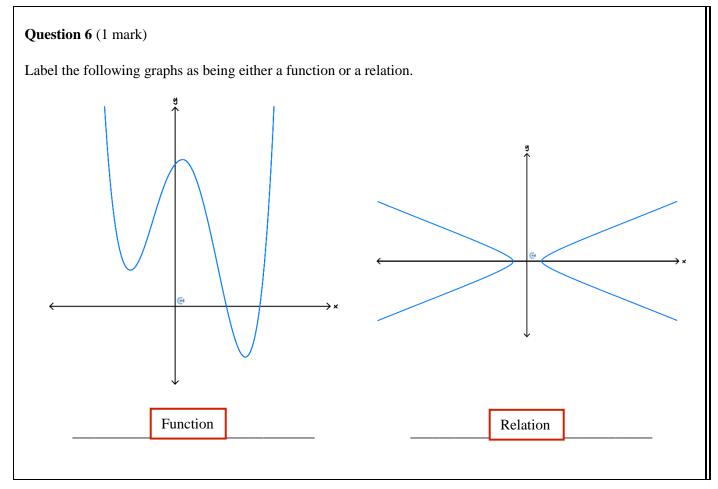
For the relation defined by $(x + 3)^2 + (y - 4)^2 = 25$.

a. Find the radius and centre of the equation. (1 mark)

r = 5, C: (-3,4)

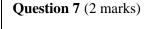
b. Graph the relation, labelling all the coordinates of the axial intercepts. (3 marks)

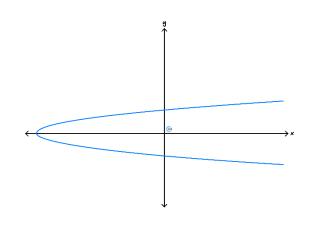
c. State the domain and the range of the relation. (1 mark)


Dom: [-8, 2]

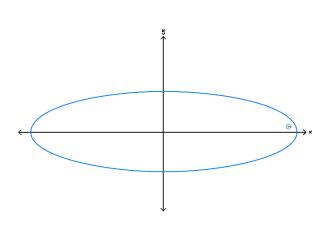
Range: [-1,9]

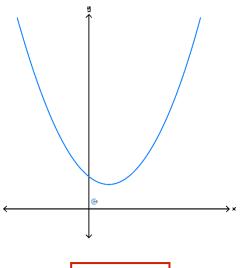
d. Find the equation of the semicircle derived from this relation, given that it passes through (-3, -1) and is considered to be a function. (2 marks)


$$y = -\sqrt{25 - (x+3)^2} + 4$$



Space for Personal Notes	


Label the following graphs as being either: one to one, one to many, many to one or many to many.



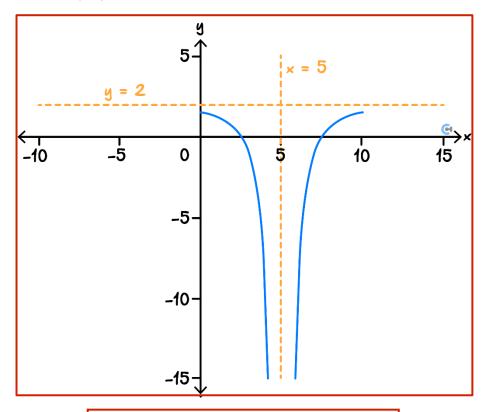
(e)

One to many

One to one

Many to many

Many to one


Section B: Extension Test Questions (8 Marks)

Question 8 (8 marks) Tech-Active.

The cross-section of a water cleft is modelled with the equation $h = -\frac{12}{(x-5)^2} + 2$, $0 \le x \le 10$ where h is the height in metres above the water's surface, and x is the horizontal distance from the warning sign (origin).

a. Find the x-intercept of the function and, hence, find the width of the cleft at the water surface. (2 marks)

b. Sketch the graph of $h = \frac{-12}{(x-5)^2} + 2$ for $0 \le x \le 10$, labelling all axial intercepts and endpoints. (2 marks)

Asymptote x = 5 & y = 2 and x-intercepts solved above.

c. What's the width of the cleft at 0.5 metres above the water surface? (2 marks)

Solve[h[x] = 1/2, x]

 $\left\{\left.\left\{\,x\,\rightarrow\,5\,-\,2\,\,\sqrt{2}\,\,\right\}\,,\,\,\left\{\,x\,\rightarrow\,5\,+\,2\,\,\sqrt{2}\,\,\right\}\,\right\}$

(* ANS: $4\sqrt{2}$ *)

It is known that at a metres below the water surface, the width of the cleft is given by 3 m.

d. Find the value of a. (2 marks)

Solve h(x) = h(x - 3) $x = \frac{13}{2}$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

