

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

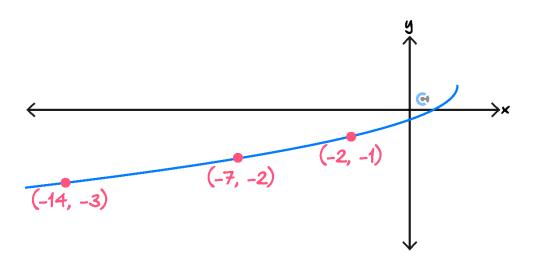
VCE Mathematical Methods ½ AOS 2 Revision [2.0]

Contour Check (Part 2)

Contour Check

[2.1 - 2.5] - Exam 2 Questions Pg 99-140

Section G: [2.1-2.5] - Exam 2 Overall (113 Marks)

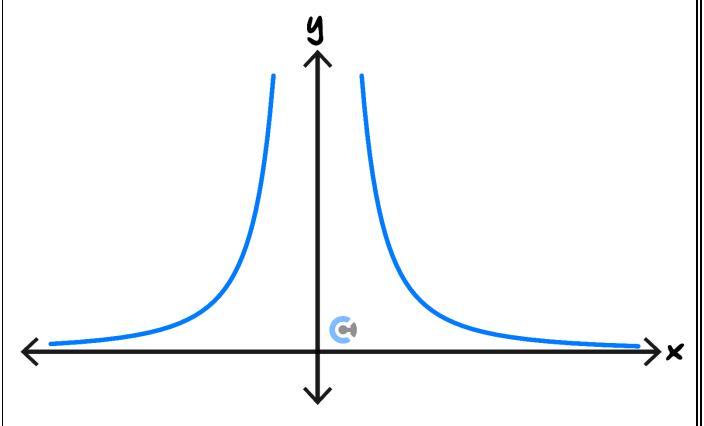

Question 78 (1 mark)

The maximal domain of the function $f(x) = \frac{1}{\sqrt{x^2 - x - 6}}$ is:

- **A.** $x \in (0, \infty)$
- **B.** $x \in (-2, 3)$
- C. $x \in (-\infty, 2] \cup [3, \infty)$
- **D.** $x \in \mathbb{R} \setminus [-2, 3]$

Question 79 (1 mark)

The most likely rule for the following graph is:



- **A.** $\sqrt{3-x} + 1$
- **B.** $-\sqrt{2-x} + 1$
- C. $3\sqrt{x+1} 1$
- **D.** $-3\sqrt{2-x} + 1$

Question 80 (1 mark)

The function g with the graph shown below, is best described as:

- A. One-to-one
- **B.** One-to-many
- C. Many-to-one
- **D.** Many-to-many

Question 81 (1 mark)

The line with the equation 4y + 3x = 25 intersects the circle $x^2 + y^2 = 25$ exactly once at the point P(3, 4). The equation for the radius of the circle that passes through P is:

A.
$$3y - 4x = 0$$

B.
$$3y + 4x = 25$$

C.
$$3y + 4x = 0$$

D.
$$3y - 4x = 25$$

Question 82 (1 mark)

Consider the function $f(x) = 12x^5 + 90x^4 + 140x^3 - 180x^2 - 480x - 200$.

The equation f(x) = k will have three solutions for:

- **A.** $k \in (-618, -24) \cup (38, 632)$
- **B.** $k \in [-618, -24] \cup [38, 632]$
- C. $k \in (-24,38)$
- **D.** $k \in [24,38]$

Question 83 (1 mark)

The graph of the function f passes through the point (2, -3).

If h(x) = 3f(x - 2), then the graph of the function h must pass through the point:

- **A.** (4, -9)
- **B.** (0,-9)
- C. (4,-1)
- **D.** (0,-1)

Question 84 (1 mark)

The graph of the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3^x - 1$, is reflected in the *y*-axis and then translated 2 units to the left and then 3 units up.

Which one of the following is the rule of the transformed graph?

- **A.** $y = \left(\frac{1}{3}\right)^{x+2} + 2$
- **B.** $y = \frac{1}{3} \times 3^{x+2} + 3$
- **C.** $y = 3^{-x} + 3$
- **D.** $y = 3^{-x+2} + 3$

Question 85 (1 mark)

The graph of the function g is obtained from the transformed graph of the function:

$$f: [-2,6] \to \mathbb{R}, f(x) = 3x^2 + 5x - 2$$

Which undergoes a dilation of a factor 2 from the y-axis, followed by a dilation of factor $\frac{1}{4}$ from the x-axis, followed by a reflection in the x-axis, and finally followed by a translation of 6 units in the positive direction of the y-axis. The domain and range of g are respectively:

- **A.** [-4, 12] and [-12, 4]
- **B.** [-4, 12] and $\left[-28, \frac{337}{48}\right]$
- C. [-12, 4] and $\left[-\frac{239}{48}, 40\right]$
- **D.** [-4, 12] and $\left[-40, \frac{239}{48}\right]$

Question 86 (1 mark)

The image of the function $f(x) = x^4$ is $y = -40(x+2)^4$. The transformations that could have been applied are:

- A. Reflection in the x-axis, then translation in the positive direction of the x-axis by 2 units, followed by a dilation from the y-axis by a factor of $\frac{1}{2}$.
- **B.** Reflection in the x-axis, then translation in the negative direction of the x-axis by 2 units, followed by a dilation from the x-axis by a factor of 5 and a dilation by a factor 2 from the y-axis.
- C. Reflection in the x-axis, then a dilation from the x-axis by a factor of 2, followed by a translation in the positive direction of the x-axis by 2 units, and finally a dilation from the y-axis by a factor of 2.
- **D.** Reflection in the x-axis, then a dilation from the y-axis by a factor of $\frac{1}{2}$, followed by a translation in the negative direction of the x-axis by 2 units, and finally a dilation from the x-axis by a factor of $\frac{5}{2}$.

Question 87 (1 mark)

Let
$$h: (-1,1) \to R, h(x) = \frac{1}{x-1}$$
.

Which one of the following statements about *h* is **not** true?

- **A.** $h(x)h(-x) = -h(x^2)$
- **B.** $h(x) + h(-x) = 2h(x^2)$
- **C.** h(x) h(0) = xh(x)
- **D.** $h(x) h(-x) = 2xh(x^2)$
- **E.** $(h(x))^2 = h(x^2)$

Question 88 (1 mark)

The linear function $f: D \to R$, f(x) = 5 - x has range [-4, 5).

The domain D is:

- **A.** (0, 9]
- **B.** (0, 1]
- C. [5, -4)
- **D.** [-9, 0)
- **E.** [1, 9)

CONTOUREDUCATION

Question 89 (1 mark)

The function f has the property f(x) - f(y) = (y - x)f(xy) for all non-zero real numbers x and y.

Which one of the following is a possible rule for the function?

- **A.** $f(x) = x^2$
- **B.** $f(x) = x^2 + x^4$
- $\mathbf{C.} \ f(x) = x \log_{\mathbf{e}}(x)$
- **D.** $f(x) = \frac{1}{x}$
- **E.** $f(x) = \frac{1}{x^2}$

Question 90 (1 mark)

The linear function $f: D \to R$, f(x) = 4 - x has range [-2, 6).

The domain D of the function is:

- **A.** [-2, 6)
- **B.** (-2, 2]
- **C.** *R*
- **D.** (-2, 6]
- **E.** [-6, 2]

Question 91 (1 mark)

Which one of the following functions satisfies the functional equation f(f(x)) = x for every real number x?

- **A.** f(x) = 2x
- **B.** $f(x) = x^2$
- C. $f(x) = 2\sqrt{x}$
- **D.** f(x) = x 2
- **E.** f(x) = 2 x

Question 92 (1 mark)

If $f: (-\infty, 1) \to R$, $f(x) = 2\log_e(1-x)$ and $g: [-1, \infty) \to R$, $g(x) = 3\sqrt{x+1}$, then the maximal domain of the function f+g is:

- **A.** [-1, 1)
- **B.** $(1, \infty)$
- C. (-1,1]
- **D.** $(-\infty, -1]$
- \mathbf{E} . R

Question 93 (1 mark)

If the equation f(2x) - 2f(x) = 0 is true for all real values of x, then the rule for f could be:

- **A.** $\frac{x^2}{2}$
- **B.** $\sqrt{2x}$
- **C.** 2*x*
- **D.** $\log_{e}\left(\frac{x}{2}\right)$
- **E.** x 2

Question 94 (1 mark)

The range of the function $f: [-2,3) \rightarrow R$, $f(x) = x^2 - 2x - 8$ is:

- $\mathbf{A}. R$
- **B.** (-9, -5]
- C. (-5,0)
- **D.** [-9, 0]
- **E.** [-9, -5)

Question 95 (1 mark)

Let $f: R \to R, f(x) = x^2$.

Which one of the following is **not** true?

- **A.** f(xy) = f(x)f(y)
- **B.** f(xy) f(-x) = 0
- **C.** f(2x) = 4f(x)
- **D.** f(x y) = f(x) f(y)
- **E.** f(x + y) + f(x y) = 2(f(x) + f(y))

Question 96 (1 mark)

The linear function $f: D \to R$, f(x) = 6 - 2x has range [-4,12].

The domain *D* is:

- **A.** [-3, 5]
- **B.** [-5, 3]
- \mathbf{C} . R
- **D.** [-14, 18]
- **E.** [-18, 14]

Question 97 (1 mark)

The range of the function $f: [-2,7) \rightarrow R, f(x) = 5 - x$ is:

- **A.** (-2, 7]
- **B.** [-2, 7)
- C. $(-2, \infty)$
- **D.** (-2,7)
- \mathbf{E} . R

Question 98 (1 mark)

The function f satisfies the functional equation $f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$ where x and y are any non-zero real numbers.

A possible rule for the function is:

- $\mathbf{A.} \ f(x) = \log_e |x|$
- **B.** $f(x) = \frac{1}{x}$
- **C.** $f(x) = 2^x$
- **D.** f(x) = 2x
- **E.** $f(x) = \sin(2x)$

Question 99 (1 mark)

If 3f(x) = f(3x) for x > 0, then the rule for f could be:

- $\mathbf{A.} \ f(x) = 3x$
- $\mathbf{B.} \ \ f(x) = \sqrt{3x}$
- **C.** $f(x) = \frac{x^3}{3}$
- **D.** $f(x) = \log_{e} \left(\frac{x}{3}\right)$
- **E.** f(x) = x 3

CONTOUREDUCATION

Question 100 (1 mark)

The range of the function $f: \left(\frac{-1}{\sqrt{2}}, \sqrt{2}\right] \to R, f(x) = 2x^3 - 3x + 4$ is:

- **A.** $(4-\sqrt{2},4+\sqrt{2})$
- **B.** $\left(\frac{-1}{\sqrt{2}}, \sqrt{2}\right)$
- C. $(4-\sqrt{2},4+\sqrt{2}]$
- $\mathbf{D.} \ \left(\frac{-2}{\sqrt{2},\sqrt{2}} \right]$
- **E.** $[4 \sqrt{2}, 4 + \sqrt{2}]$

Question 101 (1 mark)

A function f satisfies the relation $f(x^2) = f(x) + f(x + 2)$.

A possible rule for f is:

- **A.** $f(x) = \sqrt{x+2}$
- **B.** f(x) = x + 2
- C. $f(x) = \log_{10}(x 1)$
- **D.** $f(x) = \frac{1}{2}(x^2 1)$
- **E.** $f(x) = \frac{1}{x-1}$

Question 102 (1 mark)

The function f and its inverse, f^{-1} , are one-to-one for all values of x.

If f(1) = 5, f(3) = 7, and f(8) = 10, then $f^{-1}(7)$ and $f^{-1}(5)$ respectively are equal to:

- **A.** 5 and 7.
- **B.** 3 and 1.
- **C.** 7 and 5.
- **D.** 8 and 5.
- **E.** 5 and 8.

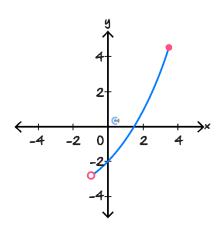
Question 103 (1 mark)

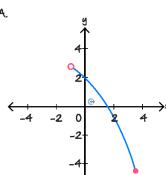
The function f with rule $f(x) = 2 \log_e(16 - x)$ has a maximal domain given by:

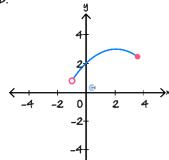
- **A.** $x \in (16, \infty)$
- **B.** $x \in (-\infty, 4)$
- C. $x \in (4, \infty)$
- **D.** $x \in (-4,4)$
- **E.** $x \in (-\infty, 16)$

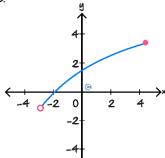
Question 104 (1 mark)

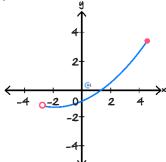
The range of the function with the rule $y = \sqrt{4 - x^2} + \log_e(x + 2)$ is contained within the interval:

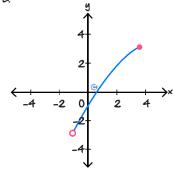

- **A.** [-4, 2.8]
- **B.** $(-\infty, 2.8]$
- C. (-4, 2.9)
- **D.** $(-\infty, 2.9)$
- **E.** [-4, 2.9)


Question 105 (1 mark)


The graph of y = f(x) is shown below:




The corresponding graph of the inverse of f, $y = f^{-1}(x)$, is best represented by:



В.

Question 106 (1 mark)

The function $f: D \to R$, $f(x) = \frac{x^4}{4} - \frac{x^3}{3} - \frac{9x^2}{2} + 9x$ will have an inverse function for:

- A. D = R
- **B.** D = (-3,1)
- **C.** $D = (1, \infty)$
- **D.** $D = (-\infty, 0)$
- **E.** $D = (0, \infty)$

Question 107 (1 mark)

The graph of the function $f: D \to R$, $f(x) = \frac{2x-3}{4+x}$, where D is the maximal domain, has asymptotes:

- **A.** x = -4, y = 2
- **B.** $x = \frac{3}{2}$, y = -4
- C. $x = -4, y = \frac{3}{2}$
- **D.** $x = \frac{3}{2}, y = 2$
- **E.** x = 2, y = 1

Question 108 (1 mark)

The function $f: D \to R$, $f(x) = 5x^3 + 10x^2 + 1$ will have an inverse function for:

- A. D = R
- **B.** $D = (-2, \infty)$
- C. $D = \left(-\infty, \frac{1}{2}\right]$
- **D.** $D = (-\infty, -1]$
- **E.** $D = [0, \infty)$

Question 109 (1 mark)

The function f has the property $f(2x) = (f(x))^2 - 2$ for all real numbers x.

A possible rule for the function f(x) is:

- **A.** $\frac{1}{x^2+4}$
- **B.** cos(x)
- C. $2 \log_e(x^2 + 1)$
- **D.** $e^{x} + e^{-x}$
- **E.** x^2

Question 110 (1 mark)

Which one of the following is the inverse function of the function $f: (-\infty, 3) \to R, f(x) = \frac{2}{\sqrt{3-x}} + 1$?

- **A.** $f^{-1}: (-\infty, 3) \to R, f^{-1}(x) = -\frac{4}{(x-1)^2} + 3$
- **B.** $f^{-1}: (1, \infty) \to R, f^{-1}(x) = -\frac{4}{(x-3)^2} + 1$
- C. $f^{-1}: (1, \infty) \to R, f^{-1}(x) = -\frac{4}{(x-1)^2} + 3$
- **D.** $f^{-1}: (1, \infty) \to R, f^{-1}(x) = -\frac{4}{x^2} + 3$
- E. $f^{-1}: R^+ \to R, f^{-1}(x) = -\frac{4}{(x-1)^2} + 3$

Question 111 (1 mark)

Let $f: D \to R$, $f(x) = \frac{3x-5}{2-x}$, where D is the maximal domain of f.

Which of the following are the equations of the asymptotes of the graph of f?

- **A.** x = 2 and $y = \frac{5}{3}$.
- **B.** x = 2 and y = -3.
- C. x = -2 and y = 3.
- **D.** x = -3 and y = 2.
- **E.** x = 2 and y = 3.

Question 112 (1 mark)

Consider the following four functional relations:

$$f(x) = f(-x)$$
 $-f(x) = f(-x)$ $f(x) = -f(x)$ $(f(x))^2 = f(x^2)$

The number of these functional relations that are satisfied by the function $f: R \to R, f(x) = x$ is:

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

Question 113 (1 mark)

Consider the functions $f(x) = \sqrt{x+2}$ and $g(x) = \sqrt{1-2x}$, defined over their maximal domains.

The maximal domain of the function h = f + g is:

- **A.** $\left(-2, \frac{1}{2}\right)$
- **B.** [-2, ∞)
- C. $(-\infty, -2) \cup \left(\frac{1}{2}, \infty\right)$
- **D.** $\left[-2, \frac{1}{2}\right]$
- **E.** [-2, 1]

Question 114 (1 mark)

Let f and g be functions such that f(-1) = 4, f(2) = 5, g(-1) = 2, g(2) = 7, and g(4) = 6.

The value of g(f(-1)) is:

- **A.** 2
- **B.** 4
- **C.** 5
- **D.** 6
- **E.** 7

Question 115 (1 mark)

Let $a \in (0, \infty)$ and $b \in R$.

Consider the function $h: [-a,0) \cup (0,a] \rightarrow R, h(x) = \frac{a}{x} + b$.

The range of h is:

- **A.** [b a, b + 1]
- **B.** (b-a, b+1)
- **C.** $(-\infty, b-1) \cup (b+1, \infty)$
- **D.** $(-\infty, b-1] \cup [b+1, \infty)$
- **E.** [*b* − 1, ∞)

Question 116 (1 mark)

The graph of the function f passes through the point (-2,7).

If $h(x) = f\left(\frac{x}{2}\right) + 5$, then the graph of the function h must pass through the point:

- **A.** (-1, -12)
- **B.** (-1, 19)
- $\mathbf{C.} \ (-4, 12)$
- **D.** (-4, -14)
- **E.** (3, 3.5)

Question 117 (1 mark)

The maximal domain of the function f is $R \setminus \{1\}$.

A possible rule for *f* is:

A.
$$f(x) = \frac{x^2 - 5}{x - 1}$$

B.
$$f(x) = \frac{x+4}{x-5}$$

C.
$$f(x) = \frac{x^2 + x + 4}{x^2 + 1}$$

D.
$$f(x) = \frac{5-x^2}{1+x}$$

E.
$$f(x) = \sqrt{x-1}$$

Question 118 (1 mark)

Consider the function $f: [a,b) \to R$, $f(x) = \frac{1}{x}$ where a and b are positive real numbers.

The range of f is:

A.
$$\left[\frac{1}{a}, \frac{1}{b}\right)$$

B.
$$\left(\frac{1}{a}, \frac{1}{b}\right]$$

C.
$$\left[\frac{1}{b}, \frac{1}{a}\right)$$

D.
$$\left(\frac{1}{b}, \frac{1}{a}\right]$$

E.
$$[a, b)$$

Question 119 (1 mark)

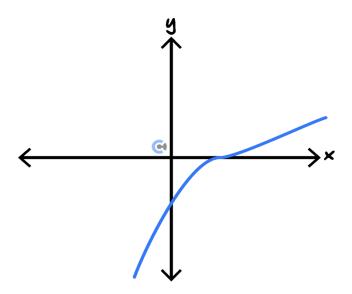
Which one of the following is the inverse function of $g: [3, \infty) \to R, g(x) = \sqrt{2x - 6}$?

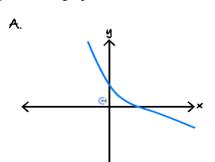
A.
$$g^{-1}: [3,\infty) \to R, g^{-1}(x) = \frac{x^2+6}{2}$$

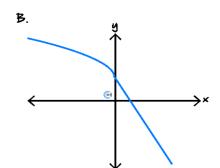
B.
$$g^{-1}: [0,\infty) \to R, g^{-1}(x) = (2x-6)^2$$

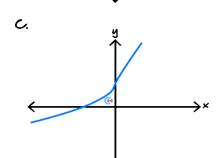
C.
$$g^{-1}: [0,\infty) \to R, g^{-1}(x) = \sqrt{\frac{x}{2}} + 6$$

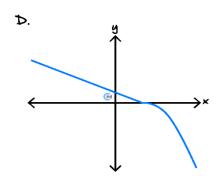
D.
$$g^{-1}: [0,\infty) \to R, g^{-1}(x) = \frac{x^2+6}{2}$$

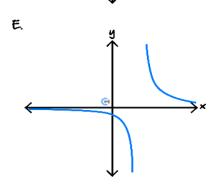

E.
$$g^{-1}: R \to R, g^{-1}(x) = \frac{x^2 + 6}{2}$$


Question 120 (1 mark)




Part of the graph of the function f is shown below. The same scale has been used on both axes:




The corresponding part of the graph of the inverse function f^{-1} is best represented by:

Question 121 (1 mark)

If the equation f(2x) - 2f(x) = 0 is true for all real values of x, then the rule for f could be:

- **A.** $\frac{x^2}{2}$
- **B.** $\sqrt{2x}$
- **C.** 2*x*
- **D.** $\log_{e}\left(\frac{|x|}{2}\right)$
- **E.** x 2

Question 122 (1 mark)

The range of the function $f: [-2, 3) \rightarrow R$, $f(x) = x^2 - 2x - 8$ is:

- **A.** *R*
- **B.** (-9, -5]
- $\mathbf{C.} \ (-5,0)$
- **D.** [-9,0]
- **E.** [-9, -5)

Question 123 (1 mark)

Let $f: R \to R, f(x) = x^2$.

Which one of the following is **not** true?

- **A.** f(xy) = f(x)f(y)
- **B.** f(x) f(-x) = 0
- **C.** f(2x) = 4f(x)
- **D.** f(x y) = f(x) f(y)
- **E.** f(x + y) + f(x y) = 2(f(x) + f(y))

Question 124 (1 mark)

The transformation $T: R^2 \to R^2$ maps the graph of $y = x^3 - x$ onto the graph of $y = 2(x-1)^3 - 2(x-1) + 4$. The transformation T could be given by:

- **A.** T(x, y) = (x + 1, 2y + 4)
- **B.** $T(x,y) = \left(x+1, \frac{1}{2}y+4\right)$
- **C.** T(x, y) = (2x + 1, y + 2)
- **D.** $T(x,y) = \left(\frac{1}{2}x + 1, y + 2\right)$
- **E.** T(x, y) = (x + 1, 2y + 2)

Question 125 (1 mark)

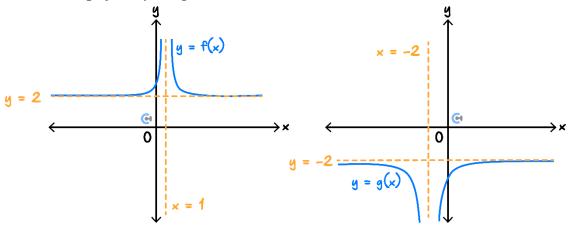
The transformation $T: R^2 \to R^2$, which maps the graph of $y = -\sqrt{2x+1} - 3$ onto the graph of $y = \sqrt{x}$, has rules:

- **A.** $T(x, y) = (\frac{1}{2}x 1, -y 3)$
- **B.** $T(x, y) = \left(\frac{1}{2}x 1, -y + 3\right)$
- C. $T(x, y) = (\frac{1}{2}x + 1, -y 3)$
- **D.** T(x, y) = (2x + 1, -y 3)
- **E.** T(x, y) = (2x 1, -y + 3)

Question 126 (1 mark)

The point (a, b) is transformed by:

$$T(x, y) = \left(\frac{1}{2}x - \frac{1}{2}, -2y - 2\right)$$


If the image of (a, b) is (0, 0), then (a, b) is:

- A. (1,1)
- **B.** (-1,1)
- C. (-1,0)
- **D.** (0,1)
- **E.** (1,-1)

Question 127 (1 mark)

Consider the graphs of f and g below, which have the same scale.

If T transforms the graph of f onto the graph of g, then:

- **A.** T(x, y) = (x 3, y 4)
- **B.** T(x, y) = (-x 3, y 4)
- C. T(x, y) = (x 3, -y)
- **D.** T(x, y) = (-2x, -y)
- **E.** T(x, y) = (-x, -2y)

Question 128 (1 mark)

The graph of the function $f: [0, \infty) \to R$, where $f(x) = 4x^{\frac{1}{3}}$, is reflected in the x-axis and then translated five units to the right and six units vertically down.

Which one of the following is the rule of the transformed graph?

- **A.** $y = 4(x-5)^{\frac{1}{3}} + 6$
- **B.** $y = -4(x+5)^{\frac{1}{3}} 6$
- C. $y = -4(x+5)^{\frac{1}{3}} + 6$
- **D.** $y = -4(x-5)^{\frac{1}{3}} 6$
- **E.** $y = 4(x-5)^{\frac{1}{3}} + 1$

Question 129 (1 mark)

The point A(3,2) lies on the graph of the function f. A transformation maps the graph of f to the graph of g where $g(x) = \frac{1}{2}f(x-1)$. The same transformation maps the point A to the point P.

The coordinates of the point P are:

- **A.** (2,1)
- **B.** (2,4)
- **C.** (4,1)
- **D.** (4,2)
- **E.** (4,4)

Question 130 (1 mark)

The graph of a function f is obtained from the graph of the function g with rule $g(x) = \sqrt{2x-5}$ by a reflection in the x-axis followed by a dilation from the y-axis by a factor of $\frac{1}{2}$.

Which one of the following is the rule for the function f?

A.
$$f(x) = \sqrt{5 - 4x}$$

B.
$$f(x) = -\sqrt{x-5}$$

C.
$$f(x) = \sqrt{x+5}$$

D.
$$f(x) = -\sqrt{4x - 5}$$

E.
$$f(x) = -\sqrt{4x - 10}$$

Question 131

The function f is defined as $f: [a, a + 2] \to \mathbb{R}, f(x) = x^2 - 4x - 8$.

a. Find the turning point of f(x).

VCE Methods ½ Questions? Message +61 440 138 726

b.	Fin	d the values of a such that:
	i.	The range of $f(x)$ is $[-8, 4]$.
	ii.	The inverse function f^{-1} exists.
	iii.	$\sqrt{f(x)}$ does not exist.

Question 132				
The line with the equation $y = mx$ intersects the circle with the centre $(0, 4)$ and radius 2 exact $P(x,y)$.	tly once at the poin			
(Note: A line which intersects a circle exactly once is called a line that is tangent to the circle.)				
a. Find the equation of the circle.				
				
b. Show that the x -coordinate of the point P satisfies the equation:				
$(1+m^2)x^2 - 8x + 12 = 0$				
				

Ose the discriminant	to find the possible va	arues or m.	

VCE Methods ½ Questions? Message +61 440 138 726

d.	Hence, find the two possible sets of coordinates for P .
e.	Find the distance of <i>P</i> from the origin.
f.	Find the acute angle that the two lines tangent to the circle make at the origin.
Sp	pace for Personal Notes

Question 133

Consider the function $f: (-3,1) \to \mathbb{R}$, f(x) = (x+3)(x+2)(3x-3).

a. State the range of f, correct to 3 decimal places.

- **b.** The following sequence of transformations, T, map the graph of f onto the graph of g.
- A dilation by a factor of $\frac{1}{2}$ from the y-axis, followed by,
- A translation of 2 units up and 1 unit left, followed by,
- \rightarrow A reflection in the *x*-axis.
 - i. State the rule of g.

ii. State the domain of g.

iii. State the range of g correct to 3 decimal places.

iv. Find the image of the point $(1,0)$ under T .	
	_

Question 134 (7 marks)

The equation of a circle is given by $(x - 6)^2 + (y - 3)^2 = 9$, and a line with the equation y = nx, n > 0 is tangent to this circle at the point R(p, q).

a. Write down the centre and radius of the circle. (1 mark)

b. Show that the x-coordinate of the point R satisfies the equation: (2 marks)

$$(1+n^2)x^2 - 6(2+n)x + 36 = 0$$

c. Use the discriminant to determine the exact value of n. (1 mark)

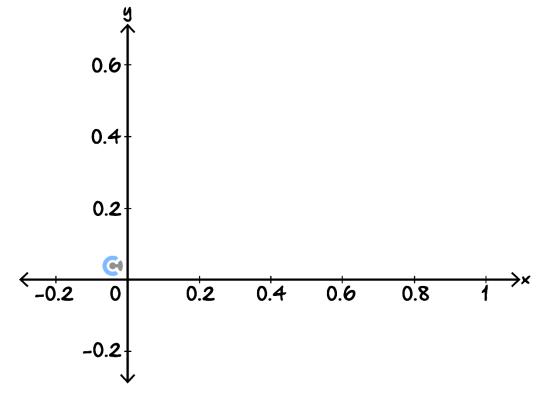
VCE Methods ½ Questions? Message +61 440 138 726

d.	Find the coordinate of R . (2 marks)
e.	Calculate the distance of R from the origin. (1 mark)

Question 135 (8 marks)

Consider the curve with equation $y = \sqrt{x - c} - d$.

a. Show that if the curve meets the line with equation y = 3x at the point (u, 3u), then u satisfies the equation: (1 mark)



b.

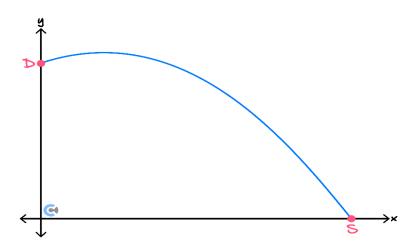
i. If the line with equation y = 3x is a tangent to the curve, show that $d = \frac{1-36c}{12}$. (2 marks)

ii. Sketch the graph of $y = \sqrt{2x} - \frac{1}{6}$ and find the coordinates of the point on the graph at which the line with equation y = 3x is a tangent. (2 marks)

- **c.** Find the values of k for which the line with equation y = 3x k:
 - i. Meets the curve with equation $y = \sqrt{2x} \frac{1}{6}$ twice. (1 mark)

ii. Meets the curve with equation $y = \sqrt{2x} - \frac{1}{6}$ once. (1 mark)

iii. Does not meet the curve with equation $y = \sqrt{2x} - \frac{1}{6}$. (1 mark)

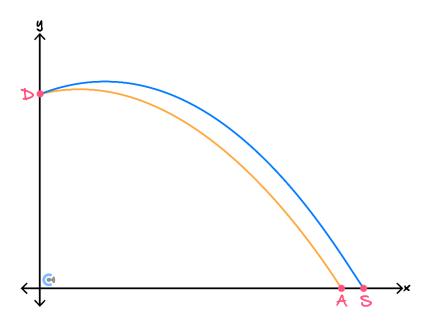


Question 136 (11 marks)

Sophia and Daniel are testing how far Daniel can throw a frisbee from a raised hill. Daniel stands at a point D, while Sophia stands at the point S. The frisbee's path follows the curve:

$$h(x) = a(x - b)^2 + c$$

where h is the height of the frisbee above the ground, and x is the horizontal distance from the hill.

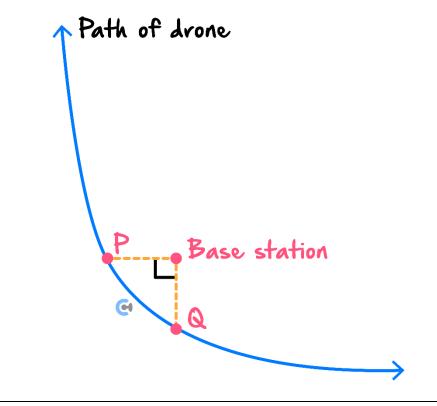


VCE Methods ½ Questions? Message +61 440 138 726

,	What is the height of the hill that Daniel is standing on? (1 mark)
	······································
-	
	What is the angle of depression from Daniel to Sophia? Give your answer in degrees, correct to two decimals of the control of
]	places. (2 marks)
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	

d. After some time, Daniel's throw weakens, and his frisbee now follows a different curve g(x), where h(x) undergoes these transformations:

- A dilation by a factor of $\frac{3}{5}$ from the y-axis.
- A dilation by a factor of $\frac{1}{3}$ from the x-axis.
- A translation of 10 metres in the positive y-axis.
 - i. Find the equation for g(x). (3 marks)



_	
-	
_	
_	
-	
i i. /	At what height does the frisbee start descending in the second experiment? (1 mark)
-	·

Question 137 (12 marks)

A drone is navigating a valley using GPS signals. The path is modelled by a hyperbola, and at two points, P and Q, the drone is at a fixed distance of 400 m from the base station. The angle between P and Q with the base station is 90° .

a. Taking 800 m as 1 unit and placing the base station at the origin, determine the coordinates of points P and Q. (2 marks)

$$P = (__,0)$$
 and $Q = (0,__)$

b. The flight path follows the function $g(x) = \frac{b}{x+2} - 2$. Given that a third point $R\left(-\frac{5}{4}, 2\right)$ lies on the path, show that b = 3. (2 marks)

c. Draw a diagram representing the hyperbolic path, including labelled axes, asymptotes, and a proper scale. (3 marks)

VCE Methods ½ Questions? Message +61 440 138 726

d.	Using the hyperbola equation and the distance formula:
	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
	Derive an equation for the drone's distance from the base station at any point. (2 marks)
e.	Use a calculator to determine the minimum distance between the drone and the base station, rounding to the nearest metre. (3 marks)

Question 138 (11 marks)

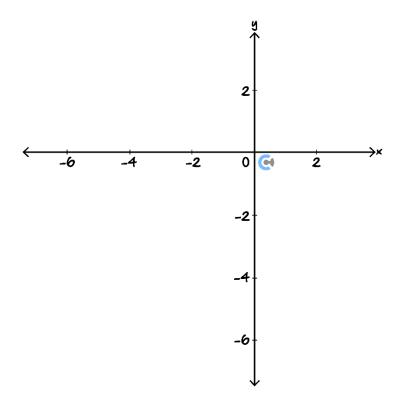
Consider the function $f: \mathbb{R} \to \mathbb{R}, f(x) = -(x+2)^2$.

- **a.** Write down:
 - i. The domain of f. (1 mark)

ii. The range of f. (1 mark)

iii. The maximum value of f. (1 mark)

iv. The value of f(-1). (1 mark)


b. The inverse function f^{-1} does not exist. Explain why. (1 mark)

Consider the function $g: [-2, \infty) \to \mathbb{R}$, where $g(x) = -(x+2)^2$.

c. On the set of axes below, sketch the graph of y = g(x). Clearly label any endpoints and/or intercepts. (2 marks)

d. On the same set of axes, sketch the graph of the inverse function of g(x), that is, sketch the graph of $y = g^{-1}(x)$. Clearly label any endpoints and/or intercepts. (2 marks)

e. State the rule for $g^{-1}(x)$. (2 marks)

Question 139	(11	marks)
--------------	-----	--------

A cubic function h(x) has the rule h(x) = (x - 4)(x + 6)(x - 7).

a. Solve the equation h(x-5) = 0. (2 marks)

b. Solve the equation h(x + 4) = 0. (2 marks)

c. It is known that the equation h(x) + n = 0 has a solution x = -2. Find the value of n and solve the equation h(x) + n = 0. (3 marks)

VCE Methods ½ Questions? Message +61 440 138 726

d.	d. The equation $h(x - q) = 0$ has a solution $x = 0$. Find the possible values of q . (2 marks)		
	Find the values of g and that $h(x, y) = 0$ has cally an analysis a solution (2 modes)		
e. Find the values of q such that $h(x-q) = 0$ has only one positive solution. (2 marks)			
Space for Personal Notes			

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via <u>bit.ly/contour-methods-consult-2025</u> (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

