

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

AOS 2 Revision [2.0]

Contour Check (Part 1)

Contour Check

[2.1] - Functions & Relations I (Checkpoints)

- [2.1.1] Sketch and Find the Rule of Hyperbolas FunctionsPg 3-6
- [2.1.2] Sketch and Find the Rule of TruncusFunctionsPg 7-10
- [2.1.3] Sketch and Find the Rule of Root FunctionsPg 11-14
- [2.1.4] Sketch and Find the Rule of Semicircles and CirclesPg 15-18
- [2.1.5] Identify the Type of Relations and Identify Whether the Relation is a Function
 Pg 19-20

[2.2] - Functions & Relations II (Checkpoints)

- ☐ **[2.2.1] -** Find Domain and Range of Functions
 Pg 21-24
- [2.2.2] Sketch and Find the Domain and Range of Hybrid FunctionsPg 25-28
- [2.2.3] Find the Rule, Domain, Range, and Intersections Between Inverse Functions Pg 29-32

[2.3] - Functions & Relations Exam Skills (Checkpoints)

- [2.3.1] Restrict Domain Such that the Inverse Function ExistsPg 33-38
- [2.3.2] Figure Out Possible Rule of a GraphPg 39-48
- [2.3.3] Solve Number of Solution ProblemsGraphicallyPg 49-51

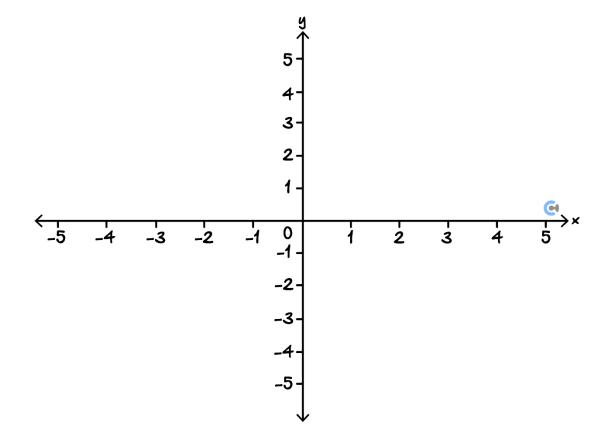
[2.4] - Transformations (Checkpoints)

- ☐ **[2.4.1]** Applying x' and y' Notation to Find Transformed Points, Find Interpretation of Transformations and Altered Order of Transformation Pg 52-59
- ☐ [2.4.2] Find Transformed Functions Pg 60-67
- ☐ [2.4.3] Find Transformations from Transformed Function (Reverse Engineering)
 Pg 68-74

[2.5] - Transformations Exam Skills (Checkpoints)

- [2.5.1] Apply Quick Method to FindTransformationsPg 75-76
- [2.5.2] Find Opposite TransformationsPg 77-78
- [2.5.3] Apply Transformations of Functions to Find its Domain, Range, Transformed Points
 Pg 79-81
- [2.5.4] Find Transformations of Inverse FunctionsPg 82-83
- [2.5.5] Find Multiple Transformations for the Same FunctionsPg 84-85

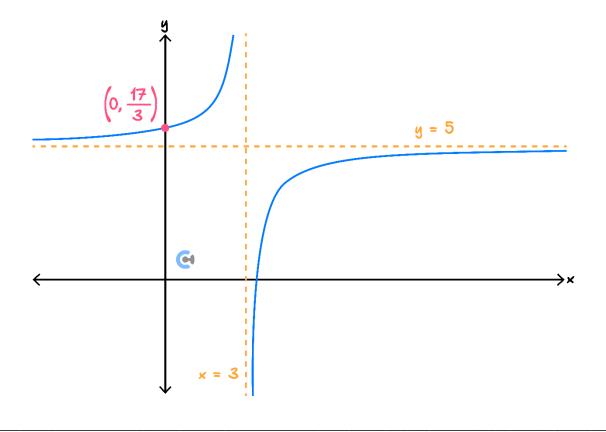
[2.1 - 2.5] - Exam 1 Questions Pg 86-96


Section A: [2.1] - Functions & Relations I (Checkpoints)

Sub-Section [2.1.1]: Sketch and Find the Rule of Hyperbolas Functions

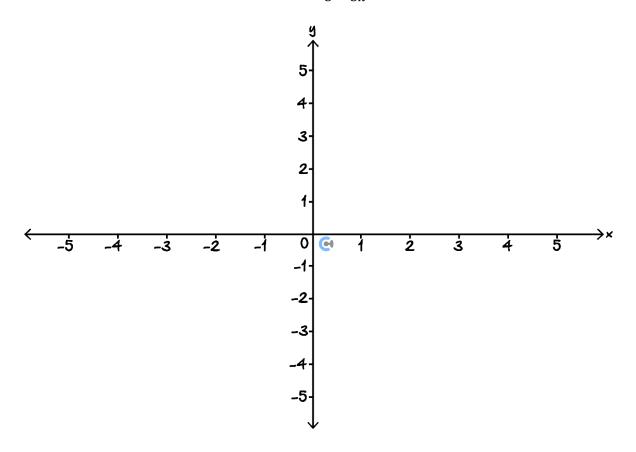
Question 1

Graph the following curve, labelling all intercepts and asymptotes with their equations.


$$y = \frac{1}{x+1} - 2$$

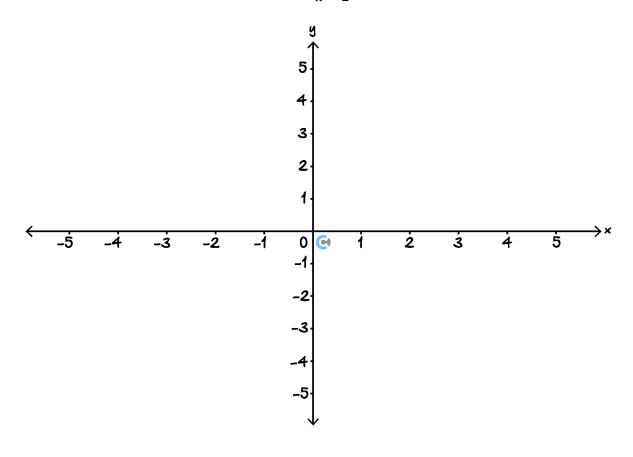
)

Find the rule for the following graph, given it is of the form $y = \frac{a}{x-h} + k$.



Graph the following curve, labelling all intercepts and asymptotes with their equations.

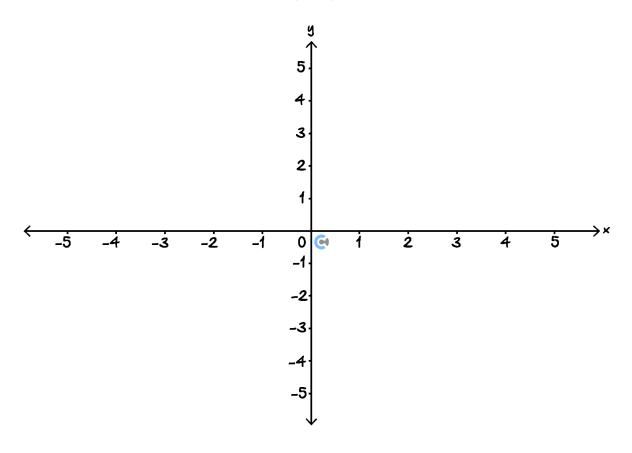
$$y = 3 - \frac{2}{5 - 3x}$$



الالال

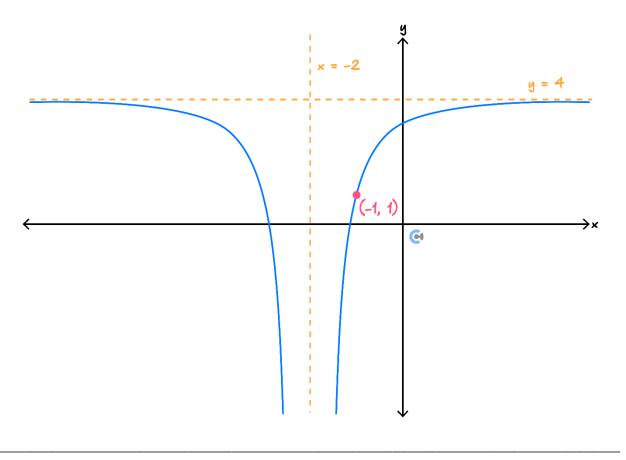
Graph the following curve, labelling all intercepts and asymptotes with their equations.

$$y = \frac{2 - 2x}{x - 2}$$



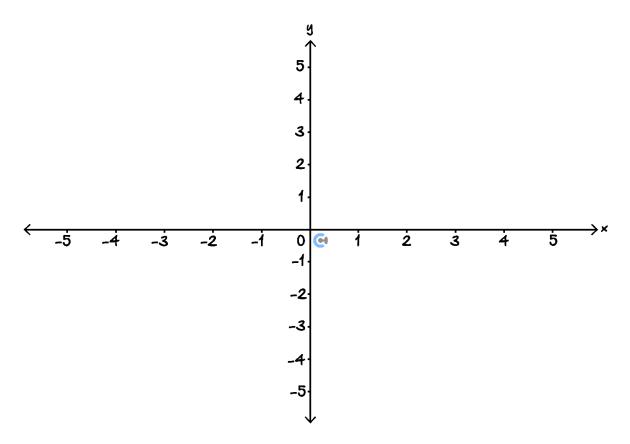
Sub-Section [2.1.2]: Sketch and Find the Rule of Truncus Functions

Question 5


Graph the following curve, labelling all intercepts and asymptotes with their equations.

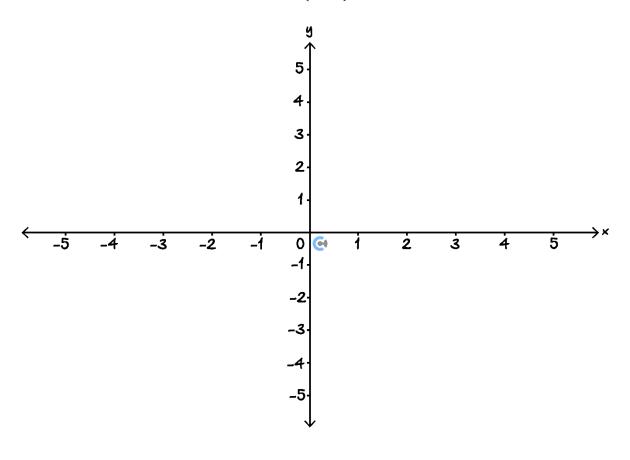
$$y = \frac{1}{(x-1)^2} + 2$$

Find the rule for the following graph, given it is of the form $y = \frac{a}{(x-h)^2} + k$.



Graph the following curve, labelling all intercepts and asymptotes with their equations.

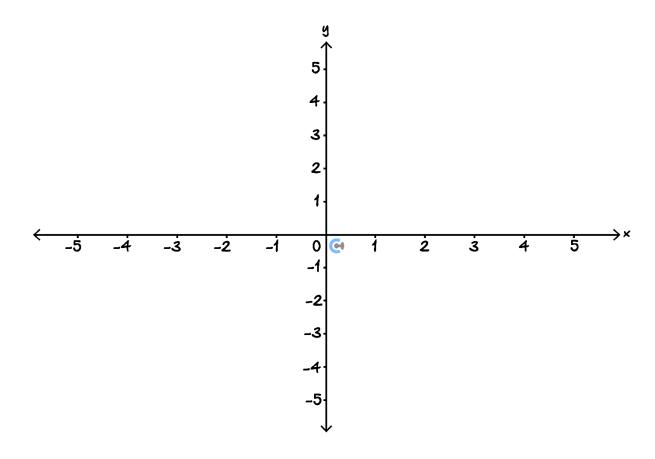
$$y = \frac{6}{(1-x)^2} - 3$$



الالال

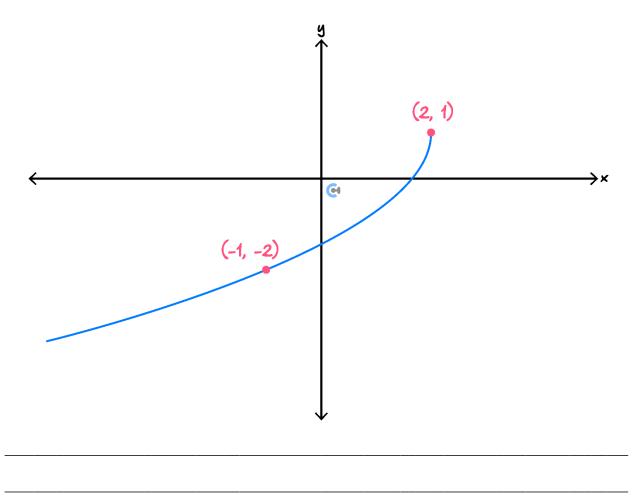
Graph the following curve, labelling all intercepts and asymptotes with their equations.

$$y = \frac{x^2 - 4x - 1}{(x - 2)^2}$$



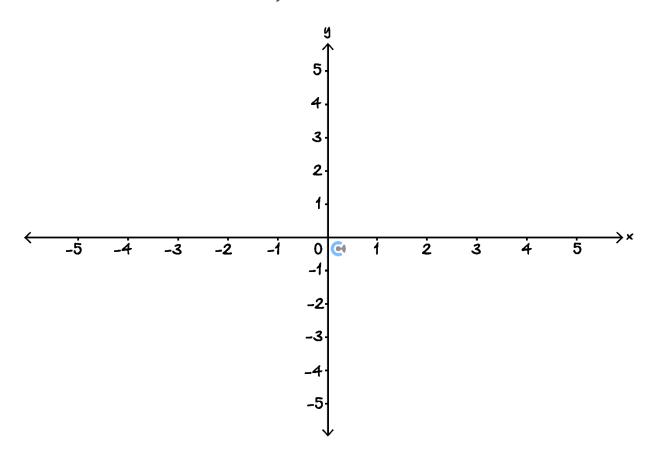
Sub-Section [2.1.3]: Sketch and Find the Rule of Root Functions

Question 9


Graph the following curve, labelling all intercepts and start points.

$$y = \sqrt{x - 2}$$

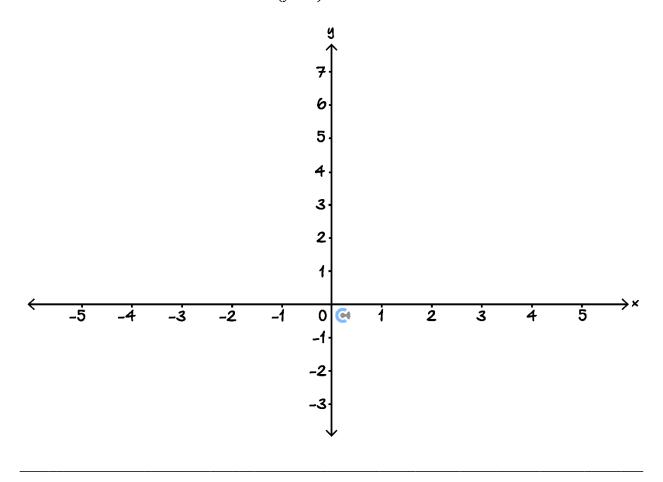
Find the rule for the following graph, given it is of the form $y = a\sqrt{h-x} + k$.



أزارا

Graph the following curve, labelling all intercepts and start points.

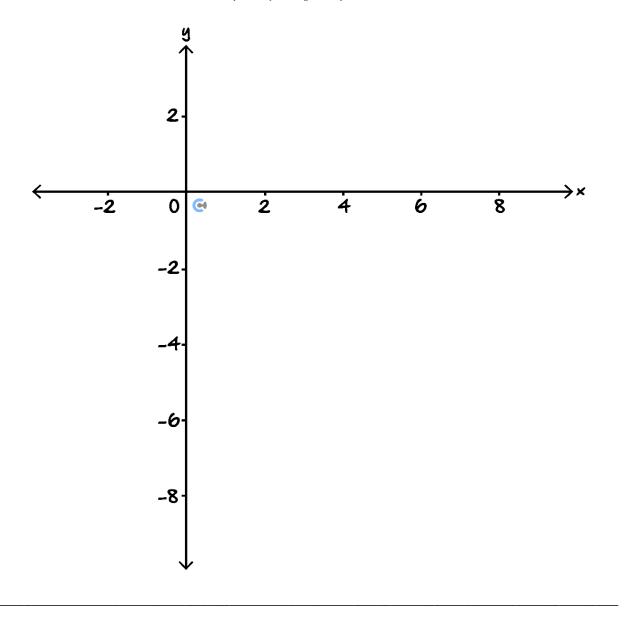
$$y = 4 - \sqrt{5 - 2x}$$



الالالا

Graph the following curve, labelling all intercepts and turning points.

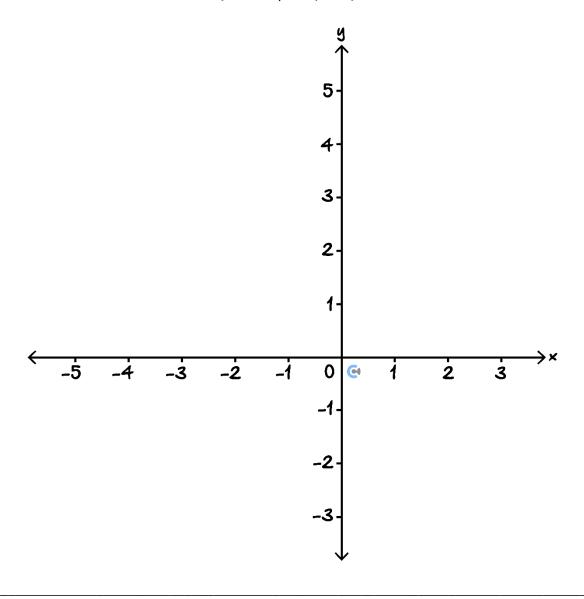
$$(y-3)^2 = 5 - 2x$$



Sub-Section [2.1.4]: Sketch and Find the Rule of Semicircles and Circles

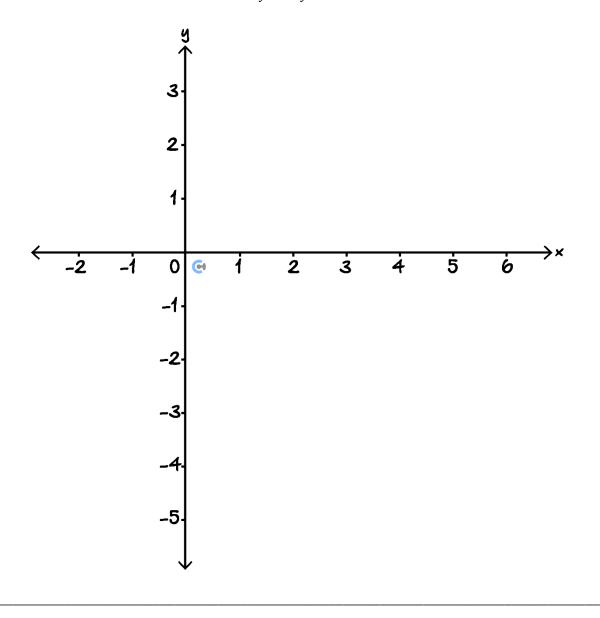
Question 13

Graph the following circle, label all intercepts.


$$(x-3)^2 + (y+4)^2 = 25$$

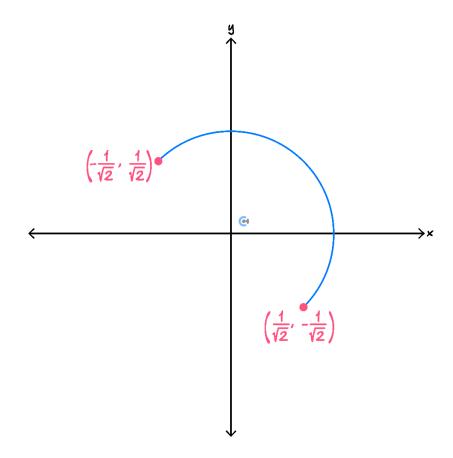
Graph the following semi-circle, label all intercepts.

$$y = 3 - \sqrt{9 - (x+2)^2}$$



Graph the following circle, label all intercepts.

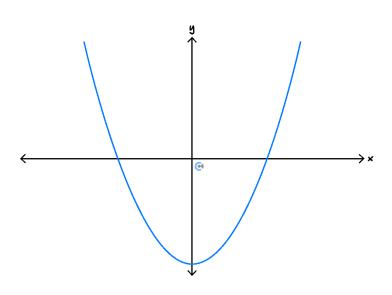
$$x^2 + y^2 + 2y - 4x = 4$$



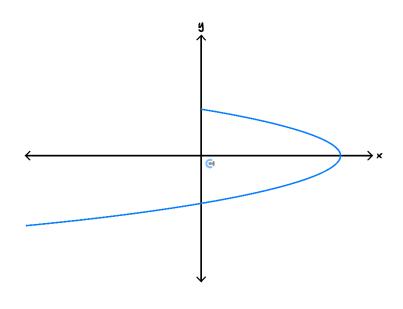
		

Determine the equation of the semi-circle with radius 1, shown on the graph below.

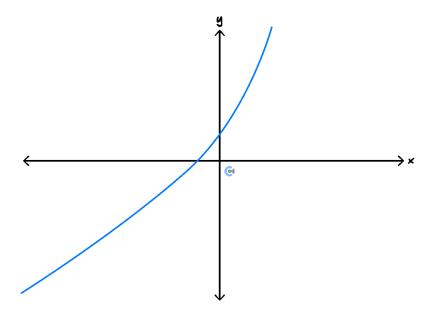

<u>Sub-Section [2.1.5]</u>: Identify the Type of Relations and Identify whether the Relation is a Function

Question 17

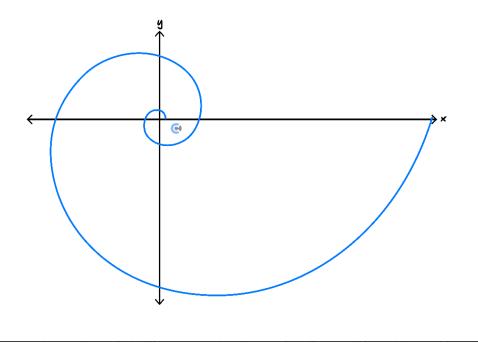


For each of the following graphs, identify the type of relation depicted and whether the relation is a function.

a.



b.



c.

d.

Section B: [2.2] - Functions & Relations II (Checkpoints)

<u>Sub-Section [2.2.1]</u>: Find Domain and Range of Functions

Find the domain of the following functions: **a.** $y = \sqrt{5-2x}$ **b.** $y = -\frac{3}{x^2+4x-12}$ **c.** $y = 2\log_e(x+1)$

Find the maximal domain of the following functions:

a. $y = \frac{(\sqrt{x^2 + 9x + 18})}{2}$

- **b.** $y = \frac{3}{\sqrt{6-5x-x^2}} 4$
- c. $y = \log_5((1-x)(x+4)^2) + 1$

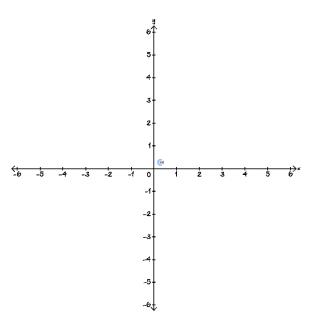
Express f(x) in full function mapping notation.

a. $f(x) = \log_2(2x^2 + 7x + 6)$

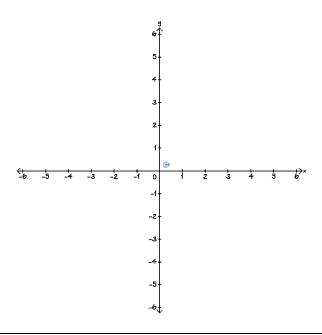
b. $f(x) = (3x^2 - 12x + 16)^{\frac{3}{2}}$

c. $f(x) = 3\sqrt{-\frac{1}{4-2x} + 1}$

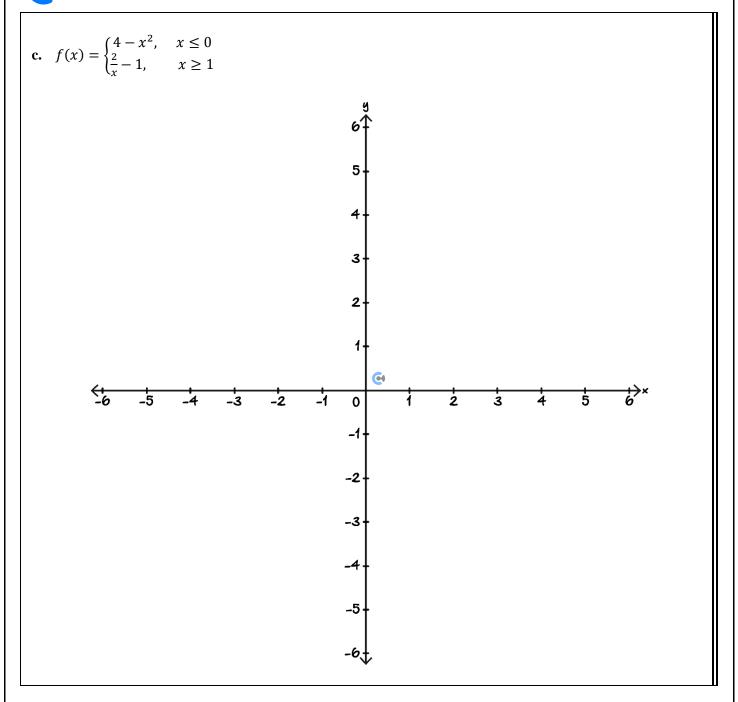
uestion 21					رررر
nd the maximal do	nain of the function $f(x)$	$= x^2 + 4x + 12$ su	ch that, the range o	f(x) is [8,17).	
					 -
ance for Dercenal	Matas				
ace for Personal	Notes				
ace for Personal	Notes				
ace for Personal	Notes				
ace for Personal	Notes				
ace for Personal	Notes				
ace for Personal	Notes				
ace for Personal	Notes				
ace for Personal	Notes				
ace for Personal	Notes				
ace for Personal	Notes				
pace for Personal	Notes				



<u>Sub-Section [2.2.2]</u>: Sketch and Find the Domain and Range of Hybrid Functions

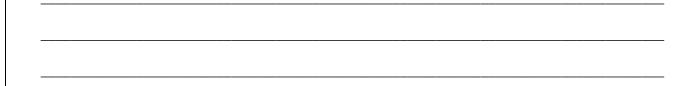

Question 22

Sketch the following graphs. Label all intercepts and endpoints.


a.
$$f(x) = \begin{cases} \frac{1}{3}(x-2)^2 - 3, & 2 \le x < 6 \\ -x - 1, & -1 < x < 2 \end{cases}$$

b.
$$f(x) = \begin{cases} 2x+4, & -3 < x \le -2 \\ x^2 - x - 2, & -2 < x < 2 \end{cases}$$

CONTOUREDUCATION



Find the range of the following piecewise functions.

a.
$$f(x) = \begin{cases} x - 2, & -4 \le x < 1 \\ 2x - 2, & 1 \le x \le 3 \end{cases}$$

b.
$$f(x) = \begin{cases} x^2 - 4x + 6, & 0 < x < 5 \\ \frac{1}{2}x + 6, & -6 < x < 0 \end{cases}$$

CONTOUREDUCATION

c.	$f(x) = \begin{cases} x+4, & -3 < x < -1\\ x^2, & -1 \le x \le 2\\ x-4, & 2 < x < 8 \end{cases}$

Question 24

Find	I the maximal domain of the function: $f(x) = \begin{cases} \sqrt{8 - 2x} \\ \log_e(-x^2 + 5x + 6) \end{cases}$
-	
-	

<u>Sub-Section [2.2.3]</u>: Find the Rule, Domain, Range, and Intersections between Inverse Functions

Question	25
Question	

The function f(x) is defined as $f: [-5,1) \to \mathbb{R}, f(x) = \frac{2}{3-x} + 6$.

a. Find the equation of $f^{-1}(x)$.

b. Determine the domain of $f^{-1}(x)$.

c. State the range of $f^{-1}(x)$.

On	estion	26
Qu	esuon	4 0

Consider the function, $g:(-\infty,0] \to \mathbb{R}$, $g(x) = 2x^2 - 12x + 16$.

a. Find the equation of the inverse function.

b. Find the domain of the inverse function.

c. State the range of the inverse function.

Question	27
C	

Consider the function, $f(x) = 1 - \sqrt{7 - x}$.

a. Define the inverse function of f(x), using full function mapping notation.

b. Find the point of intersection between f(x) and $f^{-1}(x)$.

uestion 28				
and the values of k such that	at, the graph $f:[0, 0]$	$(\infty) \to \mathbb{R}, f(x) = x^2$	$x^2 + k$ and $f^{-1}(x)$ have	ve 2 solutions.

Space for Personal Notes

Section C: [2.3] - Functions & Relations Exam Skills (Checkpoints)

<u>Sub-Section [2.3.1]</u>: Restrict Domain such that the Inverse Function Exists

Question 29

For each of the following functions, a domain restriction is given with an endpoint a or b. Determine the minimum value of a or maximum value of b such that, the inverse function, f^{-1} , exists.

a. $f:(-\infty,b] \to \mathbb{R}, f(x) = (x+1)^2 - 3$

b. $f : [a, \infty) \to \mathbb{R}, f(x) = x^2 - 4x + 7$

c. $f:[a,\infty) \to \mathbb{R}, f(x) = -x^2 + 8x - 11$

Question	30
Oucsuon	$\mathbf{J}\mathbf{U}$

All the functions in this question are written in a non-standard form.

a. Consider the function:

$$f: (-\infty, a) \to \mathbb{R}, \quad f(x) = \frac{11 + 12x + 3x^2}{x^2 + 4x + 4}$$

Find the maximum	value of a such that,	f(x) has an inverse.	

·	 	 	

b. Consider the function:

$$g:(a,\infty)\to\mathbb{R}, \quad g(x)=\frac{x^2+8x+18}{x^2+8x+16}$$

Find the minimum value of a such that, g(x) has an inverse.

Ľ.	Consider the function:

Find the minimum value of a such that, h(x) has an inverse.

 $h:(a,\infty)\to\mathbb{R},\quad h(x)=\frac{3x^2+6x-2}{x^2+2x+1}$

For each of the following semicircle functions, a domain restriction is given with an endpoint a.

Determine the minimum or maximum value of a such that, the inverse function exists.

a. Consider the semicircle function:

$$f: [-4, a] \to \mathbb{R}, f(x) = \sqrt{4 - (x+2)^2}$$

Find the minimum value of a such that, f(x) has an inverse.

b. Consider the semicircle function:

$$g:[a,4] \to \mathbb{R}, \qquad g(x) = 2 - \sqrt{8 + 2x - x^2}$$

Find the maximum value of a such that, g(x) has an inverse.

Ċ.	Consider the semicircle function.	
	$h: [-5, a] \to \mathbb{R},$	$h(x) = \sqrt{20 - 16x - 4x^2} + 1$

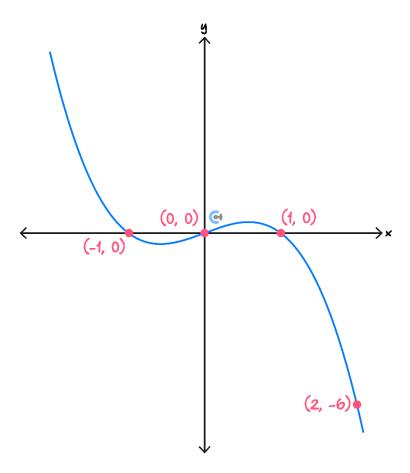
Find the maximum value of a such that, h(x) has an inverse.

Ouestion	32
Oucsuon	JZ

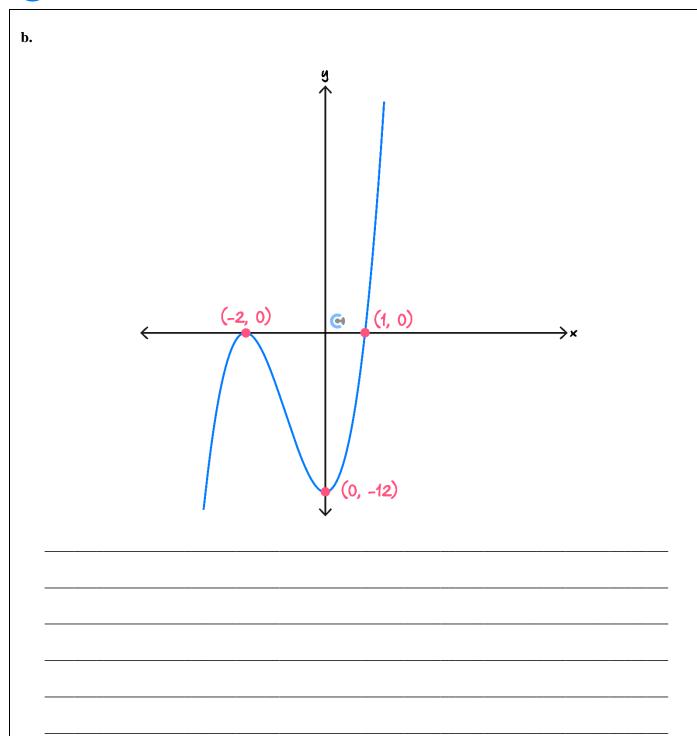
Consider the function:

$$f:[a,\infty)\to\mathbb{R}, \qquad f(x)=\frac{2x^2+8x+11}{5+4x+x^2}$$

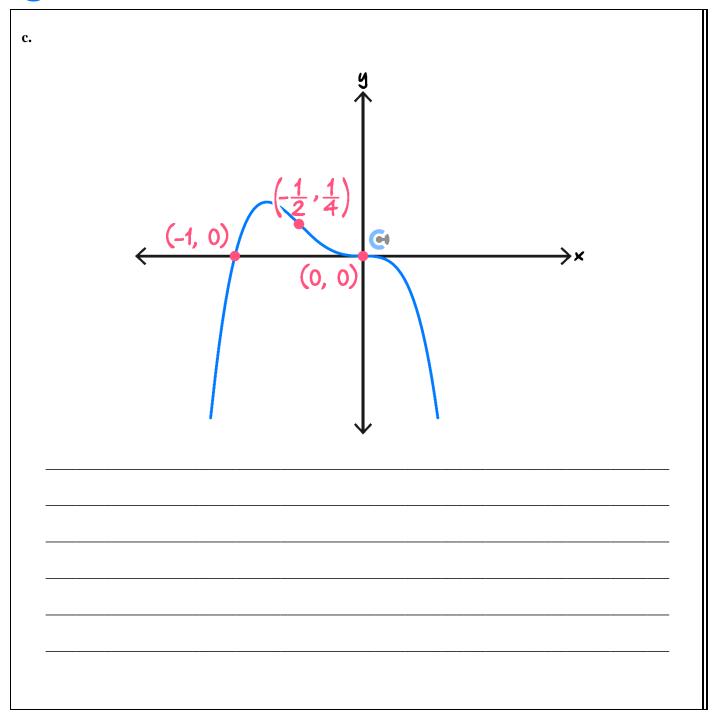
Find the maximum value of a such that, f(x) has an inverse.

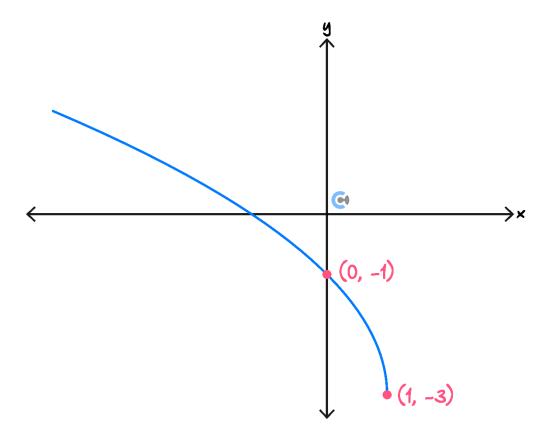


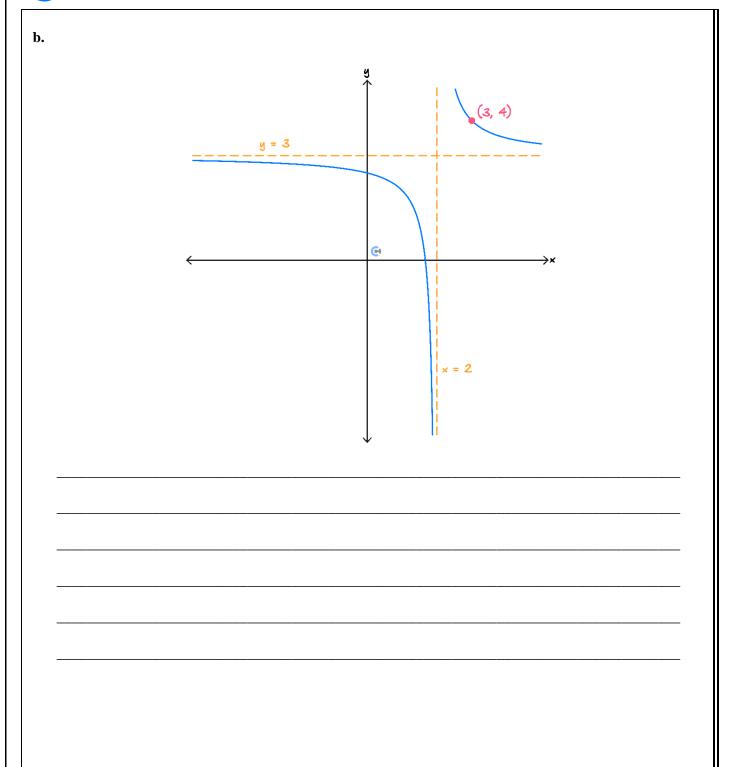
Sub-Section [2.3.2]: Figure Out Possible Rule of a Graph


Question 33

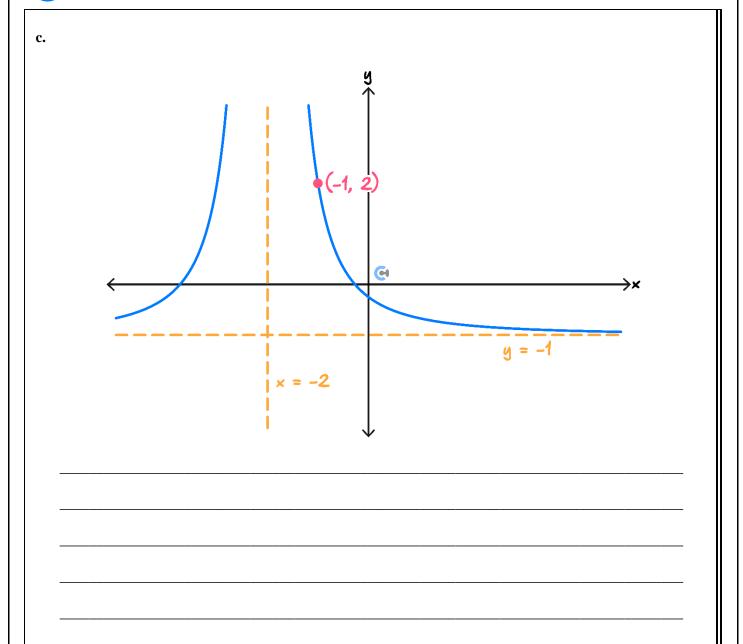
Determine a possible rule for the following graphs:

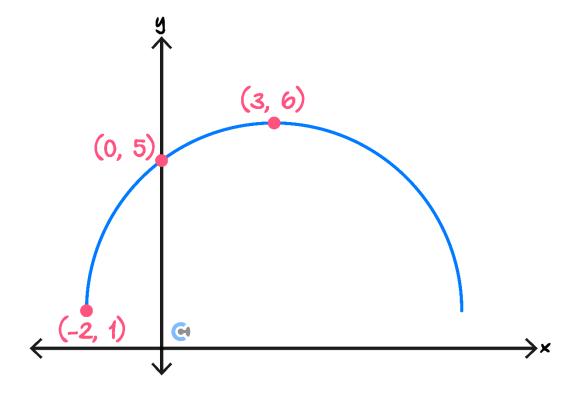

a.

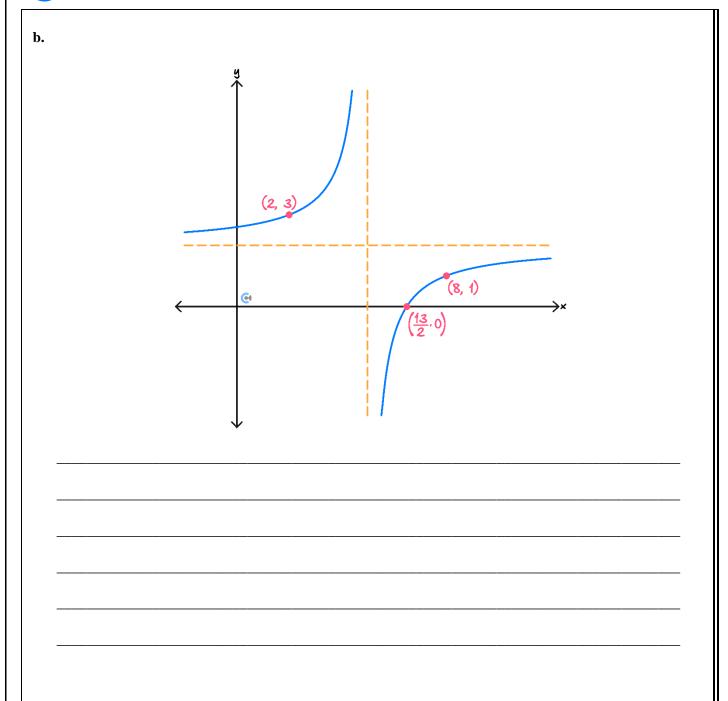




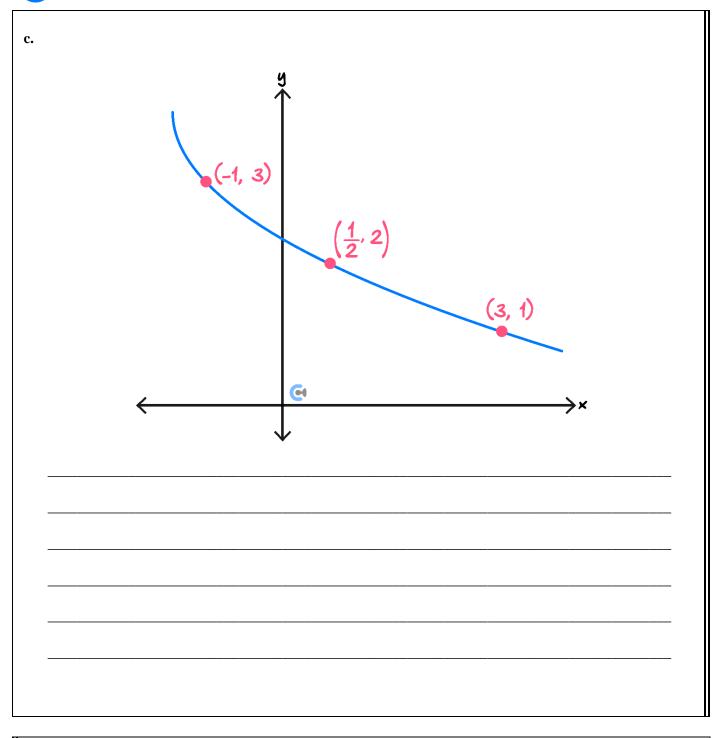
Determine a possible rule for the following graphs:

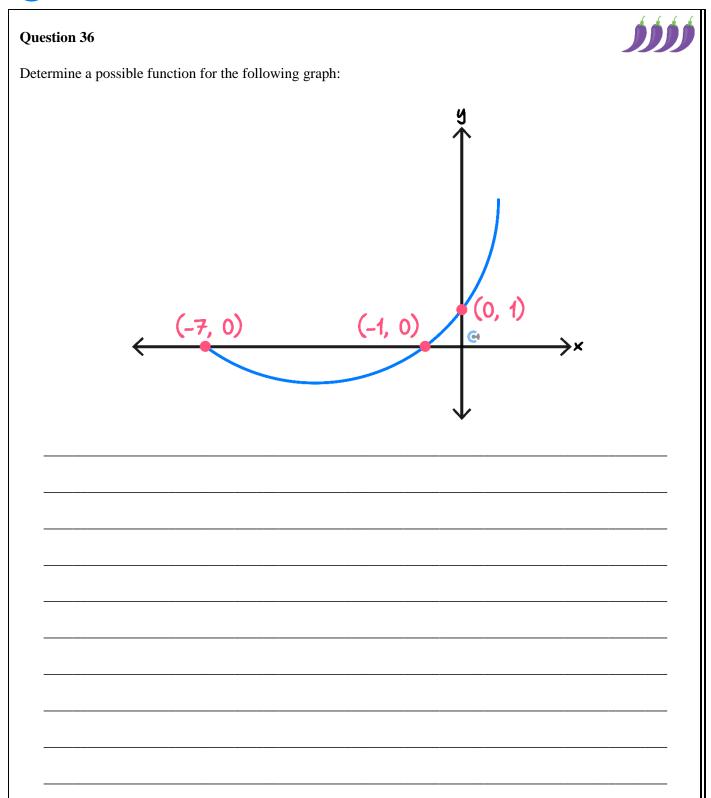

a.




زرر

Determine a possible rule for the following graphs:


a.



Sub-Section [2.3.3]: Solve Number of Solution Problems Graphically

Question	37	Tech-Active

Consider the function $f(x) = 4x^2 - 4x + 5$.

Determine the real values of k for which f(x) = k has two solutions.

Question 38 Tech-Active.

a. Two solutions.

Consider the function $f(x) = x^3 + 3x^2 - 9x + 2$.

Determine the real values of k for which f(x) = k has:

b.	Three solutions.

Question 39 Tech-Active.

a. Three solutions.

Consider the function $f(x) = x^4 - 8x^3 + 6x^2 + 40x - 14$.

Determine the real values of k for which f(x) = k has:

- **b.** Two solutions.

Question 40
Consider the function $f(x) = 3x^3 + k$.
Determine the real value of k for which $f(x) = f^{-1}(x)$ has three solutions.

Space for Personal Notes		

Section D: [2.4] - Transformations (Checkpoints)

Sub-Section [2.4.1]: Applying x' and y' Notation to Find Transformed Points, Find Interpretation of Transformations and Altered Order of Transformation

Qu	testion 41
Fir	d the coordinates of the image point for the following:
a.	The point (2, 3) undergoes a dilation by a factor of 6 from the <i>y</i> -axis, a reflection in the <i>x</i> -axis, followed by a translation 1 unit up.
b.	The point (1,5) undergoes a translation 2 units left, a dilation by a factor of $\frac{1}{4}$ from the <i>y</i> -axis, a translation 3 units up, followed by a reflection in the <i>x</i> -axis.
c.	The point $(-4,2)$ is dilated by a factor of 3 from the x -axis, translated 1 unit right, reflected in the x -axis, reflected in the y -axis, dilated by a factor of 2 from the y -axis and then translated 5 units down.

Question 42
Consider the sequence of transformations:
A dilation by a factor of $\frac{1}{2}$ from the <i>y</i> -axis.
\rightarrow A reflection in the <i>x</i> -axis.
A dilation by a factor of 6 from the <i>x</i> -axis.
A translation 4 units down.
A translation 1 unit right.
A translation 9 units up.
a. Rewrite the transformations in the order of a dilation, a translation, a dilation, a reflection and then a translation.

b.	Express the transformations as a sequence of two translations, followed by two dilations and a reflection.
•	Express the transformations in the order of a dilation, a translation, a dilation, a translation and then a
ι.	reflection.
Sp	ace for Personal Notes

The transformation T is defined as $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (5-2x,6y+1).

a. Evaluate T(-3,8).

b. Find the pre-image of (7, -35) under the transformation T.

c. Express T as a sequence of two translations, two dilations and a reflection.

d.	Identify a sequence of transformations that maps the point (-3.8) to the image of (-3.8) under T and also
•	maps the point $(1, -2)$ to the point $(23, -1)$.
_	
2b	ace for Personal Notes

לנונו

- **a.** Consider the transformation T described by:
- A translation 2 units left.
- \blacktriangleright A dilation by a factor of 3 from the *x*-axis.
- A dilation by a factor of $\frac{1}{4}$ from the y-axis.
- \rightarrow A reflection in the *x*-axis.
- A translation 1 unit up.
- A reflection in the line y = x.
- A translation 4 units right.
 - i. Apply *T* to the point (5,2).
 - ii. Express T as a sequence of 2 dilations followed by 2 reflections and then 2 translations.

b.	Consider the	transformation S	described by:
	Combiaci the	ti unibi offination b	accertaca cy.

- \blacktriangleright A dilation by a factor of 2 from the *x*-axis.
- A reflection in the y-axis.
- A dilation by a factor of $\frac{1}{3}$ from the y-axis.
- A reflection in the line y = 4.
- A translation 5 units down.
- A translation 1 unit right.
 - i. S can also be defined $S: \mathbb{R}^2 \to \mathbb{R}^2$, S(x,y) = (ax + b, cy + d). Find the values of a, b, c and d.

ii. Hence, evaluate S(-2,4).

	A point (x, y) undergoes the transformations T followed by S. Find the image point		
c.	c. A point (x, y) undergoes the transformations T followed by S . Find the image point.		
	·		
d.	Given that the image point from part c. is $(-4,6)$, find the pre-image.		
_ ا			
Sp	ace for Personal Notes		
1			

<u>Sub-Section [2.4.2]</u>: Find Transformed Functions

Question 45			
Find the resultant function when:			
a.	$y = x^2$ is dilated by a factor of 2 from the y-axis, reflected in the x-axis, translated 3 units up and translated 1 unit left.		
b.	$y = \frac{1}{x}$ is reflected in the y-axis, translated 3 units up, dilated by a factor of 2 from the x-axis, dilated by a factor of $\frac{1}{4}$ from the y-axis and translated 2 units right.		

c.	$y = \sqrt{x}$ is translated 3 units down, translated 5 units right, reflected in the <i>y</i> -axis, dilated by a factor of 3 from the <i>x</i> -axis, dilated by a factor of 2 from the <i>y</i> -axis, and reflected in the <i>x</i> -axis.

Find the resultant function when:

a.	$y = -2(x+5)^2 + 1$ is dilated by a factor of $\frac{1}{3}$ from the x-axis, translated 4 units right, translated 1 unit down, reflected in the y-axis and dilated by a factor of 2 from the y-axis.		

CONTOUREDUCATION

reflected in the y-axis, translated 4 units right, and dilated by a factor of $\frac{1}{4}$ from the x-axis.
4
$y = 4 - 2(x + 1)^3$ is translated 4 units right, dilated by a factor of 3 from the x-axis, reflected in the y-ax translated 5 units up, reflected in the x-axis and dilated by a factor of 2 from the y-axis.
translated 5 units up, reflected in the x -axis and unated by a factor of 2 from the y -axis.

Find the resultant function when:

a. $(x-2)^2 + (y+5)^2 = 9$ is dilated by a factor of 3 from the y-axis, reflected in the x-axis, translated 4 units up, translated 1 unit left and dilated by a factor of 3 from the x-axis.

b. $y = 2x^2 + 3x - 6$ is reflected in the *y*-axis, dilated by a factor of 4 from the *x*-axis, translated 5 units down, translated 1 unit right, dilated by a factor of $\frac{1}{2}$ from the *y*-axis.

CONTOUREDUCATION

c.	$x = -\sqrt{-y^2 + 6y + 15} + 4$ is translated 2 units down, dilated by a factor of 3 from the <i>x</i> -axis, reflected in the <i>y</i> -axis, translated 5 units left, dilated by a factor of $\frac{1}{4}$ from the <i>y</i> -axis, translated 5 units up, reflected in the <i>y</i> -axis and dilated by a factor of 2 from the <i>x</i> -axis.

Space for Personal Notes

- **a.** When the graph $y = 6 2(x + 1)^2$ undergoes the transformation T, described as:
- A translation 4 units right.
- A dilation by a factor of 2 from the *y*-axis.
- A translation 4 units down.
- A reflection in the y-axis.
- \blacktriangleright A dilation by a factor of 3 from the x-axis.

It is mapped onto an equation $y = a(x - h)^2 + k$, where $a, h, k \in \mathbb{R}$.

Find the values of a, h and k.

MM12 [2.0] - AOS 2 Revision - Contour Check (Part 1)

b.	The graph $y = 6 - 2(x + 1)^2$ can also be mapped to the same equation from part a ., by a sequence of 2 dilations, a reflection and 2 translations. Describe this sequence of transformations.
	diations, a reflection and 2 translations. Describe this sequence of transformations.
c.	Find the pre-image, that when undergoes the transformation T, results in the equation $y = 6 - 2(x + 1)^2$.

d.	The graph of $y = 6 - 2(x + 1)^2$ undergoes the transformation T , followed by a dilation by a factor of 2 from the x -axis, a reflection in the line $x = 6$, a reflection in the line $y = x$, and a translation 1 unit up. Find the
	image equation.
Sp	pace for Personal Notes

<u>Sub-Section [2.4.3]</u>: Find Transformations from Transformed Function (Reverse Engineering)

Question 49

Find the sequence of transformations that map:

a. $y = x^2$ to $y = -3(x+1)^2 + 7$.

h	$y = \frac{1}{x}$ to $y =$	$-\frac{3}{4}$
v.	y - y = 0	- _{- 2} - T U

	1	3 .
b.	y = - to y	= +
	x	5-2x

CONTOUREDUCATION

c. $y = \sqrt{x}$ to $y = 1 - \frac{\sqrt{4-3x}}{2}$.

Question 50

Find the sequence of transformations that map:

a. $y = 4(x+8)^3 - 5$ to $y = 5 - 2(6x-1)^3$.

CONTOUREDUCATION

b.	$y = 3\sqrt{16 - (x+1)^2} + 5$ to $y = 1 - 2\sqrt{16 - (3x+5)^2}$.

c. $y = \frac{3}{(4-2x)^2} + 7$ to $y = -\frac{6}{(x+1)^2} + 5$.

The transfor	rmation $T: \mathbb{R}^2 \to \mathbb{R}^2$	$\mathbb{R}^2, T(x, y) =$ Find the value	= (ax + b, y + a)	c) maps the equ	nation $y = 11$	$+5(x+3)^2$ or
The transfor	Thation $T: \mathbb{R}^2 \to 20(x-6)^2 + 9$	\mathbb{R}^2 , $T(x, y) = 0$. Find the value	= (ax + b, y + a $les of a, b and a$	c) maps the equ	nation $y = 11$	$+5(x+3)^2$ or
The transfor	Tmation $T: \mathbb{R}^2 \to 20(x-6)^2 + 9$	\mathbb{R}^2 , $T(x, y) = 0$. Find the value	= (ax + b, y + a) $les of a, b and a$	c) maps the equ	nation $y = 11$	$+5(x+3)^2$ or
The transfor	Traction $T: \mathbb{R}^2 \to \mathbb{R}^2 = 20(x-6)^2 + 9$	\mathbb{R}^2 , $T(x, y) = 0$. Find the value	= (ax + b, y + a) $les of a, b and a$	c) maps the equ	nation $y = 11$	$+5(x+3)^2$ or
The transfor	Traction $T: \mathbb{R}^2 \to \mathbb{R}^2 = 20(x-6)^2 + 9$	$\mathbb{R}^2, T(x, y) = 0$ The value of the valu	= (ax + b, y + a + b + a + b + b + a + b + b + b + b	c) maps the equ	nation $y = 11$	$+5(x+3)^2$ or
The transfor	Temation $T: \mathbb{R}^2 \to \mathbb{R}^2$ $= 20(x-6)^2 + 9$	\mathbb{R}^2 , $T(x,y) = 0$. Find the value	= (ax + b, y + a + b)	c) maps the equ	nation $y = 11$	$+5(x+3)^2$ or
The transfor	The remation $T: \mathbb{R}^2 \to \mathbb{R}^2 \to \mathbb{R}^2 = 20(x-6)^2 + 9$	\mathbb{R}^2 , $T(x, y) = 0$. Find the value	= (ax + b, y + a + b + a + b + a + b + a + b + a + b + a + b + a + b + a + b + b	c) maps the equ	nation $y = 11$	$+5(x+3)^2$ or
The transfor	rmation $T: \mathbb{R}^2 \to \mathbb{R}^2 = 20(x-6)^2 + 9$	\mathbb{R}^2 , $T(x, y) = 0$. Find the value	= (ax + b, y + aes of a, b and	c) maps the equ	nation $y = 11$	$+5(x+3)^2$ or

CONTOUREDUCATION

	and 2 reflections

Find the sequence of transformations that map:

a. $y = x^2 - 4x + 6$ onto $y = -2x^2 + 10x - 7$.

b. $y = 2\sqrt{(x+4)^2 + 1} - 5$ onto $y = 3 - \sqrt{(2x-6)^2 + 9}$.

CONTOUREDUCATION

-	 	 	

Section E: [2.5] - Transformations Exam Skills (Checkpoints)

<u>Sub-Section [2.5.1]</u>: Apply Quick Method to Find Transformations

Question 53	
Find the image of the graph of $y = x^2$ under the transformation, $T : \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (1 - 2x, y + 5)$.	
Question 54	
Describe a sequence of transformations that maps the graph of $y = x^3$ onto the graph of $y = 2(3x + 2)^3 - 3$.	
Space for Personal Notes	

Question 55
Find the image of the graph of $y = log_2(x)$ under the following sequence of transformations:
\rightarrow A dilation by a factor of 3 from the <i>x</i> -axis, followed by,
A translation of 2 units left and 3 units up, followed by,
➤ A reflection in the <i>y</i> -axis, followed by,
A dilation by a factor of 5 from the <i>y</i> -axis.
U

<u>Sub-Section [2.5.2]</u>: Find Opposite Transformations

Quest	tion 56
Descr	ribe a sequence of transformations that maps the graph of $y = 4(x-2)^2 - 3$ onto the graph of $y = x^2$.
_	
_	
Quest	tion 57
The tr $y = z$	ransformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = \left(2x+3, \frac{1}{3}y-4\right)$ maps the graph of $y = f(x)$ onto the graph of x^3 .
	the rule of f .
i iii c	
_	
_	
_	
_	
_	

Question 58
The following sequence of transformations maps the graph of f onto the graph of $y = \sqrt{x}$, for $x \in (2, \infty)$:
A dilation by a factor of 3 from the x -axis, followed by,
A translation of 2 units left and 4 units up, followed by,
A reflection in both the x -axis and the y -axis.
State the rule and domain of f .
Space for Personal Notes

<u>Sub-Section [2.5.3]</u>: Apply Transformations of Functions to Find its Domain, Range, Transformed Points

Question 59	j
The function $f: \mathbb{R} \to \mathbb{R}$ has a range of $[2, \infty]$.	
The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x, y) = (5 - 2x, 3 + y)$ maps the graph of f onto the graph of g . State the domain and range of g .	
Space for Personal Notes	

Question 60
The function $f:(-\infty,-1)\to\mathbb{R}$ has a range of $(-2,\infty)$.
Describe a sequence of transformations that maps the graph of f onto a graph of a function with a domain of $[0, \infty]$ and a range of $(-\infty, 2)$.
Space for Personal Notes

Question	61
Chiesiion	

Consider the function, $f: [-2, \infty] \to R$, $f(x) = 3\sqrt{x+2} - 5$.

The following sequence of transformations maps the graph of f onto the graph of g:

- \blacktriangleright A reflection in the x-axis, followed by,
- \blacktriangleright A dilation by a factor of 3 from the x-axis, followed by,
- A dilation by a factor of $\frac{1}{2}$ from the y-axis, followed by,
- A translation of 3 units up and 2 units left.

State the domain and range of *g*.

<u>Sub-Section [2.5.4]</u>: Find Transformations of Inverse Functions

Onestina (2
Question 62
Consider the function, $f: \mathbb{R}\{1\} \to \mathbb{R}$, $f(x) = \frac{2}{x-1} + 4$. The transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (x+a,y+b)$ maps the graph of f onto the graph of its inverse function. Find the values of a and b .

Question 63
Consider the one-to-one functions, $f(x)$ and $g(x)$. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (3-x,2y+7)$ maps the graph of f onto the graph of g .
Describe a sequence of transformations that maps the graph of f^{-1} onto the graph of g^{-1} .
- <u></u> -

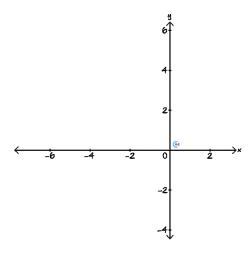
Question	64
Oucsuon	UT

Let $f: [1, \infty] \to \mathbb{R}$, $f(x) = 3x^2 - 6x + 8$ and $g: [-3, \infty] \to \mathbb{R}$, $g(x) = \sqrt{x + 3} + 4$.

Describe a sequence of transformations that maps the graph of f onto the graph of g^{-1} .

Question 65						
Describe a sequence of tra illation from the x -axis.	nsformations that m	nap the graph of	f(x) = 4(x - 3)	$(3)^2 + 5 \text{ to } g(x)$	$(x) = x^2$ with	out using
uestion 66						
) 2 0 . 40	1 () //	. 202	1.0 1.00		. •
ne using a dilation from t	$f(x) = x^2 - 8x + 10$ the x-axis and one u					
ne using a dilation from t						
ne using a dilation from t						
ne using a dilation from t						
ne using a dilation from t						
ne using a dilation from t						
ne using a dilation from t						
ne using a dilation from t						
ne using a dilation from t						
Consider the functions $f(x)$ ne using a dilation from the following $f(x)$.						

Question 67
Consider the functions $f(x) = x^2 + 6x + 7$ and $g(x) = 16x^2 - 32x + 6$. Find 2 different sequences of 3 transformations, one using a dilation from the <i>x</i> -axis and one using a dilation from the <i>y</i> -axis to map the graph of $f(x)$ to the graph of $g(x)$
f(x) to the graph of $g(x)$.
Space for Personal Notes

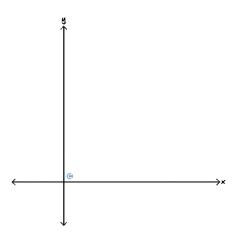


Section F: [2.1-2.5] - Exam 1 Questions (Checkpoints) (14 Marks)

Question 68

Let $f(x) = \frac{2x+6}{x+4}$ be defined on its maximal domain.

a. Sketch the graph of f(x) on the axes below. Label all asymptotes with their equations and axial intercepts with their coordinates.


b. State the domain and range of f^{-1} .

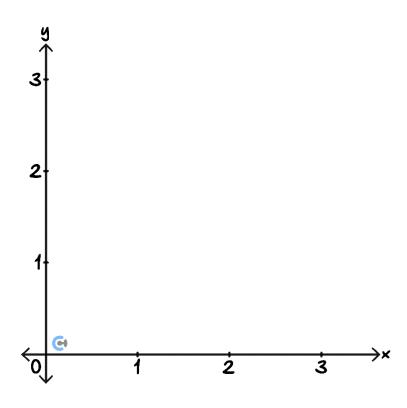
c. Find the values of x for which f(x) > 1.

Consider the function $f : \mathbb{R} \setminus \{h\} \to \mathbb{R}$, $f(x) = \frac{a}{(x-h)^2} + k$.

The graph of f is drawn below.

a. Show that a = -2, h = 2, and k = 5.

b. Find the maximal domain of $g(x) = \sqrt{4 - (f(x) - 1)^2}$.


Consider the function $f:[a,\infty)\to\mathbb{R}, f(x)=x^2-2x+2$.

a. Find the smallest value of a for which the inverse function of f, f^{-1} exists.

b. State the domain and range of f^{-1} .

points of intersection with their coordinates.

c. The graph of y = f(x) is drawn on the axis below, sketch the graph of $y = f^{-1}(x)$ on the same axis, labelling

d. Let $g: [1, \infty) \to \mathbb{R}, g(x) = (x - 1)^2 + k$.

i. Find the values of k for which $g(x) = g^{-1}(x)$ has no solutions.

ii. Find the values of k for which $g(x) = g^{-1}(x)$ has two solutions.

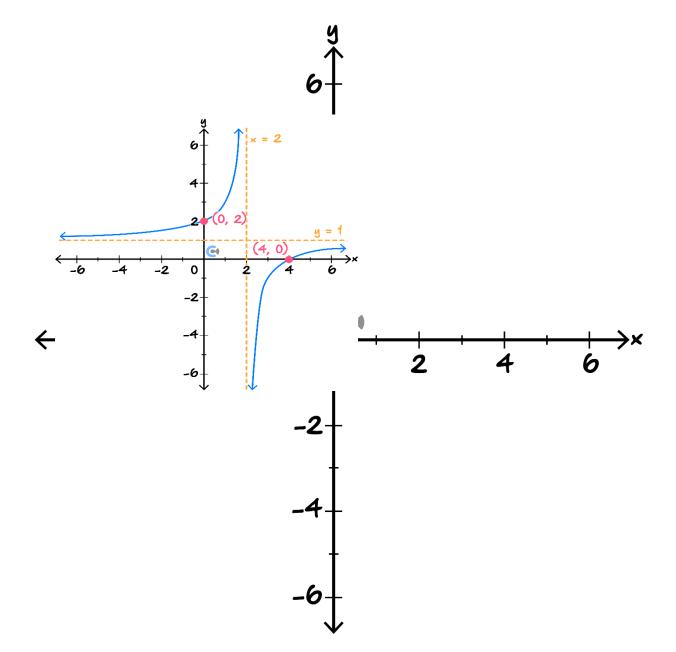
iii. Find the values of k for which $g(x) = g^{-1}(x)$ has one solution.

Consider the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x, y) = \left(\frac{1}{2}x - 3, 4y + 2\right)$.

- **a.** Find the image of the point (4, 1) under T.
- **b.** Write out what the transformation *T* does in the order DRT.

c. Find the image of the curve $y = x^3$ under the transformation T. Give your answer in the form $y = a(x+b)^3 + c$.

Qu	estion 72		
Co	Consider the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^2 - 16$.		
a.	Find the coordinates of all axes intercepts of f .		
b.	Let the graph of g be a transformation of the graph of f where the transformations have been applied in the following order:		
	1. Dilation by a factor of 2 from the <i>y</i> -axis.		
	2. Dilation by a factor of 3 from the x -axis.		
	3. Translation 6 units to the right.		
	Find the rule for $g(x)$.		
c.	State the coordinates of the axes intercepts of g .		


Question 73		
Consider the function $f(x) = 4\sqrt{3x+7} + 2$.		
Apply the following transformations to $f(x)$:		
1. Dilation by a factor of $\frac{1}{2}$ from the <i>x</i> -axis.		
2. Translated 3 units in the positive direction of the <i>y</i> -axis.		
3. Reflection in the <i>x</i> -axis.		
4. Translated 2 units in the negative direction of the <i>x</i> -axis.		
5. Dilated by a factor of 2 from the <i>y</i> -axis.		

Question 74 (4 marks)

a. Sketch the graph of $y = 1 - \frac{2}{x-2}$ on the axes below. Label asymptotes with their equations and axis intercepts with their coordinates. (3 marks)

b. Find the values of x for which $1 - \frac{2}{x-2} \ge 3$. (1 mark)

Question 75 (3 marks)
The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with rule $T(x, y) = (x + b, ay + c)$, where a, b , and c are integers, maps the graph of $y = 2 - 4x^3$ onto the graph of $y = 1 - 16(x - 2)^3$.
Find the values of a , b and c .

Space for Personal Notes		

CONTOUREDUCATION

Question 76 (3 marks)

Let $f: R \to R$, $f(x) = 2e^x + 1$ and let $g: (-2, \infty) \to R$, $g(x) = \log_e(x + 2)$.

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x+c,y+d) and let the graph of the function h be the transformation of the graph of the function g under T.

If $h = f^{-1}$, then find the values of c and d.

Question 77 (4 marks)

a. Let $f: R \setminus \left\{\frac{1}{3}\right\} \to R$, $f(x) = \frac{1}{3x-1}$.

Find the rule of f^{-1} . (2 marks)

b.	State the domain of f^{-1} . (1 mark)
c	Let g be the function obtained by applying the transformation T to the function f , where:
C.	Let y be the function obtained by applying the transformation T to the function f , where. $T(x,y) = (x+c,y+d)$
	and $c, d \in R$.
	Find the values of c and d given that $g = f^{-1}$. (1 mark)
	,

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45+ raw scores and 99+ ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-methods-consult-2025

