CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Polynomials Exam Skills [1.6]

Workbook

Outline:

Exam 1 Questions Pg 23-27 Pg 2-11 Recap **Tech Active Exam Skills** Pg 28-38 **Warmup Test** Pg 12-16 Apply Bisection Method to Approximate x-Intercepts Pg 17-22 Polynomials Exam Skills Iterative Process of Bisection Method Solve Polynomial Inequalities Solve Number of Solution Problems **Exam 2 Questions** Pg 39-42

Learning Objectives:

- MM12 [1.6.1] Solve polynomial inequalities.
- MM12 [1.6.2] Solve number of solution problems.
- MM12 [1.6.3] Apply bisection method to approximate x-intercepts.

Section A: Recap

Test

If you were here last week, skip to Section B Warmup Test.

Degree of Polynomial Functions

Degree = Highest Power of the Polynomial

Question 1

State the degree of each polynomial.

a.
$$x^3 - 4x^2 + 5x + 6$$

3

b.
$$3x + 5x^2 - x^7$$

7

Roots of Polynomial Functions

Roots = x-intercept

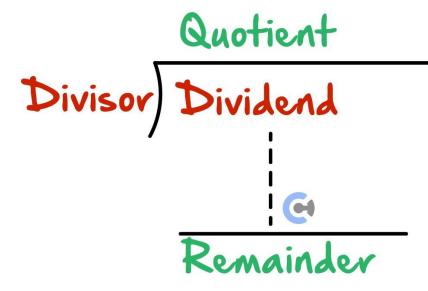
Question 2

Find the roots of the following polynomial:

$$(x-1)^2(x+3)^4$$

Polynomial Long Division

Division of polynomials:



$$\frac{\textit{Dividend}}{\textit{Divisor}} = \textit{Quotient} + \frac{\textit{Remainder}}{\textit{Divisor}}$$

Question 3

Simplify the following using polynomial long division:

$$\frac{x^3+x^2+2}{x-3}$$

$$\frac{x^{2}+4x+12}{x-3\sqrt{x^{3}+x^{2}+2}} = x^{2}+4x+12+\frac{38}{x-3}$$

$$\frac{-(x^{3}-3x^{2})}{4x^{2}+2}$$

$$-(4x^{2}-12x)$$

$$\frac{12x+2}{-(12x-36)}$$
38

TIP: Always remember to fill in any missing powers of x in the numerator or denominator with "placeholders" that have a coefficient of 0.

Remainder Theorem

Definition: Finds the remainder of long division without the need for long division.

When P(x) is divided by $(x - \alpha)$, the remainder is $P(\alpha)$

- > Steps:
 - **1.** Find x values, which makes the divisor equal to 0.
 - 2. Substitute it into the dividend function.

Question 4 (3b)

Find the remainder of the division, $\frac{f(x)}{g(x)}$, where, $f(x) = x^3 - 2x^2 + 3x + 1$ and g(x) = 2x + 4.

$$\frac{(kt-g(x)=0)}{2} = -8-8-6-6$$

$$= -21/1$$

Factor Theorem

For every *x*-intercept, there is a factor:

if
$$P(\alpha) = 0$$
 then, $(x - \alpha)$ is a factor of $P(x)$

Question 5 (30)

Determine if x + 2 is a factor of $P(x) = 2x^3 - 7x^2 + 7x - 2$.

ONTOUREDUCATION

Factorising Cubic Polynomials

- The steps are:
 - Find a single root by trial and error.

(Factor Theorem: Substitute into the function and see if we get zero.)

- Use long division to find the quadratic factor.
- Factorise the quadratic.

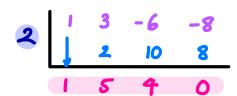
Question 6

Find all the roots of $f(x) = x^3 + 3x^2 - 6x - 8$.

Sub x=1:

$$f(1)=1+3-6-8=-10$$

: (x-2) is a factor



NOTE: When the question asks for all roots, you cannot just factorise and end it there!

Rational Root Theorem

Rational Root Theorem narrows down the possible roots.

$$Potential\ root = \pm \frac{Factors\ of\ constant\ term\ a_0}{Factors\ of\ leading\ coefficient\ a_n}$$

If the roots are rational numbers, the roots can only be $\pm \frac{factors\ of\ constant\ term\ a_0}{factors\ of\ leading\ coefficient\ a_n}$.

NOTE: All the roots are part of the suggestion given by the rational root theorem.

Ouestion 7

Find all the roots of $f(x) = 2x^3 - x^2 - 22x - 24$.

1. Finding a Single Root (RRT):

2. Synthetic Division:

= + \frac{\{1,2,3,4,6,8,12,24\}}{\{1,2\}} = \frac{1}{\{1},2,3,4,6,8,12,24,\frac{3}{2},\frac{3}{2}}

4 2 -1 -22 -24 8 28 24

Sub x=4:

 $f(4) = 2(4)^{3} - (4)^{2} - 22(4) - 24$ $= (28 - 16 - 88 - 24 \cdot 0)$

3. Factorise:

= (x-q)(2x²+7x+6) = (x-q)(2x+3)(x+2)

: (2-4) is a factor

4. Find Root:

Sum and Difference of Cubes

Co : x= 4, -3, -2

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Question 8

Factorise the following polynomial as much as possible:

$$8x^3 - 216$$

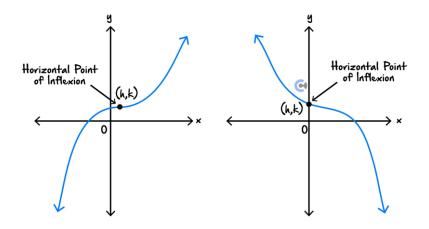
$$= 8(x^3 - 27)$$

$$= 8(x-3)(x^2 + 3x + 9)$$

CONTOUREDUCATION

Graphs of $a(x-h)^n + k$, Where n is an Odd Positive Integer

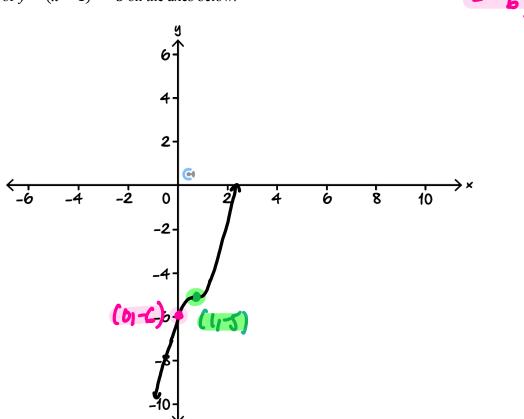
All graphs look like a "cubic".



- The point (h, k) gives us the stationary point of inflection.
- > n cannot be 1 for this shape to occur!

Question 9

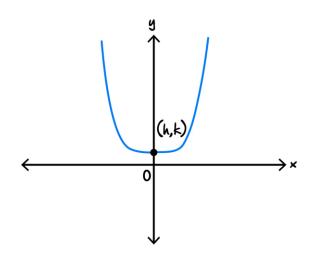
Sketch the graph of $y = (x - 1)^3 - 5$ on the axes below.

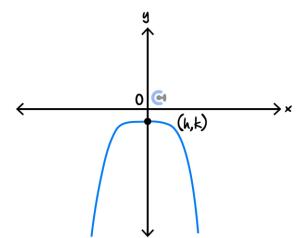


ONTOUREDUCATION

Graphs of $a(x-h)^n + k$, Where n is an Even Positive Integer

All graphs look like a "quadratic".

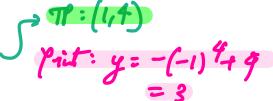


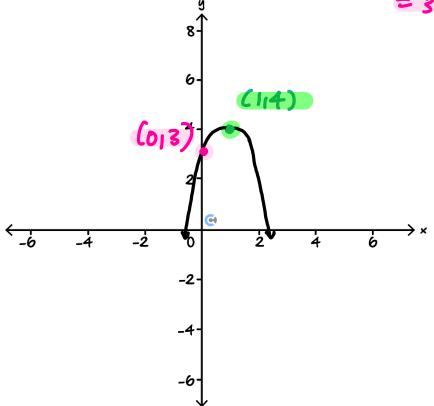


The point (h, k) gives us the turning point.

Question 10

Sketch the graph of $y = -(x - 1)^4 + 4$ on the axes below.





Graphs of Factorised Polynomials

- > Steps:
 - 1. Plot x-intercepts.

Space for Personal Notes

- **2.** Determine whether the polynomial is positive or negative.
- **3.** Use the repeated factors to deduce the shape.

Non-Repeated: Only x-intercept.

Even Repeated: *x*-intercept and a turning point.

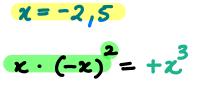
Odd Repeated: *x*-intercept and a stationary point of inflection.

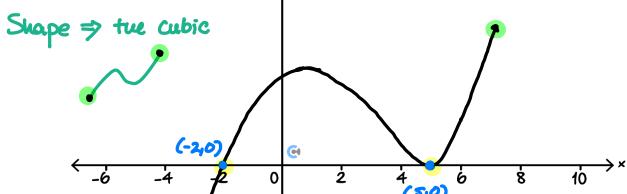
CONTOUREDUCATION

Question 11

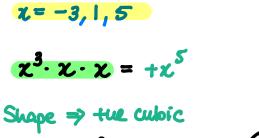
Sketch the graphs of the following functions on the axes provided. Ignore the y-axis scale.

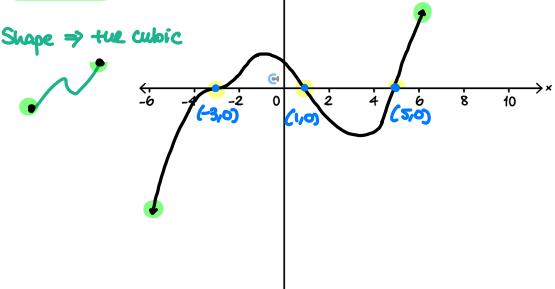
a.
$$y = (2 + x)(5 - x)^2$$





b.
$$y = (x+3)^3(x-1)(x-5)$$





Section B: Warmup Test

INSTRUCTION: 15 Marks. 15 Minutes Writing.

Question 12 (3 marks)

Consider the function $f(x) = x^3 + ax^2 + bx - 2$. If x - 1 is a factor of f(x) and the remainder of $f(x) \div (x - 2)$ is given by 12, find the value(s) of a and b.

$$\therefore f(1) = 0 \Rightarrow 1 + a + b - 2 = 0$$

$$\therefore f(2) = 12$$

$$a + b = 1$$

$$\dots 0$$

8+40+26-2=12

4a+2b = 6

2a+6=3 ...(

$$\frac{2a+b=3}{-(a+b=1)}$$

(:a=2) - : 2+6=1

Question 13 (3 marks)

Solve the following equation for x:

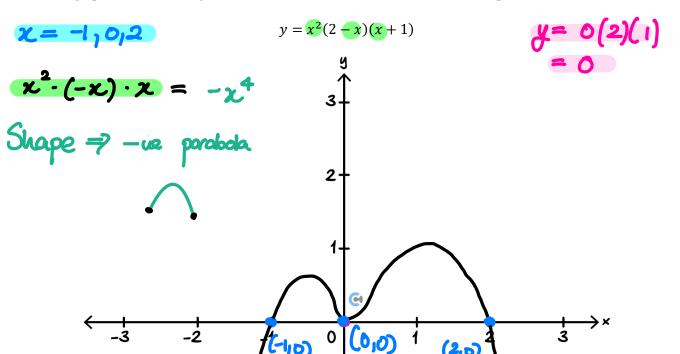
$$2x^3 - 5x^2 = 4x - 3$$

1. Finding a Single Root (T4E):

$$\frac{1}{10} = 2 - 5 - 4 + 3 = -4$$
 2. Synthetic Division:

Question 14 (3 marks)

Sketch the graph of the following function on the axes below. Label all axis intercepts with their coordinates.



Question 15 (6 marks)

Consider the function $f(x) = 2x^3 - 3x^2 - ax + 2$.

It is known that the remainder, when f(x) is divided by x - 3, is 20.

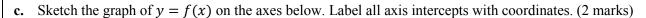
a. Show that $\alpha = 3$. (1 mark)

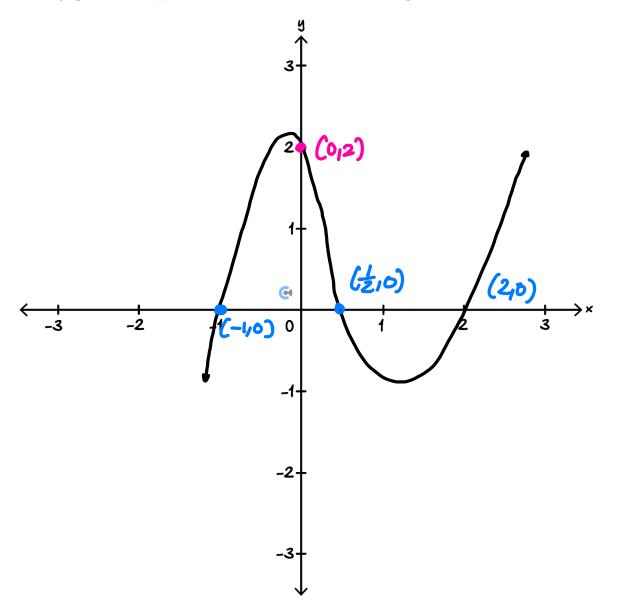
::
$$R = f(3) = 20$$

 $f(3) = 2(27) - 3(9) - 3a + 2 = 20$
 $54 - 27 - 3a = 18$

b. Hence, solve f(x) = 0. (3 marks)

1. Finding a Single Root (T4E): Sub x=1: f(1) = 2-3-3+2 = -2Sub x=-1: f(-1) = -2-3+3+2 = 02. Subtatic Division: f(-1) = -2-3+3+2 = 03. Factorize: = (x+1)(2x-1)(x-2) $\therefore x = -1/\frac{1}{2}/2$



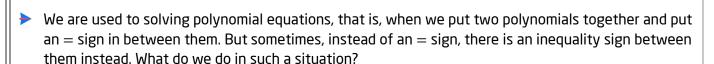


Space for Personal Notes
$$x = -1, \frac{1}{2}, 2$$
 $+2x^3$ Shape \Rightarrow the cubic \nearrow

Section C: Polynomials Exam Skills

Sub-Section: Solve Polynomial Inequalities

Context

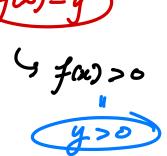


Exploration: Meaning of a Polynomial Equality

- The 'value' of a polynomial is the y value on the graph.
- ightharpoonup Hence, the equation f(x) > 0 means find where the y values are positive.

Solving the Polynomial Inequality f(x) > 0

- Steps:
 - 1. Find the *x*-intercepts.
 - 2. Sketch the polynomial.
 - **3.** Shade the places where the *y*-values are positive.



ONTOUREDUCATION

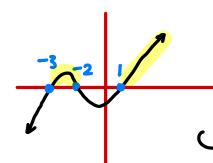
Question 16 Walkthrough.

Solve the following inequality for x:

$$x = 1, -2, -3$$

$$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} = +\mathbf{x}^3$$

$$(x-1)(x+2)(x+3) > 0$$



Sometimes, we have to factorise or move everything to one side.

Question 17 Walkthrough.

Solve the following inequality for x:

$$2x^3 + x^2 - 5x + 4 > 2$$

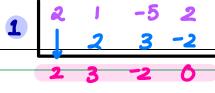
$$2x^3 + x^2 - 5x + 2 > 0$$

1. Finding a Single Root (T4E):

Sub x=1:

$$f(1)=2+1-5+2=0$$

: (x-1) is a factor



 $(x-1)(2x^2+3x-2)$

(x-1)(2x-1)(x+2)

·: といりま,-2

Active Recall: The 'value' of f(x) is its

: xt (-2, \frac{1}{2})U(1, \infty

or -2< x< \frac{1}{2} or x>1 (18

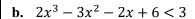
CONTOUREDUCATION

Question 18

Solve the following polynomial inequalities for x.

a.
$$(3-x)(x+4)(x-2) \ge 0$$

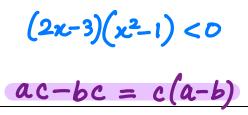
$$(-x) \cdot z \cdot x = -x^3$$

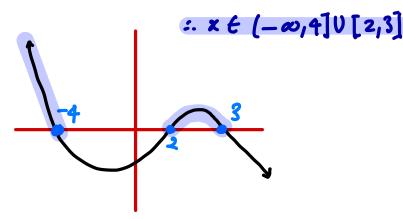


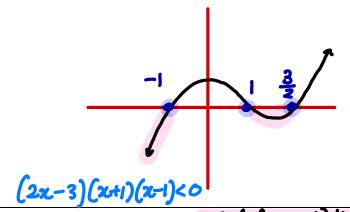
$$2x^3-3x^2-2x+3<0$$

$$\chi^{2}(2\chi-3)-1(2\chi-3)<0$$

$$(2x-3)(x^2-1) < 0$$







~ xf (-00,-1) U(1,3)

Sub-Section: Solve Number of Solution Problems

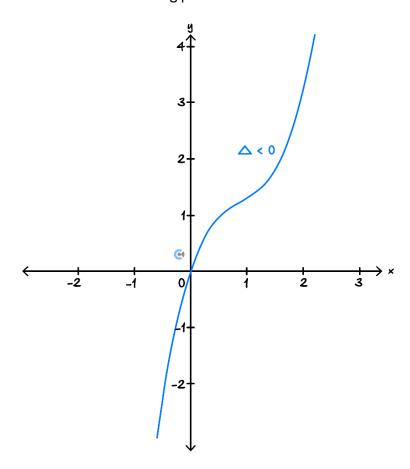
When we can factorise a cubic, we can use the discriminant of the remaining quadratic to figure out a number of solutions.

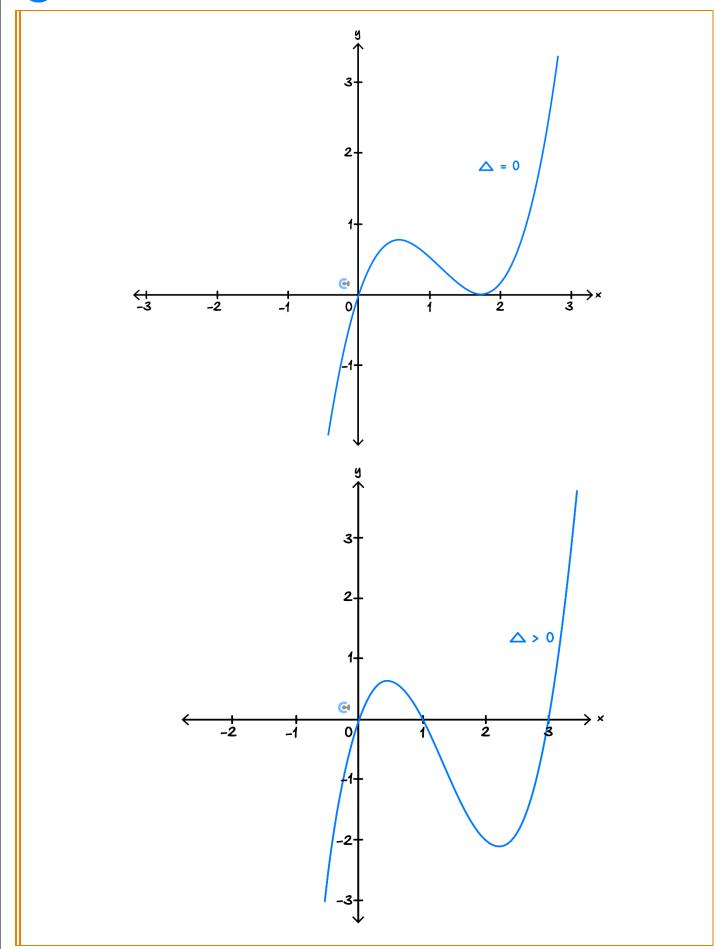
When does a cubic have n solutions?

- Steps:
 - **1.** Factorise out the *x* term.
 - **2.** Since the x term gives 1 solution, use discriminant to find when the quadratic has n-1 solutions.

Exploration: What Does the Discriminant Control in a Cubic?

The discriminant controls where the turning point is!





Question 19 Walkthrough.

Consider $f(x) = x^3 - kx^2 + 3x$.

Find the value(s) of k such that f(x) = 0 has 2 solutions.

$$\frac{f(x) = 0:}{x^3 - kx^2 + 3x = 0}$$

$$x (x^2 - kx + 3) = 0$$

$$x (x^2 - kx + 3) = 0$$

$$x (x^2 - kx + 3) = 0$$

$$\Delta = (-k)^{2} - 4(1)(3) = 0$$

$$k^{2} - 12 = 0$$

$$k^{2} - 12$$

$$k = \pm \sqrt{12} = \pm 2\sqrt{3}$$

Active Recall: Finding Number of Solutions for a Factorisable Cubic

- Break the cubic down into a <u>linear</u> factor and a <u>quadratic</u> factor.
- Use the _______ to determine the number of solutions you want the quadratic factor to have.

Question 20 Walkthrough.

Consider $f(x) = x^3 - 3kx^2 + 4x$. Find the values of k such that f(x) = 0 has 3 solutions.

$$f(x) = 0:$$

$$x^{3} - 3kx^{2} + 4x = 0$$

$$x(x^{2} - 3kx + 4) = 0$$

$$(1) + (2) = 3$$

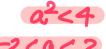
$$\frac{470:}{(-3k)^{2}-4(1)(4)>0}$$

$$9k^{2}-1670$$

$$k^{2}>\frac{16}{9}$$

$$k^{2}>\frac{16}{3} \text{ or } k<\frac{-4}{3}$$

MM12 [1.6] - Polynomials Exam Skills- Workbook



a2>4

Section D: Exam 1 Questions (16 Marks)

Question 21 (3 marks)

Consider the function $f(x) = 8x^3 - 216$.

a. Express f(x) in the form $a(x-b)(x^2+cx+d)$ for positive real numbers a,b,c, and d. (2 marks)

$$f(x) = 8(x^{3}-27)$$

$$= 8(x-3)(x^{2}+3x+9)_{4}$$

b. Hence, explain why x = b is the only solution to the equation f(x) = 0. (1 mark)

$$f(x) = 8(x-3)(x^{2}+3x+9)$$

$$x=3 \qquad \longrightarrow \Delta = (3)^{2}-4(1)(9)$$

$$= 9-36$$

$$= -27$$

Question 22 (3 marks)

Solve the inequality $2x^3 - 18x < 3x^2 + 8$ for x.

$$2n^3 - 3n^2 - 18n - 8 < 0$$

$$\frac{340 \times 2}{1(-2) - 2(-8) - 3(4) + 36 - 8} = (x+2)(2x^2 - 7x - 4)$$

$$= -16 - 12 + 28 = 8 = (x+1)(x+1)(x-4)$$

2. Synthetic Division:

3. Factorise:

Question 23 (5 marks)

Consider $f(x) = 2x^3 + 4kx^2 + 12x$, where k is a real constant. Find the values of k such that f(x) = 0 has:

a. One solution. (3 marks)

$$2x^3 + 4kx^2 + 12x = 0$$

$$2x\left(x^2+2kx+6\right)=6$$

$$\Delta = (2k)^2 - 4(1)(6) < 0$$

-56 CK C 56

b. Two solutions. (1 mark)

$$\triangle = 0$$

$$k^2 = 6 \Rightarrow \therefore k = \pm \sqrt{6}$$

c. Three solutions. (1 mark)



(1)

Question 24 (5 marks)

Consider the quadratic polynomial:

$$f(x) = x^5 + ax^4 + bx^3 - x^2 + 4x - 4$$

Where a and b are real constants.

- \rightarrow x-2 is a factor of f(x).
- When f(x) is divided by x 1 the remainder is -1.
- **a.** Show that a = -3 and b = 2. (2 marks)

$$R = f(2) = 0 = f(2) = 32 + 16a + 8b - 4 + 8 - 4 = 0$$

$$R = f(1) = -1$$

$$32 + 16a + 8b = 8$$

$$16a + 9b = -22$$

$$f(1) = 1+a+b-1+4-4=-1$$
 $2a+b=-4$...(1)

$$2a+b=-4$$

$$-(a+b=-1)0$$

$$\begin{array}{c} 2 = -3 \\ -3 + 6 = -1 \\ 2 \\ \end{array}$$

CONTOUREDUCATION

b. Write the function $g(x) = \frac{f(x)}{x^2 - x - 2}$ in the form $g(x) = C(x) + \frac{B}{x + d}$.

Where C(x) is a cubic polynomial and B, d are real constants. (3 marks)

$$\frac{f(x)}{x^2-x-2} = \frac{x^5-3x^4+2x^3-x^2+4x-4}{(x-2)(x+1)}$$

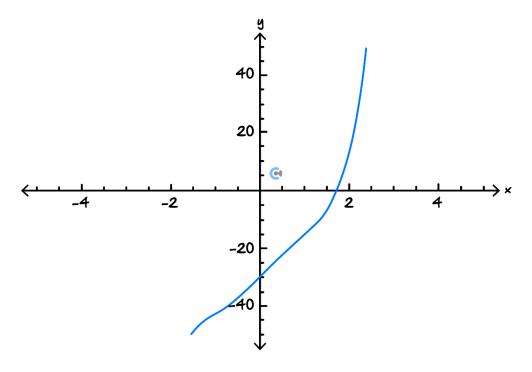
$$= \frac{(x/2)(x^4-x^3-x+2)}{(x/2)(x+1)} = \frac{x^4-x^3-x+2}{x+1}$$

Section E: Tech Active Exam Skills

Sub-Section: Apply Bisection Method to Approximate *x*-Intercepts

Context: Bisection Method

- We know how to solve the equation $x^2 4 = 0$ easily.
- We've also learnt how to solve the cubic equations using factor theorem as well.
- What if the equation is too hard to solve?



$$x^5 - 3x^3 + x^2 + 16x - 30 = 0$$

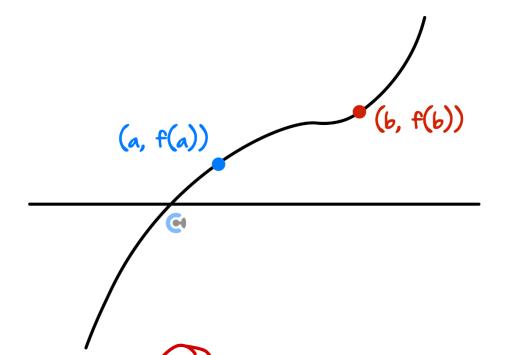
Bisection method can be used to approximate the answer to any polynomial equations.

<u>Discussion:</u> How do we tell if two points are on the opposite side of the x-axis (one below and one above the x-axis)?

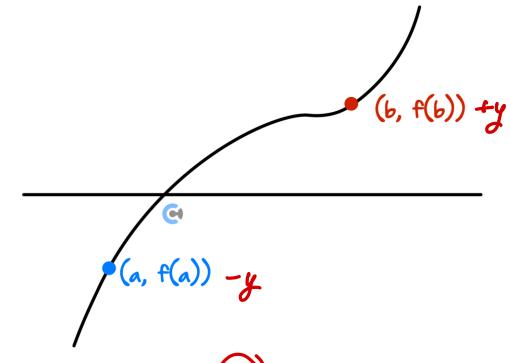
above x-axis: +y below x-oxis: -y

Exploration: Identifying Whether Two Points are on the Opposite Side of the x-Axis

Consider the two points that are on the same side of the x-axis.

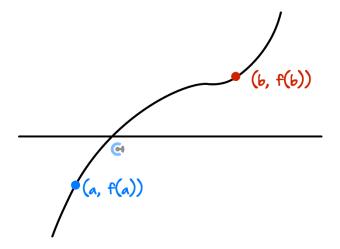


- What does $f(a) \times f(b)$ give us? **positive, legative**]
- Now consider the two points that are on the **opposite** side of the x-axis.



What does $f(a) \times f(b)$ give us? [positive, regative]

Identifying Whether Two Points are on the Opposite Side of the x-Axis



$$f(a) \times f(b) =$$
Negative

Question 25

Consider the function $f(x) = x^3 - x - 3$.

a. Identify whether the function is on the opposite side of the x-axis for x = -2 and x = 2.

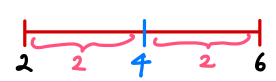
$$f(-2) = -8+2-3$$
 $f(2) = 8-2-3$
= -9 = 3

:. k=-2 and k=2 are on opposite sides of the x-oxis

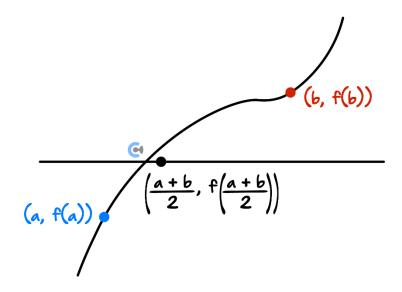
b. Hence, give a possible range of values where the *x*-intercept could be.

Discussion: What does it tell us when two points are on the other side of the axis?

<u>Discussion:</u> Let's say $f(2) \times f(6) = \text{Negative}$. How could we estimate the *x*-intercept of f(x)?



Estimating x-Intercept



if
$$f(a) \times f(b) =$$
Negative

x-intercept $\in (a, b)$

$$x$$
-intercept $\approx \frac{a+b}{2}$

We simply find the average.

CONTOUREDUCATION

Question 26

Consider the function $f(x) = x^3 - x - 3$.

a. Identify whether the function is on the opposite side of the x-axis for x = -2 and x = 2.

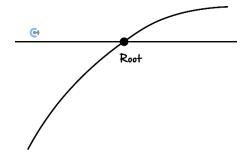
b. Hence, find an estimation of the x-intercept.

<u>Discussion:</u> Is this process perfect? How can we improve it?

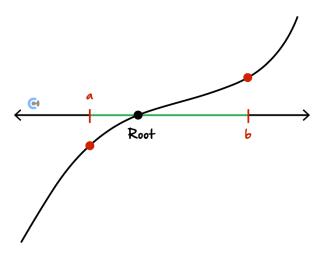
Sub-Section: Iterative Process of Bisection Method

Let's look at how we can do this iteratively!

Exploration: Consider the Function Below

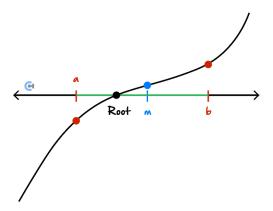


Step 1: Pick a random interval [a, b] where $f(a) \times f(b) = \text{Negative}$.



- We need $f(a) \times f(b) = \text{Negative to ensure there is an } x \text{-intercept}$
- We are picking an appropriate range to begin with. It's a

Step 2: Find a midpoint to estimate the root.



where
$$m = \frac{a+b}{2}$$

We can say that the estimation of the root is given by the \underline{a}

Step 3: Create a new interval [a, b] by making m either new a or new b.

➤ How can we algebraically tell?

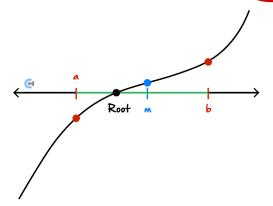
If
$$f(a) \times f(m) < 0$$

New Interval: (a, m)

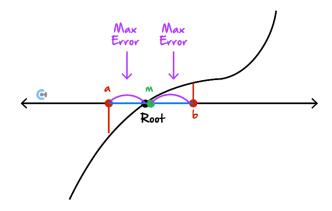
If
$$f(b) \times f(m) < 0$$

New Interval: (b, m)

Considering the diagram below, where would our new interval be ((a, m), (m, b))



Step 4: Repeat until the interval becomes short enough for good accuracy.



If
$$\frac{b-a}{2}$$
 < Max Tolerance

We Stop

- The maximum error we can make is the distance between ____ and the _____.
- Maximum error is ______ of the width of the interval.

$$\mathsf{Max}\;\mathsf{Error}=\tfrac{b-a}{2}$$

Bisection Method

- > Step 1: Pick a random interval [a, b] where $f(a) \times f(b) = \text{Negative}$.
- Step 2: Find a midpoint to estimate the root.

where
$$m = \frac{a+b}{2}$$

Step 3: Create a new interval [a, b] by making m either new a or new b.

If
$$f(a) \times f(m) < 0$$

New Interval: [a, m]

If
$$f(b) \times f(m) < 0$$

New Interval: [m, b]

- Step 4: Repeat until the interval becomes short enough for good accuracy.
 - \bullet The smaller the interval [a, b], more accurate our estimation gets.

If
$$\frac{b-a}{2}$$
 < Max Tolerance

We stop

Maximum error is half of the width of the interval.

$$\mathsf{Max}\;\mathsf{Error}=\tfrac{b-a}{2}$$

CONTOUREDUCATION

Question 27 Walkthrough. Tech-Active.

The equation $x^3 + 12x + 12 = 0$ has one real solution, which lies in the interval [-1,0]. Approximate the solution using the bisection method with a maximum error of 0.2.

Max Emr S 0.2.

0-121 2 0-121 3 0-25

- Midpoint
- 2) Max Error < Tolerance? ⇒ End!</p>

2-int estimate = $-\frac{7}{8}$

0.5

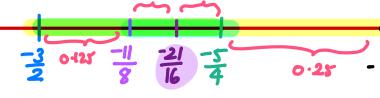
3) New Interval

NOTE: We always pick the interval such that $f(a) \times f(b) = \text{Negative} \rightarrow x$ -intercept is between a and b.

Your turn!

Question 28 Tech-Active.

The equation $x^3 + 3x + 6 = 0$ has one real solution, which lies in the interval [-2, -1]. Approximate the solution using the bisection method with a maximum error of 0.1.



- · 1 Midpoint
- 2 Max Error < Tolerance? → End!

0.5

(3) New Interval

-5.87500

NOTE: Keep going until the length of the interval is less than $2 \times \text{maximum error}$.

TI UDF

Bisection Method

Overview:

Apply the bisection method to a function to approximate x intercepts.

Input:

bisection(<function>, <variable>, <lower bound>, <upper bound>)

Other notes:

- The program will ask for the threshold type to terminate the algorithm.
- Select None [0] to provide a specific number of iterations
- Select x [1] to provide a threshold for b-a, after which the program will stop if b-a becomes smaller than the threshold.
- Select y[2] to provide a threshold for |f(b)-f(a)|, after which the program will stop if |f(b)-f(a)| becomes smaller than the threshold.

Section F: Exam 2 Questions (16 Marks) (5min MCG) (9min ERG)

Question 29 (1 mark)

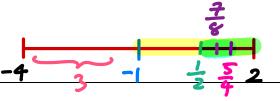
The equation $5x^3 + 2x - 8 = 0$ has one real solution, which lies in the interval [-4, 2]. Approximate the solution using the bisection method with a maximum error of 0.4. What is the approximate solution?

A. $x \approx 0.675$

B. $x \approx 1.925$

C. ≈ 0.875

D. $x \approx 1.225$

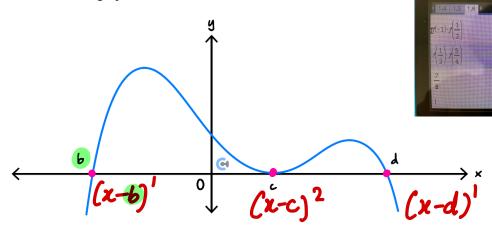


Estimate	Max Error
1	3
<u>'</u>	1.5
भिष	0.75
(2)	0-375

27.19336

Question 30 (1 mark)

The rule for a function with the graph below could be:



$$y = -2(x+b)(x-c)^{2}(x-d)$$

$$y = 2(x+b)(x-c)^2(x-d)$$

C.
$$y = -2(x-b)(x-c)^2(x-d)$$

$$y = 2(x - b)(x - c)(x - d)$$

$$-3 \Rightarrow (x-(-3))$$

ONTOUREDUCATION

Question 31 (1 mark)

The polynomial $x^3 + ax^2 + bx + 4$ is perfectly divisible by x - 1 and has a reminder of 3 when divided by x + 2. The values (a, b) are:

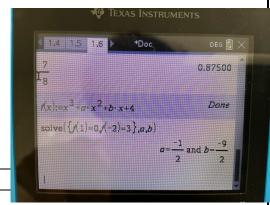
A. (-1,4)

 $f(x) = x^3 + ax^2 + bx + 4$

C. $\left(-\frac{3}{5}, -\frac{5}{2}\right)$

£(-2) = 3

D. $\left(-\frac{7}{2}, \frac{3}{2}\right)$



Question 32 (1 mark)

The equation $x^3 - 5kx^2 + 4x = 0$ has exactly two solutions when:

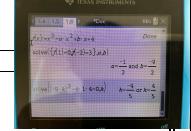
(A.) $k = \pm \frac{4}{5}$

 $\chi \left(x^2 - 5kx + 4 \right)$ **B.** $-\frac{4}{5} < k < \frac{4}{5}$

= (2) (1)

C. $k > \frac{4}{r}$

D. $k < -\frac{4}{5}$



Question 33 (1 mark)

A graph with the rule $f(x) = \frac{1}{3}x^3 - x^2 + c$, where c is a real number, has three distinct x-intercepts.

All possible values of *c* are:

 $f. c > \frac{4}{3} \longrightarrow Try C= 2?$

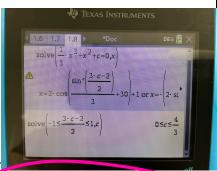
TAE

E. $-\frac{4}{3} < c < 0$ — Try C=-1?

(c) $0 < c < \frac{4}{3}$ — Try c=1?

b. $c < \frac{4}{3}$

pesh Method:



Dom Sin (x) F[-1,1]

Question 34 (11 marks)

Consider the cubic polynomial $f(x) = x^3 - 3x^2 - 3x - 4$.

a. Explain why f(x) has a root between x = 3 and x = 5. (1 mark)

f(3) = f(5) =

b. Write f(x) in the form f(x) = (x - a) Q(x) where a > 0 and Q(x) is a quadratic function. (1 mark)

Use "Factor" on CAS

c. Find the values of k for which the equation $x^3 - 3x^2 + kx - 4x - 4k = 0$ has three solutions. (2 marks)

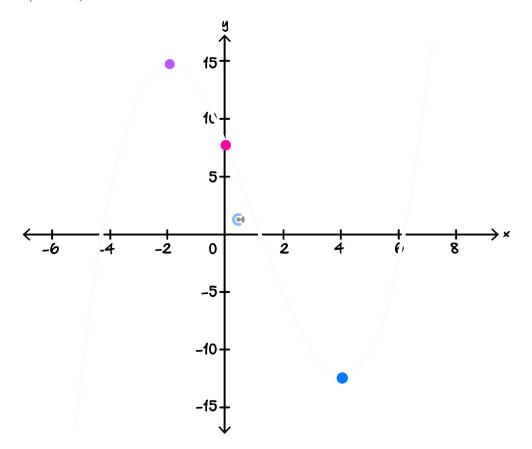
Use Factor on CAS:	2 Solve f(x) =0:

Consider the function $g(x) = \frac{1}{4}(x^3 - 3x^2 - 24x + 32)$.

d. Solve the equation g(x) = 0. Give your answer correct to two decimal places. (1 mark)

CONTOUREDUCATION

e. Sketch the graph of y = g(x) on the axes below. Label all turning points and the y-intercepts with coordinates. (3 marks)



- **f.** Find the values of k such that g(x) + k = 0 has:
 - i. One solution. (2 marks)

$$\underbrace{(1) \quad g(x) = -k} \qquad \underbrace{(2) \quad g(x) + k = 0 \quad (x-iut)}$$

$$\underbrace{(2) \quad g(x) + k = 0 \quad (x-iut)}$$

ii. Three solutions. (1 mark)

$$\frac{1}{y=g(x)} = -k$$

$$\frac{2}{y=g(x)+k} = 0 \quad (x-int)$$

Contour Check

<u>Learning Objective</u>: [1.6.1] - Solve Polynomial Inequalities

Key Takeaways

- The 'value' of f(x) is its ____ value.
- f(x) > 0 means find the x values for which the y values are _____

Learning Objective: [1.6.2] - Solve Number of Solution Problems

Key Takeaways

■ When a cubic has n roots, the quadratic factor has n-1 roots.

<u>Learning Objective:</u> [1.6.3] - Apply Bisection Method to Approximate x-Intercepts

Key Takeaways

When two points are on the opposite of the axis, there is an x-intercept the two points.

- When applying the bisection method over [a,b], if $f(a) \times f(m) < 0$ then m becomes the new bound.
- ☐ If $f(b) \times f(m) < 0$ then f becomes the new _____ bound.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-methods-consult-2025

