

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Polynomials Exam Skills [1.6]

Homework Solutions

Homework Outline:

Compulsory Questions	Pg 2 – Pg 25	
Supplementary Questions	Pg 26 – Pg 47	

Section A: Compulsory Questions

<u>Sub-Section [1.6.1]</u>: Solve Polynomial Inequalities

Question 1

Solve the following inequalities for x:

a. (x-5)(x+2)(x-1) > 0

-2 < x < 1 or x > 5

b. (x-1)(2-x)(x+3) < 0

-3 < x < 1 or x > 2

Solve the following inequalities for x:

a. $x(x^2 - 4x + 6) > 0$

x > 0

b. $(3-x)(x^2-5x+4) < 0$

1 < x < 3 or x > 4

Ouestion	3
Oueshon	J

Solve the following inequalities for x:

a.
$$x^3 - x^2 - 14x + 24 \le 0$$

Factor as (x-2)(x-3)(x+4). Therefore $x \le -4$ or $2 \le x \le 3$

MM12 [1.6] - Polynomials Exam Skills - Homework Solutions

b. $2x^3 - 7x^2 - 33x + 18 > 0$

Factor as $2\left(x-\frac{1}{2}\right)(x+3)(x-6)$

Therefore $-3 < x < \frac{1}{2}$ or x > 6.

<u>Sub-Section [1.6.2]</u>: Solve Number of Solution Problems

Question 4

Find the values of k, for which the equation $x^3 + 3kx^2 + 9x = 0$ has:

a. 1 solution.

Only solution is x=0 if the discriminant of the quadratic $x^2+3kx+9$ is less than 0. Therefore -2 < k < 2

b. 2 solutions.

 $k = \pm 2$

c. 3 solutions.

k < -2 or k > 2

Find the values of k, for which the equation $x^3 + 3x^2 - 4kx = 0$ has:

a. 1 solution.

Only solution is x=0 if the discriminant of the quadratic $x^2+3x-4k$ is less than 0. Therefore $k<-\frac{9}{16}$

b. 2 solutions.

$$k = -\frac{9}{16} \text{ or } k = 0$$

c. 3 solutions.

 $-\frac{9}{16} < k < 0 \text{ or } k > 0$

Find the values of k, for which the equation $(x^2 - 4kx + 8)(x^2 - 4x + 4k) = 0$ has:

a. 4 solutions.

We require the discriminant for both quadratics to be greater than zero.

$$\Delta_1 = 16k^2 - 32$$

$$\Delta_2 = 16 - 16k$$

Therefore $k < -\sqrt{2}$ or $k > \sqrt{2}$ and k < 1. So 4 solutions if $k < -\sqrt{2}$

b. 3 solutions.

One discriminant is zero and the other is greater than zero.

$$k = \pm \sqrt{2}$$
 and $k < 1 \implies k = -\sqrt{2}$

 $-\sqrt{2} < k$ or $k > \sqrt{2}$ and k = 1 cannot be satisfied.

Therefore $k = -\sqrt{2}$

c. 2 solutions.

One discriminant is less than zero and the other discriminant is greater than zero.

$$-\sqrt{2} < \underline{k} < \sqrt{2}$$
 and $k < 1 \implies -\sqrt{2} < k < 1$

$$k < -\sqrt{2} \text{ or } k > \sqrt{2} \text{ and } k > 1 \implies k > \sqrt{2}$$

Therefore $-\sqrt{2} < k < 1$ or $k > \sqrt{2}$

d. 1 solution.

One discriminant equals zero and the other is less than zero.

$$k = \pm \sqrt{2}$$
 and $k > 1 \implies k = \sqrt{2}$

$$-\sqrt{2} < k < \sqrt{2}$$
 and $k = 1 \implies k = 1$

Therefore $k = \sqrt{2}$ or k = 1

e. No solutions.

Both discirminants are less than zero.

Therefore $1 < k < \sqrt{2}$

<u>Sub-Section [1.6.3]</u>: Apply Bisection Method to Approximate x-Intercepts

Question 7 CAS-Active.

Use the bisection method to find the approximate real solution to the equation $x^3 - 3x^2 + 3x + 2 = 0$. Use the interval [-1,1] for the first iteration and a maximum error of 0.1. Give your approximation correct to two decimal places.

Our answer is the midpoint of the first interval that has width <0.2 $x\approx -0.44$

In[28]:= ResourceFunction["BisectionMethodFindRoot"][x^3 - 3 x^2 + 3 x + 2,

{x, -1, 1}, 3, 6, "Steps"

	steps	a	f[a]	b	f[b]
Out[28]=	1	-1.00	-5.	1.00	3.
	2	-1.00	-5.	$0. \times 10^{-3}$	2.
	3	-0.50	-0.375	$0. \times 10^{-3}$	2.
	4	-0.50	-0.375	-0.25	1.04688
	5	-0.50	-0.375	-0.38	0.400391
	6	-0.50	-0.375	-0.44	0.029541

Question 8 CAS-Active.

Use the bisection method to find the approximate real solution to the equation $x^2 \log_2(x) - 3x - 2 = 0$. Use the interval [1, 4] for the first iteration and a maximum error of 0.1. Give your approximation correct to two decimal places.

Our answer is the midpoint of the first interval that has width <0.2 $x\approx 2.59$

In[47]:= ResourceFunction["BisectionMethodFindRoot"][
 x^2 Log[2, x] - 3 x - 2, {x, 1, 4}, 8, 6, "Steps"]

	steps	a	f[a]	b	f[b]
	1	1.0000000	-5.	4.0000000	18.
	2	2.5000000	-1.23795	4.0000000	18.
=	3	2.5000000	-1.23795	3.2500000	6.21089
	4	2.5000000	-1.23795	2.8750000	1.96819
	5	2.5000000	-1.23795	2.6875000	0.23892
	6	2.5937500	-0.530619	2.6875000	0.23892

Out[47]:

Question 9 CAS-Active.

Use the bisection method to approximate $\sqrt[3]{5}$ correct to two decimal places.

Since $1^3 < 5 < 2^3$ we will choose our interval to be [1, 2] and we will solve the equation $x^3 - 5 = 0$.

Our answer is the midpoint of the first interval that has width < 0.01 rounded to two decimal places.

 $x \approx 1.71$

 $ResourceFunction \hbox{\tt ["BisectionMethodFindRoot"] [x^3-5, \{x, 1, 2\}, 4, 9, "Steps"]}$

steps	a	f[a]	b	f[b]
1	1.000	-4.	2.000	3.
2	1.500	-1.625	2.000	3.
3	1.500	-1.625	1.750	0.359375
4	1.625	-0.708984	1.750	0.359375
5	1.688	-0.19458	1.750	0.359375
6	1.688	-0.19458	1.719	0.0773621
7	1.703	-0.0598564	1.719	0.0773621
8	1.703	-0.0598564	1.711	0.00843954
9	1.707	-0.0257866	1.711	0.00843954

Sub-Section: Exam 1 Questions

Question	10
----------	----

Consider the polynomial $f(x) = x^3 + ax^2 + bx + 4$. It is known that x - 1 is a factor of f and when f is divided by x - 2 the remainder is 6. Find the values of a and b.

We have that f(1) = 0 and f(2) = 6 this yields the equations

$$5 + a + b = 0$$

$$12 + 4a + 2b = 6$$

which we solve to find a = 2 and b = -7

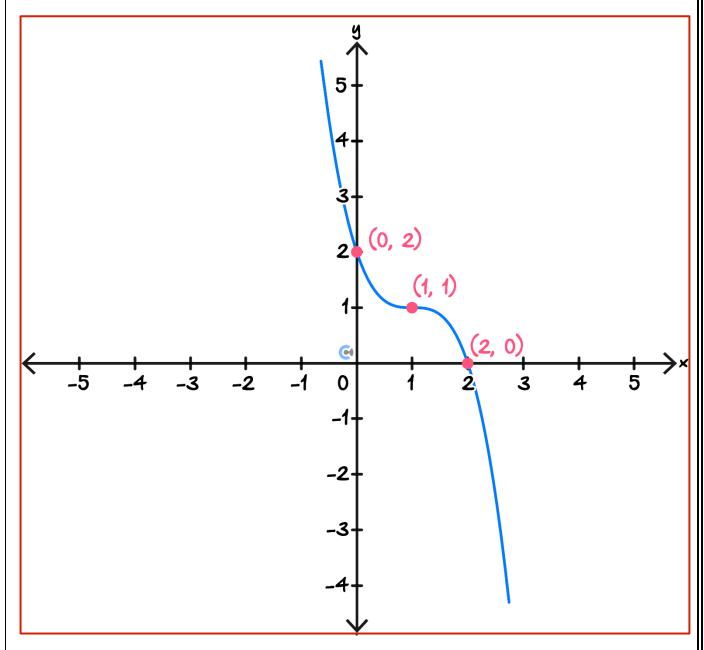
Solve the equation $2x^3 - 4x^2 - 22x + 24 = 0$.

Let $f(x) = 2x^3 - 4x^2 - 22x + 24$. Then note that $f(1) = 0 \implies x - 1$ is a factor of f(x). We then factorise f(x) as

$$f(x) = 2(x-1)(x-4)(x+3)$$

and so $f(x) = 0 \implies x = -3, 1, 4$

Sketch the graph of $y = -(x - 1)^3 + 1$ on the axes below. Label all axis intercepts and the inflection point with coordinates.



Consider the function $f(x) = x^4 + x^3 - 3x^2 - x + 2$.

a. Show that x + 2 is a factor of f(x).

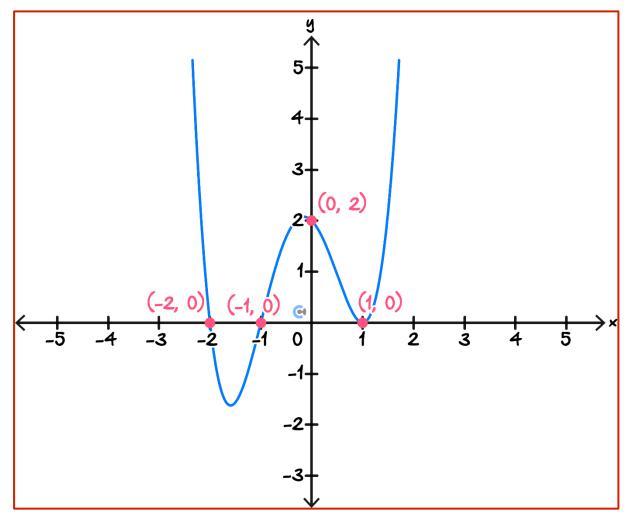
f(-2) = 16 - 8 - 12 + 2 + 2 = 0Therefore x + 2 is a factor of f(x)

b. Fully factorise f(x).

 $f(x) = (x+2)(x^3 - x^2 - x + 1)$ $= (x+2)(x-1)(x^2 - 1)$ $= (x-1)^2(x+1)(x+2)$

CONTOUREDUCATION

c. Hence, sketch the graph of y = f(x). Label all axis intercepts with coordinates. Note that some turning points occur at approximately (-1.59, -1.63) and (-0.16, 2.08).



d. Solve the inequality $f(x) \le 0$.

 $-2 \le x \le -1$ or x = 1.

Consider $f(x) = 2x^3 + 2kx^2 + 5x$, where k is a real constant.

Find the values of k, such that f(x) = 0 has:

a. One solution.

We have that $f(x) = x(2x^2 + 2kx + 5)$.

The only solution will be x = 0 if $\Delta = 4k^2 - 40 < 0$ and therefore

$$-\sqrt{10} < k < \sqrt{10}$$

b. Two solutions.

$$k = \pm \sqrt{10}$$

c. Three solutions.

 $k<-\sqrt{10}$ or $k>\sqrt{10}$

Sub-Section: Exam 2 Questions

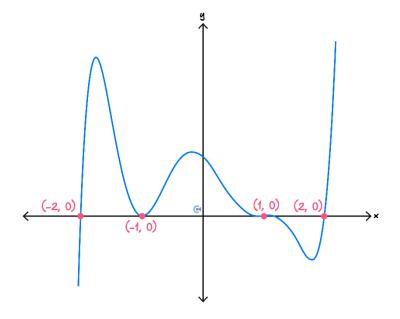
Question 15

The equation $3x^2 + 2x - 8 = 0$ has one real solution, which lies in the interval [0,2]. Approximate the solution using the bisection method with a maximum error of 0.1. The approximate solution correct to two decimal places is:

- **A.** $x \approx 1.25$
- **B.** $x \approx 1.13$
- **C.** $x \approx 1.19$
- **D.** $x \approx 1.15$

Question 16

The minimum degree of the polynomial sketched below is:



- **A.** 5
- **B.** 6
- C. 7
- **D.** 8

The polynomial $ax^3 + 3x^2 + bx + 5$ is perfectly divisible by x-1 and has a remainder of 6 when divided by x+2. The values (a,b) are:

- **A.** (8, -12)
- **B.** $\left(-\frac{1}{2}, -\frac{9}{2}\right)$
- C. $\left(-\frac{3}{2}, -\frac{5}{2}\right)$
- **D.** $\left(\frac{9}{2}, -\frac{25}{2}\right)$

Question 18

The equation $x^3 - 5kx^2 + 9x = 0$ has exactly one solution when:

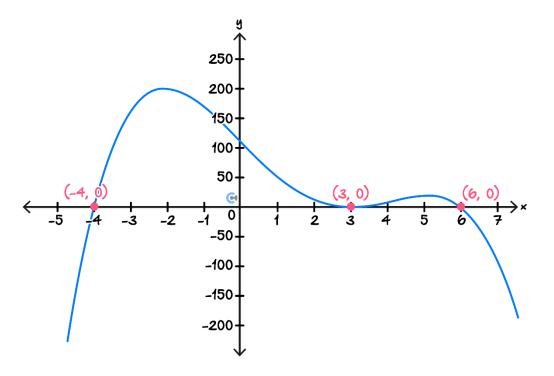
- **A.** $k = \pm \frac{6}{5}$
- **B.** $-\frac{6}{5} < k < \frac{6}{5}$
- C. $k > \frac{6}{5}$
- **D.** $k < -\frac{6}{5}$

Question 19

A graph with rule $f(x) = x^3 - 3x^2 - 4c$, where c is a real number, has three distinct x-intercepts. All possible values of c are:

- **A.** c > 1
- **B.** -1 < c < 0
- C. 0 < c < 1
- **D.** c < 1

Consider the function f that is sketched on the axes below. It is given that the point (2,12) lies on the graph.



a.

i. State the degree of f.

4

ii. Find a rule for f(x).

From the shape of the graph we see that we must have

$$f(x) = a(x+4)(x-3)^2(x-6)$$

Now we use f(2) = 12 to find that $a = -\frac{1}{2}$. Therefore

$$f(x) = -\frac{1}{2}(x-3)^2(x+4)(x-6)$$

- **b.** Consider the function $g(x) = f(x) + 10(k^2 4k + 3)$, where k is a real constant.
 - i. Find the values of k such that g(x) = f(x).

g(x) = f(x) if the quadratic term $10(k^2 - 4k + 3) = 0$. Therefore k = 1 or k = 3

ii. Find the values of k, such that g(x) > f(x).

g(x) > f(x) if the quadratic $10(k^2 - 4k + 3) > 0$. Therefore k < 1 or k > 3

It is known that the function f(x) has a turning point when $x = \frac{3 \pm \sqrt{51}}{2}$.

Let
$$h(x) = -\frac{4}{3}(x-3)^2(x+4)(x-6)$$
.

c. Find all values of k, such that h(x) = k has two solutions.

Note that $h(x) = \frac{8}{3}f(x)$.

Therefore h(x) has turning points when $x = \frac{3 \pm \sqrt{51}}{2}$.

The coordinates of these turnings points are therefore

$$\left(\frac{3-\sqrt{51}}{2}, 291+34\sqrt{51}\right)$$
 and $\left(\frac{3+\sqrt{51}}{2}, 291-34\sqrt{51}\right)$

Inspecting the shape of the graph of y=f(x) we conclude that h(x)=k will have two solutions when

$$k < 0$$
 or $291 - 34\sqrt{51} < k < 291 + 34\sqrt{51}$

Consider the cubic polynomial $f(x) = x^3 + 2x^2 - 7x - 2$.

a.

i. Explain why f(x) has a root between x = -1 and x = 0.

f(-1) = 6 and f(0) = -2 so it must cross the x-axis between these two points.

ii. Approximate the root in the interval [-1,0] using the bisection method with a maximum error of 0.05. Give your answer correct to two decimal places.

The first interval that has width <0.1 is [-0.25, -0.3125] so our approximate solution is the midpoint of this interval.

Thus $x \approx -0.28$

Out[332]=

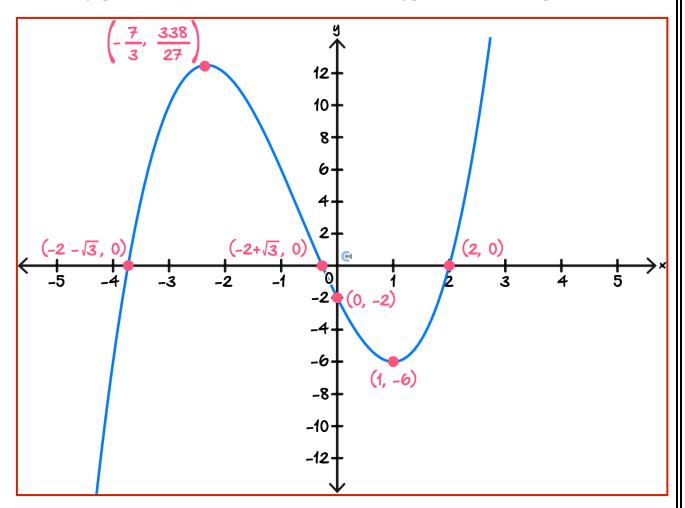
steps	a	f[a]	b	f[b]
1	0	-2.	-1.00000	6.
2	0	-2.	-0.500000	1.875
3	-0.250000	-0.140625	-0.500000	1.875
4	-0.250000	-0.140625	-0.375000	0.853516
5	-0.250000	-0.140625	-0.312500	0.352295
6	-0.250000	-0.140625	-0.281250	0.104706

iii. Find the distance between our approximate root and the actual root that lies in the interval [-1,0]. Give your answer correct to two decimal places.

Actual root is $x = \sqrt{3} - 2 \approx -0.2674849$ So our distance is $-0.2674849 + 0.281250 \approx 0.01$

CONTOUREDUCATION

b. Sketch the graph of y = f(x) on the axes below. Label all turning points and axis intercepts with coordinates.



c. Find the values of k, such that f(x) + k = 0, where k is a positive constant, has one solution.

By looking at the graph and noting that k>0 we conclude that k>6

d. Let *a* be a real constant.

Find the values of a such that the equation $x^3 - (4a + 2)x^2 + (8a + 3)x - 6 = 0$ has three real solutions.

We can factor the equation as

$$(x-2)(x^2-4ax+3)$$

this function will have three roots if the quadratic has two roots that are not equal to x = 2.

Consider the discriminant of the quadratic

$$\Delta = 16a^2 - 12 > 0 \implies a < -\frac{\sqrt{3}}{2} \text{ or } a > \frac{\sqrt{3}}{2}$$

But what if the quadratic also has a solution x = 2?

Sub in x = 2 into the quadratic $7 - 8a = 0 \implies a = \frac{7}{8} > \frac{\sqrt{3}}{2}$.

When $a = \frac{7}{8}$ our function becomes $\frac{1}{2}(x-2)^2(2x-3)$ so there are only two solutions. Therefore, three solutions when

$$a < -\frac{\sqrt{3}}{2} \text{ or } \frac{\sqrt{3}}{2} < a < \frac{7}{8} \text{ or } a > \frac{7}{8}.$$

Section B: Supplementary Questions

<u>Sub-Section [1.6.1]</u>: Solve Polynomial Inequalities

Question 22

Solve the following inequalities for x:

a. $x(x-1)(x+2) \le 0$

 $x \leq -2$ or $0 \leq x \leq 1$

b. (x-2)(x+1)(x+3) > 0

-3 < x < -1 or x > 2

CONTOUREDUCATION

Question 23

Solve the following inequalities for x:

a. $(x-5)(x^2+x-2) \le 0$

 $x \leq 2 \text{ or } 1 \leq x \leq 5$

b. $(1-x)(x^2-4x+4) \ge 0$

 $x \le 1 \text{ or } x = 2$

Ouestion	24
Oucsuon	47

Solve the following inequalities for x:

a.
$$x^3 - 5x^2 - 8x + 12 > 0$$

Factor as (x - 1)(x + 2)(x - 6). Therefore -2 < x < 1 or x > 6

MM12 [1.6] - Polynomials Exam Skills - Homework Solutions

b. $-x^3 + 4x^2 + x - 4 \le 0$

Factor as -(x-1)(x+1)(x-4)Therefore $-1 \le x \le 1$ or $x \ge 4$.

Question 25

Solve the inequality $4x^5 - 16x^4 + 13x^3 - 3x^2 > 4x^3 - 16x^2 + 13x - 3$.

We rewrite our inequality as $4x^5 - 16x^4 + 9x^3 + 13x^2 - 13x + 3 > 0$ and realise that $x^2 - 1$ is a factor of the left hand side.

Hence we factor the left side as $(2x-1)^2(x-3)(x^2-1)$.

Therefore $-1 < x < \frac{1}{2}$ or $\frac{1}{2} < x < 1$ or x > 3.

<u>Sub-Section [1.6.2]</u>: Solve Number of Solution Problems

•	nestion 26
1	and the values of k, for which the equation $x(x^2 + 4) = 4kx^2$ has:
•	1 solution.
	Only solution is $x = 0$ if the discriminant of the quadratic $x^2 - 4kx + 4$ is less than 0. Therefore $-1 < k < 1$
).	2 solutions.
	$k = \pm 1$
	3 solutions.
C.	
	k < -1 or k > 1
2.	k < -1 or k > 1

CONTOUREDUCATION

Question 27

Find the values of k, for which the equation $kx^9 + 2x^6 + x^3 = 0$ has:

a. 1 solution.

We observe that x^3 is a one to one and onto function.

Thus the number of solutions to $kx^9 + 2x^6 + x^3 = 0$ is simply the number of solutions to $kx^3 + 2x^2 + x = x(kx^2 + 2x + 1) = 0$

Only solution is x = 0 if the discriminant of the quadratic $kx^2 + 2x + 1$ is less than 0. Therefore k > 1

b. 2 solutions.

k=1 or k=0

c. 3 solutions.

k < 0 or 0 < k < 1

Find the values of k, for which the equation $x(x-2k-2)(x^2+kx+4) = -x^2-kx-4$ has:

a. 4 solutions.

We can simplify our equation to be $(x^2 + 2x(k-1) + 1)(x^2 + kx + 4) = 0$ We require the discriminant for both quadratics to be greater than zero.

$$\Delta 1 = 4(k+1)^2 - 4$$
$$\Delta 2 = k^2 - 16$$

Therefore k < -2 or k > 0 and k < -4 or k > 4. So 4 solutions if k < -4 or k > 4.

b. 3 solutions.

One discriminant is zero and the other is greater than zero. Therefore k=-4,4

c. 2 solutions. One discriminant is less than zero and the other discriminant is greater than zero. Therefore -4 < k < 0 or 2 < k < 4**d.** 1 solution. One discriminant equals zero and the other is less than zero. Therefore k = 0 or k = -2e. No solutions. Both discriminants are less than zero. Therefore -2 < k < 0

CONTOUREDUCATION

Question 29

Consider the polynomial $P(x) = x^3 + ax + b$.

Show that if $\Delta = -4a^3 - 27b^2 = 0$, that P(x) = 0 has less than 3 solutions.

Hint: If r_1, r_2, r_3 are the roots of P(x), show that $\Delta = (r_1 - r_2)^2 (r_2 - r_3)^2 (r_3 - r_1)^2$.

Please use a calculator.

If P(x) = 0 has 3 distinct solutions, we can factorise $P(x) = (x - r_1)(x - r_2)(x - r_3)$, where r_1, r_2, r_3 are all different.

By expanding our factorised form, we can compare x^2 coefficients to see that $r_1+r_2+r_3=0$, hence $P(x)=(x-r_1)(x-r_2)(x+r_1+r_2)$.

Since $r_3 = -r_2 - r_1$, we can express $(r_1 - r_2)^2 (r_2 - r_3)^2 (r_3 - r_1)^2$ in terms of r_2 and r_1 . Similarly we can express a and b, and thus Δ in terms of r_2 and r_1 . The following equations show that our expressions are equal.

$$\Delta = -4a^3 - 27b^2$$

$$= -4(-r_1^2 - r_1r_2 - r_2^2)^3 - 27(r_1^2r_2 + r_1r_2^2)^2$$

$$= 4r_1^6 + 12r_2r_1^5 - 3r_2^2r_1^4 - 26r_2^3r_1^3 - 3r_2^4r_1^2 + 12r_2^5r_1 + 4r_2^6$$

$$= (r_1 - r_2)^2(2r_1 + r_2)^2(r_1 + 2r_2)^2$$

$$= (r_1 - r_2)^2(r_2 - r_3)^2(r_3 - r_1)^2$$

Thus if $\Delta = 0$ we see that either $r_1 = r_2$ or $r_2 = r_3$ or $r_3 = r_1$, hence P(x) = 0 has less than 3 solutions.

<u>Sub-Section [1.6.3]</u>: Apply Bisection Method to Approximate x-Intercepts

Question 30 CAS-Active.

Use the bisection method to find the approximate real solution to the equation $x^3 + 2x^2 - 5x + 3 = 0$. Use the interval [-4, -3] for the first iteration and a maximum error of 0.1. Give your approximation correct to two decimal places.

Our answer is the midpoint of the first interval that has width < 0.2

 $x \approx -3.61$

ResourceFunction["BisectionMethodFindRoot"] [$x^3 + 2x^2 - 5x + 3$,

{x, -4, -3}, 4, 8, "Steps"]

steps	а	f[a]	b	f[b]
1	-4.000	-9.	-3.000	9.
2	-4.000	-9.	-3.500	2.125
3	-3.750	-2.85938	-3.500	2.125
4	-3.625	-0.228516	-3.500	2.125
5	-3.625	-0.228516	-3.563	0.982178
6	-3.625	-0.228516	-3.594	0.385406
7	-3.625	-0.228516	-3.609	0.0806007
8	-3.617	-0.0734172	-3.609	0.0806007

Question 31 CAS-Active.

Out[38]=

Use the bisection method to find the approximate real solution to the equation $x\log_2(x) + 3x = 4$. Use the interval [0.1,2] for the first iteration and a maximum error of 0.01. Give your approximation correct to two decimal places.

Our answer is the midpoint of the first interval that has width <0.02 $x\approx 1.22$

In[38]:= ResourceFunction["BisectionMethodFindRoot"][$x \star Log[2, x] + 3x - 4$,

{x, 0.1, 2}, 8, 9, "Steps"]

steps	a	f[a]	b	f[b]
1	0.10000000	-4.03219	2.0000000	4.
2	1.0500000	-0.776091	2.0000000	4.
3	1.0500000	-0.776091	1.5250000	1.50343
4	1.0500000	-0.776091	1.2875000	0.331887
5	1.1687500	-0.230821	1.2875000	0.331887
6	1.1687500	-0.230821	1.2281250	0.0484618
7	1.1984375	-0.0917099	1.2281250	0.0484618
8	1.2132813	-0.0217551	1.2281250	0.0484618
9	1.2132813	-0.0217551	1.2207031	0.0133208

Question 32 CAS-Active.

Use the bisection method to approximate π correct to three decimal places.

We choose a function f such that $f(0) = \pi$. Such a function can be $f(x) = \sin(x)$

Our answer is the midpoint of the first interval that has width < 0.001

Since $3 < \pi < 4$ we can choose an interval of [3,4].

 $x \approx 3.141$

ResourceFunction["BisectionMethodFindRoot"][Sin[x], {x, 3, 4}, 6, 12, "Steps"]

steps	a	f[a]	ь	f[b]
1	4.00000	-0.756802	3.00000	0.14112
2	3.50000	-0.350783	3.00000	0.14112
3	3.25000	-0.108195	3.00000	0.14112
4	3.25000	-0.108195	3.12500	0.0165919
5	3.18750	-0.0458912	3.12500	0.0165919
6	3.15625	-0.0146568	3.12500	0.0165919
7	3.15625	-0.0146568	3.14063	0.000967653
8	3.14844	-0.00684479	3.14063	0.000967653
9	3.14453	-0.00293859	3.14063	0.000967653
10	3.14258	-0.000985471	3.14063	0.000967653
11	3.14160	-8.90891×10 ⁻⁶	3.14063	0.000967653
12	3.14160	-8.90891×10-6	3.14111	0.000479372

Question 33

Explain why you cannot use the bisection method to approximate the solution to the equation $x^4 - 2x^2 + 1 = 0$.

Because $f(x) = x^4 - 2x^2 + 1 = (x^2 - 1)^2 > 0$ we will not be able to find an initial interval [a, b] such that f(a)f(b) < 0.

Sub-Section: Exam 1 Questions

Question 34

Consider the polynomial $f(x) = x^3 - 7x + 6$.

a. Show that f(1) = 0.

$$f(1) = 1^3 - 7 \times 1 + 6 = 0$$

b. Solve f(x) = 0 for x.

Since f(1) = 0 we know that x - 1 is a factor of f. We can then factorise f as such:

$$f(x) = x^3 - 7x + 6 = (x - 1)(x^2 + x - 6) = (x - 1)(x - 2)(x - 3)$$

Hence x = -3, 1, 2.

c. Hence, solve $f(x) \ge 0$ for x.

 $-3 \le x \le 1 \text{ or } x \ge 2.$

For what values of k does the equation $k(x^3 + x^2) = x$ have exactly one solution.

We can rewrite our equation to be $x(kx^2 + kx - 1) = 0$.

We see that if $k \neq 0$ we have a product of a quadratic and x, hence we require the quadratic to have no solution.

Hence the discriminant of the quadratic $\Delta = k^2 + 4k < 0$.

From the graph of $k^2 + 4k$ we see that it is less than 0 if -4 < k < 0.

Now if k = 0 our equation turns to x = 0 which obviously has one solution.

Thus our equation has exactly one solution of $-4 < k \le 0$.

Question 36

Consider the polynomial $f(x) = x^3 - 3x^2 + x + 1$.

a. Fully factorise f(x) into linear factors.

Since f(1) = 0 we know that x - 1 is a factor of f.

Hence $f(x) = (x-1)(x^2-2x-1)$.

We can solve $x^2 - 2x - 1 = 0$ to extract the other linear factors.

The other linear factors are, $1 \pm \sqrt{2}$.

Hence $f(x) = (x-1)(x-1-\sqrt{2})(x-1+\sqrt{2})$

b. A bisection method is used to solve f(x) = 0 with the first interval being [2,3]. Use the fact that $\sqrt{2} \approx 1.4$ to write down the next 3 intervals.

The only root we can approximate with this method is $1 + \sqrt{2} \approx 2.4$.

Thus all of our intervals will have to contain 2.4.

Hence our first interval is [2, 2.5], our second interval is [2.25, 2.5] and our third interval is [2.375, 2.5].

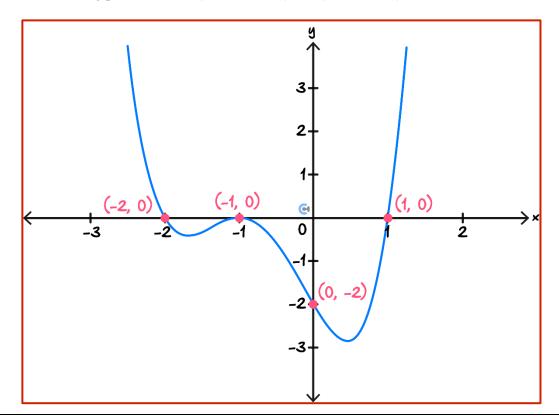
Question 37

Let
$$f(x) = x^4 + 3x^3 + x^2 - 3x - 2$$
.

a. Show that $x^2 - 1$ is a factor of f.

Since f(1) = 1 + 3 + 1 - 3 - 2 = 0 we know that x - 1 is a factor of f. Since f(-1) = 1 - 3 + 1 + 3 - 2 = 0 we know that x + 1 is a factor of f. Hence $x^2 - 1 = (x - 1)(x + 1)$ must be a factor of f.

b. Sketch the graph of y = f(x) on the axis below. Label all axis intercepts with their coordinates. Note that some turning points occur at (-1.69, -0.40) and (0.44, -2.83).



Sub-Section: Exam 2 Questions

Question 38

The equation $x^2(x - 2k) = -2x$ has exactly two solutions when,

- **A.** $k < -\sqrt{2} \text{ or } k > \sqrt{2}$.
- **B.** $k = \pm \sqrt{2}$
- C. $-\sqrt{2} < k < 0 \text{ or } 0 < k < \sqrt{2}$.
- **D.** $-\sqrt{2} < k < \sqrt{2}$

Question 39

The polynomial $x^3 + ax^2 - 2x + b$ has a factor of x + 1, and has a remainder of 12 when divided by x - 2. The values of a and b are:

- **A.** a = 3 and b = -4.
- **B.** $a = \frac{7}{3}$ and $b = -\frac{4}{3}$.
- **C.** $a = \frac{17}{3}$ and $b = -\frac{20}{3}$.
- **D.** a = 5 and b = -4.

Question 40

A bisection method is used to solve the equation $x^3 = 7$. The initial interval is [1,2]. The bisection reduces this interval down four times, and then takes the midpoint of the final interval. The result of this method is closest to:

- **A.** 1.94
- **B.** 1.92
- C. 1.91
- **D.** 1.88

The equation $kx^3 - 3kx = 1$ has exactly one solution.

The possible values of k are:

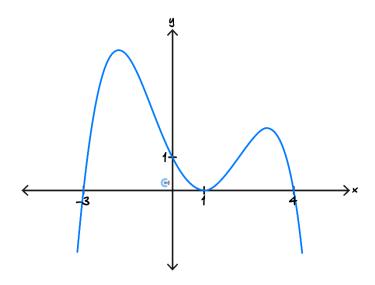
- **A.** k < -2 or k > 2.
- **B.** -2 < k < 2
- C. $k < -\frac{1}{2}$ or $k > \frac{1}{2}$.
- **D.** $-\frac{1}{2} < k < \frac{1}{2}$

Question 42

The maximum number of x-intercepts a quartic can have is:

- **A.** 2
- **B.** 3
- **C.** 4
- **D.** 5

The graph of $f(x) = ax^4 + bx^3 + cx^2 + dx + 1$ is drawn below.



a. Find the values of a, b, c and d.

$$f(x) = (x-1)^2(x+3)(x-4) = -\frac{1}{12}x^4 + \frac{1}{4}x^3 + \frac{3}{4}x^2 - \frac{23}{12}x + 1.$$
Thus $a = -\frac{1}{12}$, $b = \frac{1}{4}$, $c = \frac{3}{4}$ and $d = -\frac{23}{12}$

b. Hence or otherwise, solve f(x) > 1. Give your answers correct to 2 decimal places.

$$-2.88 < x < 0$$
 or $2.12 < x < 3.77$

c. Find all values of a correct to 3 decimal places such that f(x) = a has exactly three solutions.

 $a=0 \ {\rm or} \ a=2.018$

- **d.** Consider the polynomial $g(x) = (x a)^2(x + 3)(x 4)$.
 - i. For what values of a is the solution to $g(x) \le 0$ an interval.

 $-3 \leq a \leq 4$

ii. For what values of a is the solution to $g(x) \ge 0$ an interval.

 $a \le -3$ or $a \ge 4$

Consider the polynomial $f(x) = x^3 - 2x^2 - 9x - 2$.

a. State the co-ordinates of the axis intercepts of f.

 $(-2,0), (2-\sqrt{5,0}), (2+\sqrt{5,0}), \text{ and } (0,-2).$

b. Hence, sketch the graph of f, labelling all axis intercepts with their co-ordinates.

(-2, 0) (2 - \sqrt{5}, 0) (2 + \sqrt{5}, 0) (2 + \sqrt{5}, 0) (3 + \sqrt{5}, 0) (4 + \sqrt{5}, 0) (5 + \sqrt{6}, 0) (6 + \sqrt{2}, 0) (7 - 2) (8 + \sqrt{2}, 0) (9 + \sqrt{2}, 0) (10 + \sqrt{2}, 0

c.	A bisection method with an initial interval of	[3.5]	SL is used to approximate the solution to $f($	x)	= 0	
·-	11 Discertion inclined with an initial interval of	الرزوا	I is used to approximate the solution to f	λ	— v	•

First, the interval is refined n times, before the midpoint of the last interval is taken as an answer.

i. If n = 3, what answer will this approach yield?

We refine the interval to [4, 5] then to [4, 4.5] and lastly to [4, 4.25]. Thus our answer is 4.125.

ii. What is the smallest value of n > 2 which gives a better approximation to the actual solution than n = 2 does?

n=6.

d. If the bisection method is instead applied with an initial interval of [-11,5], what root will be approximated?

Justify your answer.

The interval will be refined to [-3,5] since f(-3)f(-11) > 0 and then to [1,5] since f(1)f(-3) > 0.

The only root remaining in [1,5] is $2 + \sqrt{5}$, which is the root our method will approximate.

VCE Methods ½ Questions? Message +61 440 138 726

 We know that $\sqrt{7}$ is a solution to the polynomial equation $x^2 - 7$. By the rational root theorem, the only possible rational solutions to this equation are
 $\pm 1, \pm 7$. However as $(\pm 1)^2 - 7 = -6$ and $(\pm 7)^2 - 7 = 42$ we see $x^2 - 7$ has no rational roots. Hence $\sqrt{7}$ is not rational.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

