

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Polynomials Exam Skills [1.6]

Homework

Homework Outline:

Compulsory Questions	Pg 2 – Pg 25
Supplementary Questions	Pg 26 — Pg 47

Section A: Compulsory Questions

<u>Sub-Section [1.6.1]</u>: Solve Polynomial Inequalities

Question 1

Solve the following inequalities for x:

a. (x-5)(x+2)(x-1) > 0

b. (x-1)(2-x)(x+3) < 0

(x-1)(2-x)(x+3)

Solve the following inequalities for x:

a. $x(x^2 - 4x + 6) > 0$

b. $(3-x)(x^2-5x+4) < 0$

\mathbf{O}	nestion	3

Solve the following inequalities for x:

Я.	x 3	$-x^{2}$	- 14x	+	24	<	n
a.	л	Λ	$TT\lambda$		47	_	v

VCE Methods ½ Questions? Message +61 440 138 726

b.	$2x^3 - 7x^2 - 33x + 18 > 0$	

<u>Sub-Section [1.6.2]</u>: Solve Number of Solution Problems

Qu	estion 4
Fin	d the values of k, for which the equation $x^3 + 3kx^2 + 9x = 0$ has:
a.	1 solution.
b.	2 solutions.
c.	3 solutions.

Qu	nestion 5	"
Fin	and the values of k, for which the equation $x^3 + 3x^2 - 4kx = 0$ has:	
a.	1 solution.	
		_
		_
		_
		_
b.	2 solutions.	
		_
		_
		_
c.	3 solutions.	_
		_
		_
Sp	pace for Personal Notes	

\sim	4.	
Oues	CTIAN	h
()uc	7614711	₹,

Find the values of k, for which the equation $(x^2 - 4kx + 8)(x^2 - 4x + 4k) = 0$ has:

a. 4 solutions.

b. 3 solutions.

VCE Methods ½ Questions? Message +61 440 138 726

c.	2 solutions.	
		-
d.	1 solution.	
e.	No solutions.	
Sp	ace for Personal Notes	
II		

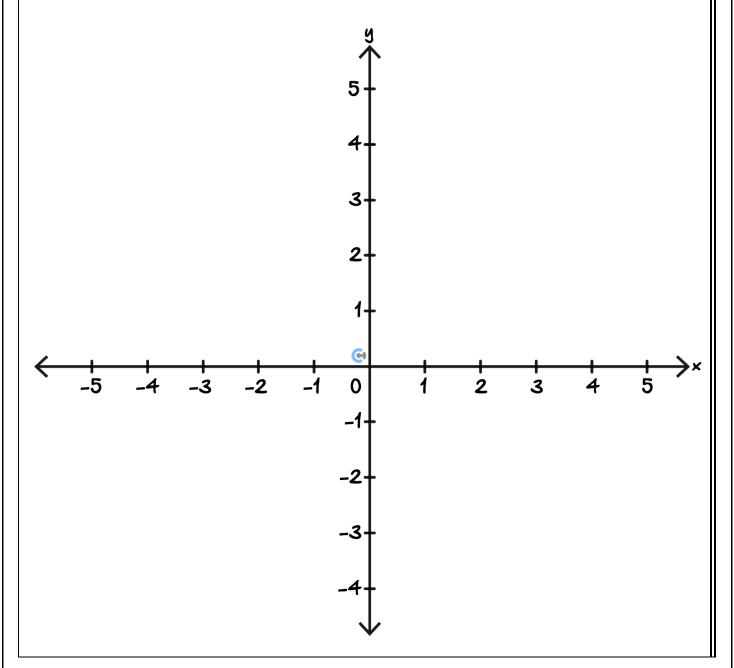
Sub-Section [1.6.3]: Apply Bisection Method to Approximate *x*-Intercepts

Question 7 CAS-Active.
Use the bisection method to find the approximate real solution to the equation $x^3 - 3x^2 + 3x + 2 = 0$. Use the interval $[-1,1]$ for the first iteration and a maximum error of 0.1. Give your approximation correct to two decimal places.
Question 8 CAS-Active.
Use the bisection method to find the approximate real solution to the equation $x^2 \log_2(x) - 3x - 2 = 0$. Use the interval [1, 4] for the first iteration and a maximum error of 0.1. Give your approximation correct to two decimal places.

Question 9 CAS-Active.	
Use the bisection method to approximate $\sqrt[3]{5}$ correct to two decimal places.	
	·

Sub-Section: Exam 1 Questions

Question 10				
Consider the polynomial $f(x) = x^3 + ax^2 + bx + 4$. It is known that $x - 1$ is a factor of f and when f is				
livided by $x - 2$ the remainder is 6. Find the values of a and b .				
Space for Personal Notes				

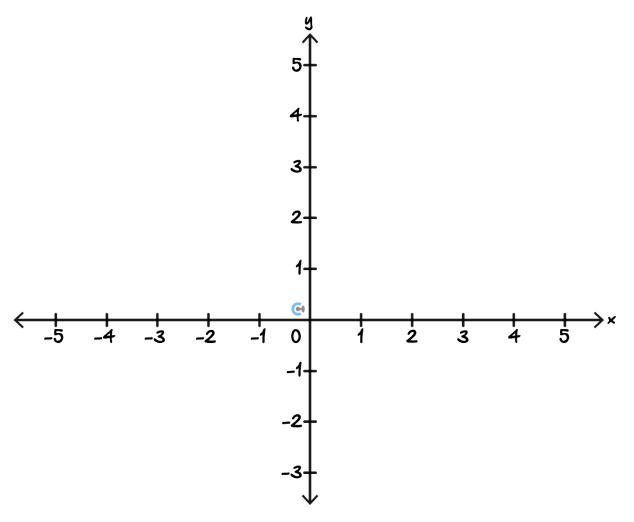


VCE Methods ½ Questions? Message +61 440 138 726

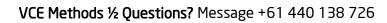
Question 11	
Solve the equation $2x^3 - 4x^2 - 22x + 24 = 0$.	

Sketch the graph of $y = -(x - 1)^3 + 1$ on the axes below. Label all axis intercepts and the inflection point with coordinates.

Consider the function $f(x) = x^4 + x^3 - 3x^2 - x + 2$.


a. Show that x + 2 is a factor of f(x).

b. Fully factorise f(x).

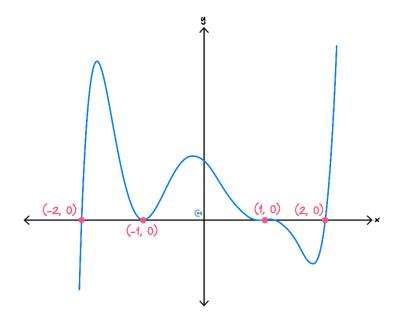


c. Hence, sketch the graph of y = f(x). Label all axis intercepts with coordinates. Note that some turning points occur at approximately (-1.59, -1.63) and (-0.16, 2.08).

d. Solve the inequality $f(x) \le 0$.

Question 14				
Consider $f(x) = 2x^3 + 2kx^2 + 5x$, where k is a real constant.				
Find the values of k , such that $f(x) = 0$ has:				
a. One solution.				
b. Two solutions.				
c. Three solutions.				

Sub-Section: Exam 2 Questions


Question 15

The equation $3x^2 + 2x - 8 = 0$ has one real solution, which lies in the interval [0,2]. Approximate the solution using the bisection method with a maximum error of 0.1. The approximate solution correct to two decimal places is:

- **A.** $x \approx 1.25$
- **B.** $x \approx 1.13$
- **C.** $x \approx 1.19$
- **D.** $x \approx 1.15$

Question 16

The minimum degree of the polynomial sketched below is:

- **A.** 5
- **B.** 6
- **C.** 7
- **D.** 8

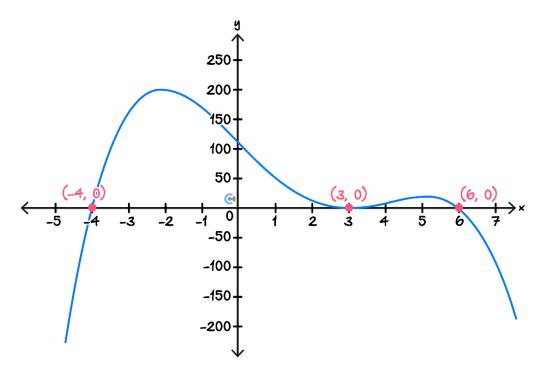
The polynomial $ax^3 + 3x^2 + bx + 5$ is perfectly divisible by x-1 and has a remainder of 6 when divided by x+2. The values (a,b) are:

- **A.** (8, -12)
- **B.** $\left(-\frac{1}{2}, -\frac{9}{2}\right)$
- C. $\left(-\frac{3}{2}, -\frac{5}{2}\right)$
- **D.** $\left(\frac{9}{2}, -\frac{25}{2}\right)$

Question 18

The equation $x^3 - 5kx^2 + 9x = 0$ has exactly one solution when:

- **A.** $k = \pm \frac{6}{5}$
- **B.** $-\frac{6}{5} < k < \frac{6}{5}$
- **C.** $k > \frac{6}{5}$
- **D.** $k < -\frac{6}{5}$


Question 19

A graph with rule $f(x) = x^3 - 3x^2 - 4c$, where c is a real number, has three distinct x-intercepts. All possible values of c are:

- **A.** c > 1
- **B.** -1 < c < 0
- C. 0 < c < 1
- **D.** c < 1

Consider the function f that is sketched on the axes below. It is given that the point (2,12) lies on the graph.

a.

i. State the degree of f.

ii. Find a rule for f(x).

b. Consider the function $g(x) = f(x) + 10(k^2 - 4k + 3)$, where k is a real constant.

i. Find the values of k such that g(x) = f(x).

ii. Find the values of k, such that g(x) > f(x).

VCE Methods ½ Questions? Message +61 440 138 726

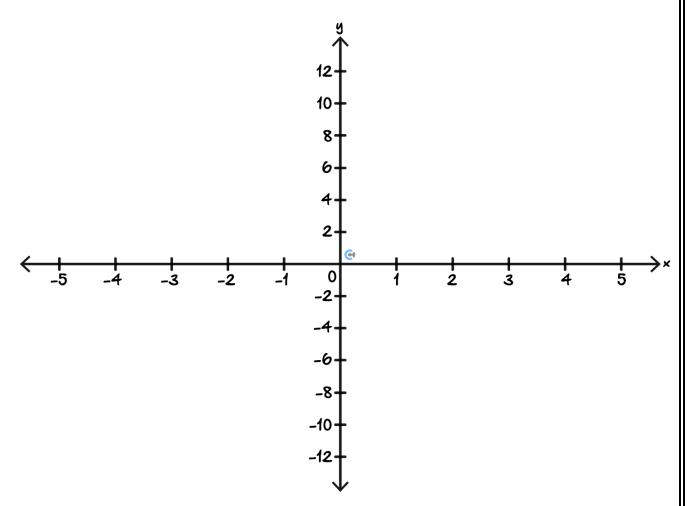
It is known that the function f(x) has a turning point when $x = \frac{3 \pm \sqrt{51}}{2}$.

Let $h(x) = -\frac{4}{3}(x-3)^2(x+4)(x-6)$.

c. Find all values of k, such that h(x) = k has two solutions.

Ω_{11}	estion	21
Qu	esuon	41

Consider the cubic polynomial $f(x) = x^3 + 2x^2 - 7x - 2$.


a.

i. Explain why f(x) has a root between x = -1 and x = 0.


ii. Approximate the root in the interval [-1,0] using the bisection method with a maximum error of 0.05. Give your answer correct to two decimal places.

iii. Find the distance between our approximate root and the actual root that lies in the interval [-1,0]. Give your answer correct to two decimal places.

b. Sketch the graph of y = f(x) on the axes below. Label all turning points and axis intercepts with coordinates.

c. Find the values of k, such that f(x) + k = 0, where k is a positive constant, has one solution.

d.	Let a be a real constant.
	Find the values of a such that the equation $x^3 - (4a + 2)x^2 + (8a + 3)x - 6 = 0$ has three real solutions.

Section B: Supplementary Questions

<u>Sub-Section [1.6.1]</u>: Solve Polynomial Inequalities

Question 22

Solve the following inequalities for x:

a. $x(x-1)(x+2) \le 0$

b. (x-2)(x+1)(x+3) > 0

Space	for	Personal	Notes

26

Solve the following inequalities for x:

a. $(x-5)(x^2+x-2) \le 0$

b. $(1-x)(x^2-4x+4) \ge 0$

Solve the following inequalities for x:

a. $x^3 - 5x^2 - 8x + 12 > 0$

b. $-x^3 + 4x^2 + x - 4 \le 0$

Question 25

Solve the inequality $4x^5 - 16x^4 + 13x^3 - 3x^2 > 4x^3 - 16x^2 + 13x - 3$.

<u>Sub-Section [1.6.2]</u>: Solve Number of Solution Problems

Qu	estion 26					
Fin	Find the values of k, for which the equation $x(x^2 + 4) = 4kx^2$ has:					
a.	1 solution.					
L	2 solutions.					
D.	Z solutions.					
c.	3 solutions.					

Qu	nestion 27	
Fin	and the values of k, for which the equation $kx^9 + 2x^6 + x^3 = 0$ has:	
a.	1 solution.	
b.	2 solutions.	
c.	3 solutions.	
د -	asso for Personal Notes	
sp	ace for Personal Notes	

Find the values of k, for which the equation $x(x-2k-2)(x^2+kx+4)=-x^2-kx-4$ has:

a. 4 solutions.

b.	3 solutions.

VCE Methods ½ Questions? Message +61 440 138 726

c.	2 solutions.	
d.	1 solution.	
e.	No solutions.	
Sp	pace for Personal Notes	
II		

Ouestion	29
Question	47

Consider the polynomial $P(x) = x^3 + ax + b$.

Show that if $\Delta = -4a^3 - 27b^2 = 0$, that P(x) = 0 has less than 3 solutions.

Hint: If r_1, r_2, r_3 are the roots of P(x), show that $\Delta = (r_1 - r_2)^2 (r_2 - r_3)^2 (r_3 - r_1)^2$.

Please use a calculator.

Sub-Section [1.6.3]: Apply Bisection Method to Approximate x-Intercepts

Question 30 CAS-Active.
Use the bisection method to find the approximate real solution to the equation $x^3 + 2x^2 - 5x + 3 = 0$. Use the interval $[-4, -3]$ for the first iteration and a maximum error of 0.1. Give your approximation correct to two decimal places.
Question 31 CAS-Active.
Use the bisection method to find the approximate real solution to the equation $x\log_2(x) + 3x = 4$. Use the interval [0.1,2] for the first iteration and a maximum error of 0.01. Give your approximation correct to two decimal places.

Question 32 CAS-Act	ive.					الرار
Use the bisection method	od to approximate	e π correct to t	hree decimal p	laces.		
Question 33						עעע
Explain why you cannot	ot use the bisectio	n method to a	oproximate the	solution to the	equation $x^4 - 2x$	$x^2 + 1 = 0.$
Space for Personal N	otes					

Sub-Section: Exam 1 Questions

Question 34

Consider the polynomial $f(x) = x^3 - 7x + 6$.

a. Show that f(1) = 0.

b. Solve f(x) = 0 for x.

c. Hence, solve $f(x) \ge 0$ for x.

Space for Personal Notes

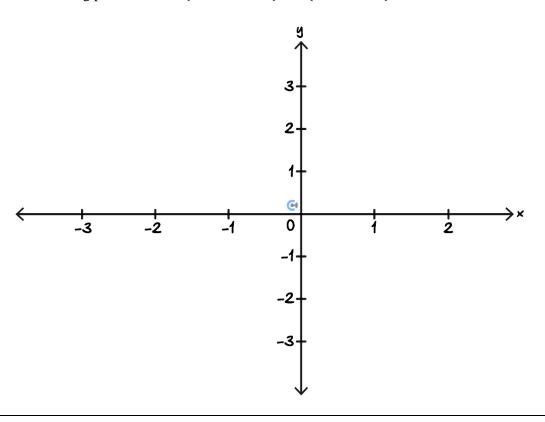
MM12 [1.6] - Polynomials Exam Skills - Homework

Question 35					
For what values of k	loes the equation k	$(x^3 + x^2) = x \text{ har}$	ve exactly one solu	ution.	
Question 36					

Consider the polynomial $f(x) = x^3 - 3x^2 + x + 1$.

a. Fully factorise f(x) into linear factors.

b. A bisection method is used to solve f(x) = 0 with the first interval being [2,3]. Use the fact that $\sqrt{2} \approx 1.4$ to write down the next 3 intervals.


Question 37

Let $f(x) = x^4 + 3x^3 + x^2 - 3x - 2$.

a. Show that $x^2 - 1$ is a factor of f.

b. Sketch the graph of y = f(x) on the axis below. Label all axis intercepts with their coordinates. Note that some turning points occur at (-1.69, -0.40) and (0.44, -2.83).

Space for Personal Notes

Sub-Section: Exam 2 Questions

Question 38

The equation $x^2(x - 2k) = -2x$ has exactly two solutions when,

- **A.** $k < -\sqrt{2} \text{ or } k > \sqrt{2}$.
- **B.** $k = \pm \sqrt{2}$
- C. $-\sqrt{2} < k < 0$ or $0 < k < \sqrt{2}$.
- **D.** $-\sqrt{2} < k < \sqrt{2}$

Question 39

The polynomial $x^3 + ax^2 - 2x + b$ has a factor of x + 1, and has a remainder of 12 when divided by x - 2. The values of a and b are:

- **A.** a = 3 and b = -4.
- **B.** $a = \frac{7}{3}$ and $b = -\frac{4}{3}$.
- C. $a = \frac{17}{3}$ and $b = -\frac{20}{3}$.
- **D.** a = 5 and b = -4.

Question 40

A bisection method is used to solve the equation $x^3 = 7$. The initial interval is [1,2]. The bisection reduces this interval down four times, and then takes the midpoint of the final interval. The result of this method is closest to:

- **A.** 1.94
- **B.** 1.92
- **C.** 1.91
- **D.** 1.88

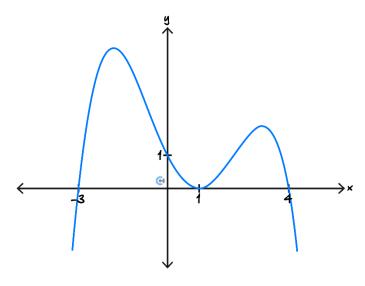
Question 41

The equation $kx^3 - 3kx = 1$ has exactly one solution.

The possible values of k are:

- **A.** k < -2 or k > 2.
- **B.** -2 < k < 2
- C. $k < -\frac{1}{2}$ or $k > \frac{1}{2}$.
- **D.** $-\frac{1}{2} < k < \frac{1}{2}$

Question 42


The maximum number of x-intercepts a quartic can have is:

- **A.** 2
- **B.** 3
- **C.** 4
- **D.** 5

Space for Personal Notes

Question 43

The graph of $f(x) = ax^4 + bx^3 + cx^2 + dx + 1$ is drawn below.

a. Find the values of a, b, c and d.

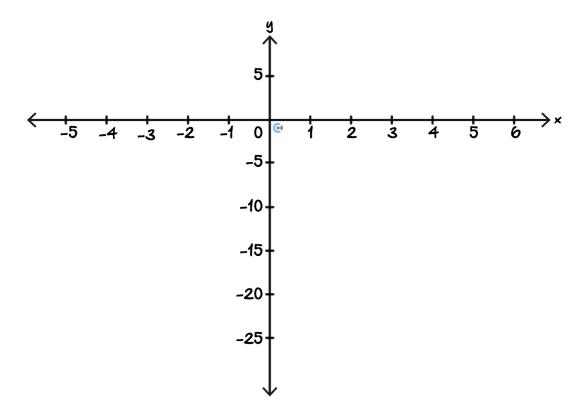
·	 	

b. Hence or otherwise, solve f(x) > 1. Give your answers correct to 2 decimal places.

VCE Methods ½ Questions? Message +61 440 138 726

c.	Fin	d all values of a correct to 3 decimal places such that $f(x) = a$ has exactly three solutions.
d.	Co	nsider the polynomial $g(x) = (x - a)^2(x + 3)(x - 4)$.
	i.	For what values of a is the solution to $g(x) \le 0$ an interval.
	ii.	For what values of a is the solution to $g(x) \ge 0$ an interval.

Space for Personal Notes



Question 44

Consider the polynomial $f(x) = x^3 - 2x^2 - 9x - 2$.

a. State the co-ordinates of the axis intercepts of f.

b. Hence, sketch the graph of f, labelling all axis intercepts with their co-ordinates.

i.	If $n = 3$, what answer will this approach yield?
ii.	What is the smallest value of $n > 2$ which gives a better approximation to the actual solution than $n =$ does?
If t	
	the bisection method is instead applied with an initial interval of $[-11,5]$, what root will be approximated
	the bisection method is instead applied with an initial interval of $[-11,5]$, what root will be approximated
	the bisection method is instead applied with an initial interval of $[-11,5]$, what root will be approximated
	the bisection method is instead applied with an initial interval of $[-11,5]$, what root will be approximated
	the bisection method is instead applied with an initial interval of $[-11,5]$, what root will be approximated
	the bisection method is instead applied with an initial interval of $[-11,5]$, what root will be approximated
	the bisection method is instead applied with an initial interval of $[-11,5]$, what root will be approximated

VCE Methods ½ Questions? Message +61 440 138 726

e.	Use the rational root theorem to show that $\sqrt{7}$ cannot be rational.	
Sp	ace for Personal Notes	

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

