CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Polynomials [1.5]

Workbook

Outline:

Pg 2-20

Algebra of Polynomial Functions

- Terminologies of Polynomials
- Long Division
- Remainder Theorem
- Factor Theorem
- Factorising Polynomials
- Rational Root Theorem
- Sum and Difference of Cubes

Graphs of a Polynomial

Pg 21-30

- Graphing Polynomials in the form of $a(x-h)^n + k$
- Graphing Factorised Polynomials

Learning Objectives:

MM12 [1.5.1] - Identify the properties of polynomials and solve long division.

- (4)
- MM12 [1.5.2] Apply remainder and factor theorem to find remainders and factors.
- MM12 [1.5.3] Find factored form of polynomials.
- MM12 [1.5.4] Graph factored and unfactored polynomials.

Rei - Contacts

- · whatsapp/ 0490 198 272
- o email Pei @ Contouveducation.com.au

Section A: Algebra of Polynomial Functions

Sub-Section: Terminologies of Polynomials

Degree of Polynomial Functions

Degree = Highest Power of the Polynomial

Question 1

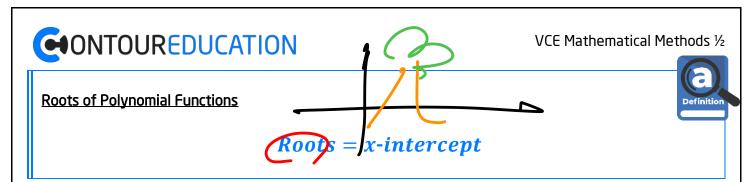
State the degree of each polynomial.

a.
$$x^3 - 4x^2 + 5x + 6$$

b.
$$3x + 5x^2 - x^7$$

c. A Quadratic.

2



<u>Discussion:</u> Can a quadratic have more than 2 roots? Hence, can there be more roots than the degree?

ruors \ degree

Question 2

Find the roots of the following polynomial:

$$\frac{(x-1)^2(x+3)^4}{x-1>0} = 0$$

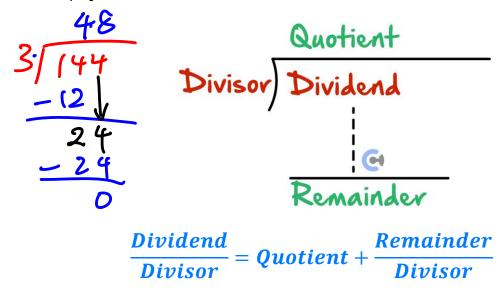
$$x+3=0$$

$$x=1,-3$$

Sub-Section: Long Division

Polynomial Long Division

Division of polynomials:



Question 3 Walkthrough.

Simplify the following using polynomial long division.

$$\frac{3x^{2} + 10x + 20}{3x^{2} + 10x + 20}$$

$$\frac{3x^{2} + 10x + 20}{3x^{2} + 10x + 20}$$

$$\frac{3x^{2} + 10x + 20}{3x^{2} + 10x + 20}$$

$$\frac{3x^{2} + 10x + 20}{3x^{2} + 10x + 20}$$

$$\frac{3x^{2} + 10x + 20}{3x^{2} + 10x + 20}$$

$$\frac{3x^{2} + 10x + 20}{3x^{2} + 10x + 20}$$

$$\frac{3x^{2} + 10x + 20}{3x^{2} + 10x + 20}$$

$$\frac{3x^{2} + 10x + 20}{3x^{2} + 10x + 20}$$

$$\frac{3x^{2} + 10x + 20}{3x^{2} + 10x + 20}$$

$$\frac{3x^{2} + 10x + 20}{3x^{2} + 10x + 20}$$

$$\frac{3x^{2} + 10x + 20}{3x^{2} + 10x + 20}$$

$$\frac{3x^{2} + 10x + 20}{4x + 20}$$

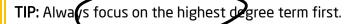
$$\frac{3x^{2} + 10x + 20}{3x^{2} + 10x + 20}$$

$$\frac{3x^{2} + 10x + 20}{4x + 20}$$

$$\frac{3x^{2} + 10x + 20}{3x^{2} + 10x + 20}$$

$$\frac{3x^{2} + 10x + 20}{2x + 2}$$

$$\frac{3x^{2}$$



Question 4

Simplify the following using polynomial long division.

lowing using polynomial long division.

$$\frac{x^2 - 3x + 5}{x - 1} = x - 2 + \frac{3}{x - 1}$$

$$x - 1 \int x^2 - 3x + 5$$

$$- 2x + 5$$

$$- 2x + 5$$

$$- 2x + 5$$

$$- 2x + 5$$

$$- 1 \int x^2 - 3x + 5$$

$$- 2x + 5$$

$$- 1 \int x^2 - 3x + 5$$

$$- 2x + 5$$

Now, a slightly more difficult example!

Question 5

Simplify the following using polynomial long division.

TIP: Always remember to fill in any missing powers of x in the numerator or denominator with "placeholders" that have a coefficient of 0.

Question 6 Extension.

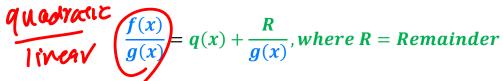
Simplify the following using polynomial long division.

$$\frac{x^4 + 4x^3 + 3x^2 - 2x + 3}{x + 3}$$

Sub-Section: Remainder Theorem

Exploration: Derivation of the Remainder Theorem

Consider $\frac{f(x)}{g(x)}$.



Let's multiply everything by g(x).

$$f(x) = g(x) \cdot g(x) + P$$

Remember, we are trying to find the remainder *R* before we do long division.

What functions do we already have before long division?

$$f(x) = q(x) \cdot g(x) + R$$

How can we get f(x) to equal to the remainder R?

We can substitute a value of x such that, the $\frac{1}{2}$ ($\frac{1}{2}$) is economic $f(\alpha) = \frac{1}{2}$

$$f(\alpha) = \frac{q(x)x0 + P}{P}$$

$$f(\alpha) = P$$

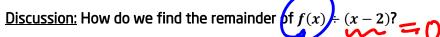
ONTOUREDUCATION

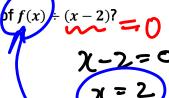
Remainder Theorem

Definition: Finds the remainder of long division without the need of long division.

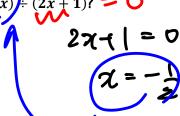
when P(x) is divided by $(x - \alpha)$, the remainder is $P(\alpha)$

- Steps:
 - 1. Find x values which makes the divisor equal to 0.
 - 2. Substitute it into the dividend function.





<u>Discussion:</u> How do we find the remainder of (f(x)): (2x+1)?



Question 7 Walkthrough.

Find the remainder of the division g(x), where, $f(x) = x^3 + x^2 - 2x + 5$ and g(x) = x + 5

$$\chi = -1$$

$$f(-1) = -|+1+2+5|$$

= 7

MM12 [1.5] - Polynomials - Workbook

Your turn!

Active Recall: Remainder Theorem

1. Find x values which makes the equal to 0.

2. Substitute it into the dividend function.

Numerator,

Question 8

Find the remainder of the division, $\frac{f(x)}{g(x)}$, where, $f(x) = x^3 - 2x^2 + 3x + 1$ and g(x) = 2x + 4.

① make
$$J(x) = 0$$

 $2x + 4 = 0$
 $\chi = -2$

(2) sub
$$21 = -2$$
 $f(2)$
 $f(-2) = -8 - 8 - 6 + 1$
 $= -21$

femainder = - 2/

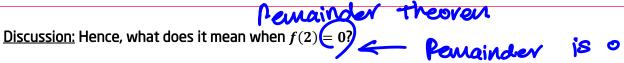
Question 9 Extension.

For the polynomial $f(x) = 3x^3 - 2x^2 + (7 - 2a)x + 1$, we get a remainder of 14 when f(x) is divided by g(x) = x - 1. Find the value of a.

VCE Mathematical Methods 1/2

<u>Discussion:</u> What division could f(2) be the remainder of?

(f(x) = (x-2)



2-2 B a faceur fow

This is called the "Factor theorem"

Factor Theorem

For every x-intercept, there is a factor:

if
$$P(\alpha) = 0$$
 then, $(x - \alpha)$ is a factor of $P(x)$

Question 10 Walkthrough.

Determine if x + 4 is a factor of $P(x) = 3x^3 + 8x^2 - 20x - 16$.

$$\chi = -4$$
 $p(-4) = 3 \cdot (-64) + 8 \cdot (6 - 20 \cdot (-4) - (6) = -192 + 128 + 80 - (6)$

It is: As subbing x = -4 makes P(x) = 0.

214 is a faceur of Pa)

Your turn!

Question 11

Determine if x + 2 is a factor of $P(x) = 2x^3 - 7x^2 + 7x - 2$.

y=-2

 $P(-2) = 2 \cdot (-8) - 7 \cdot 4 + 7(-2) - 2$ = -16 - 28 - 14 - 2 = -60Panainder = -60

Panainaler = -60

> 2(+2 is not a factor

It is not: As subbing x = -2 does not make P(x) = 0.

Question 12 Extension.

Determine if $x - \frac{3}{2}$ is a factor of $P(x) = 6x^3 - x^2 - 20x + 12$.

It is, since P(3/2) = 0.

Sub-Section: Factorising Polynomials

Factorising Polynomials

- The steps are:
 - Find a single root by trial and error.

P(...) = 0 []

Gal: Remander=0

(Factor Theorem: Substitute into the function and see if we get zero.)

- Use long division to find the quadratic factor.
- Factorise the quadratic.

18

Question 13 Walkthrough.

Find all the roots of
$$f(x) = x^3 + 3x^2 - 6x - 8$$
.

$$f(1) = 1+3-6-8 = -10 \neq 0$$

 $f(-1) = -1+3+6-8 = 0$

Factor:
$$\chi = -1$$
 $\chi = -1$
 $\chi =$

$$f(x) = (x+1) (x+4)(x-2)$$

$$= (x+1)(x+4)(x-2)$$

$$2xx(5)$$

1) 272 1274 NOTE: When the question asks for all roots, your photost factorise and end it there!

Question 14 9 factorise

Find all the roots of $f(x) = x^3 + 12x^2 + 17x - 90$.

ナ(1) ギロ A-1)40

子(2) = 0

factor: 2-2

(2) x 3 + 12x 3 + 17x - 9

 $f(x) = (x-2)(x^2+(4x)+4x)$ = (x-2)(x+5)(x+9) x = 2, -5, -9

Question 15

Find all the roots of $f(x) = -2x^3 - 13x^2 - 5x + 6$.

27-11 -222 -112+6 21-223-1322-5xx6

$$f(x) = (x+1)(-2x^2-11x+6)$$

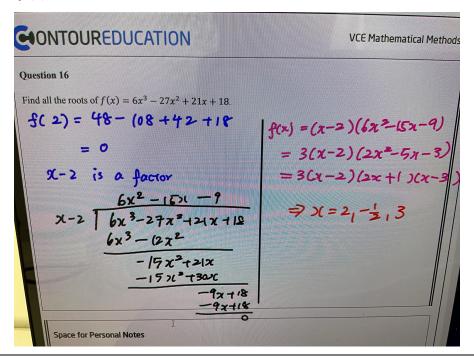
$$= (x+1)(2x-1)(-x-6)$$

ROOTS

 $\chi = - \left| \frac{1}{12} \right| - 6$

Question 16

Find all the roots of $f(x) = 6x^3 - 27x^2 + 21x + 18$.



Sub-Section: Rational Root Theorem

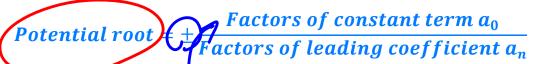
<u>Discussion</u>: Consider (2x-1)(3x-1)(6x-1). What are the roots and could we have gotten that from trial and error?

1 3, 5

So, what should we do?

Rational Root Theorem

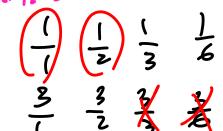
Rational Root Theorem **narrows down** the possible roots.



If the roots are rational numbers, the roots can only be $\pm \frac{factors\ of\ constant\ term\ a_0}{factors\ of\ leading\ coefficient\ a_n}$.

Question 17 Walkthrough.

Find all the roots of $f(x) = 6x^3 + 13x^2 - 14x + 3$.



$$f(1) = 6 + (3 - 14 + 3) = 6$$

$$f(1) = 6 + 13 - 14 + 3 \neq 0$$

 $f(-1) = -6 + 13 + 14 + 3 \neq 0$

NOTE: All the roots are part of the suggestion given by the rational root theorem.

Question 18

Find all the roots of $f(x) = 2x^3 - x^2 - 22x - 24$.

<u>Discussion:</u> Why is rational root theorem called a rational root theorem?

Question 19 Extension.

Find all the roots of $f(x) = 6x^3 + 19x^2 - 24x - 16$.

find I factor

Sub-Section: Sum and Difference of Cubes

Sum and Difference of Cubes

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$
 $a^{3} - b^{3} = (a - b)(a^{2} - ab + b^{2})$

Question 20 Walkthrough.

Factorise the following polynomial as much as possible.

$$x^3 + 125$$

Question 21

Factorise the following polynomial as much as possible.

$$(2x-6)(4x^2+(2x+36))$$
= $2(x-3)\times 4(x^2+3x+9)$

= 8 (x-3) (x2+3x+9)

Oi	iestion	2.2.	Exten	sion
\mathbf{v}	ıcsuvii	44	LAUL	DIVII.

Factorise the following polynomial as much as possible.

 $32x^3 - 256$

Space for	Personal	Notes
-----------	----------	-------

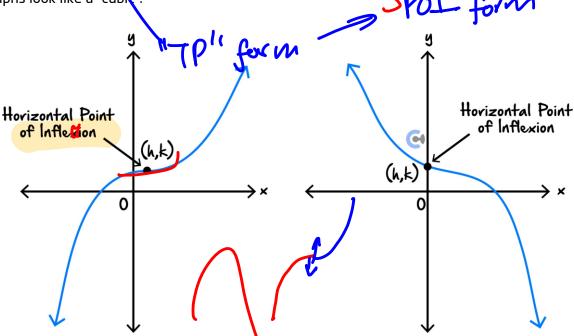
Section B: Graphs of a Polynomial

CURIC

<u>Sub-Section</u>: Graphing Polynomials in the Form of $a(x - h)^n + k$

Graphs of $a(x-h)^n + k$, where n is an Odd Positive Integer

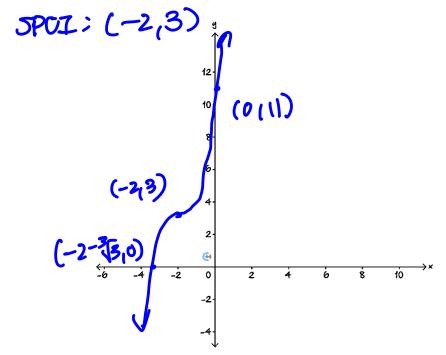
All graphs look like a "cublc".



- \blacktriangleright The point (h, k) gives us the stationary point of inflection.
- n cannot be 1 for this shape to occur!

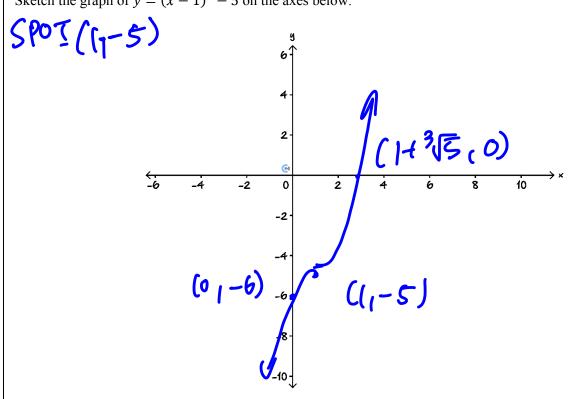
Question 23 Walkthrough.

Sketch the graph of $y = (x + 2)^3 + 3$ on the axes below.



Zint

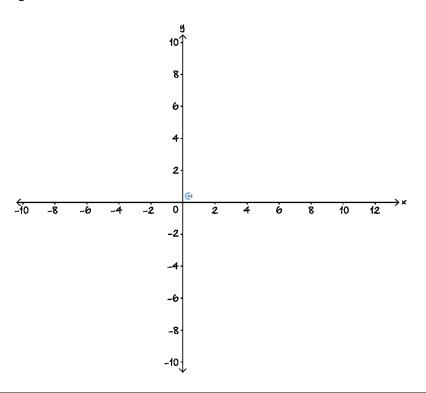
Sketch the graph of $y = (x - 1)^3 - 5$ on the axes below.



CONTOUREDUCATION

Question 25

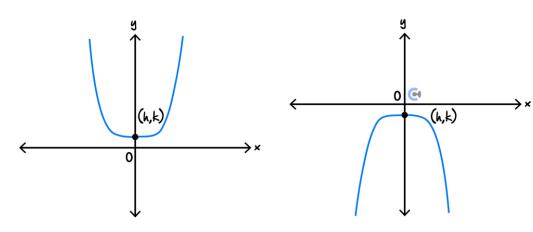
Sketch the graph of $y = \frac{1}{2}(x-2)^3 + 6$ on the axes below.



What about even powers?

Graphs of $a(x-h)^n + k$, where n is an Even Positive Integer

All graphs look like a "quadratic".

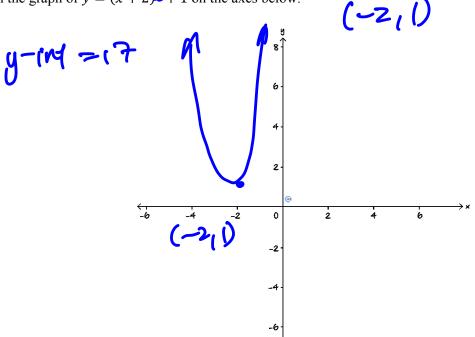


The point (h, k) gives us the turning point.

ONTOUREDUCATION

Question 26 Walkthrough.

Sketch the graph of $y = (x + 2)^{4} + 1$ on the axes below.

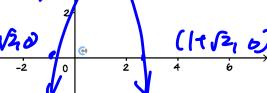


Question 27

Sketch the graph of $y = -(x - 1)^4 + 4$ on the axes below.

$$(\chi - 1)^2 = 12$$

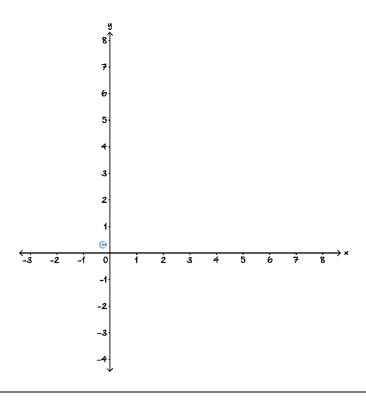
$$\alpha = |1\sqrt{2}$$



((,4)

Question 28 Extension.

Sketch the graph of $y = \frac{1}{2}(x-2)^4 - 3$ on the axes below.

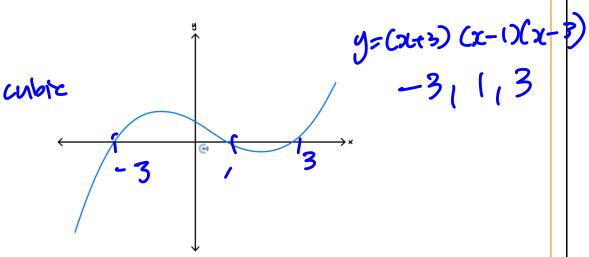


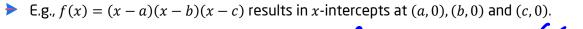
Sub-Section: Graphing Factorised Polynomials

What about the graph of a factorised polynomial?

Exploration: Graphs of Factorised Polynomials

All Non-repeated linear factors correspond to _______ of the graph.





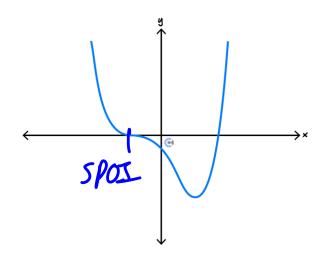
correspond to $\frac{All}{IP}$ $\frac{\text{repearled}}{\text{or}}$ $\frac{\text{linear factors}}{\text{SPOI}}$ $\frac{(\chi-1)}{(\chi-2)}$ $\frac{1}{(\chi-2)}$ $\frac{1}{(\chi+1)^2}$ $\frac{1}{(\chi+1)^2}$ $\frac{1}{(\chi+1)^2}$

 $y = (\chi + 1)^{2} (\chi - 2)$ Just $\chi - 10 + \chi + 14$

E.g., $f(x) = (x - a)^2(x - b)$ will have an x-intercept (a, 0) which is also a local minimum/maximum.

near factors

of the graph.



E.g., $f(x) = (x - a)^3(x - b)$ has an x-intercept (a, 0) which is also a stationary point of inflection.

Graphs of Factorised Polynomials

- Steps:
 - **1.** Plot *x*-intercepts.
 - **2.** Determine whether the polynomial is positive or negative.
 - **3.** Use the repeated factors to deduce the shape.

Non-Repeated: Only x-intercept.

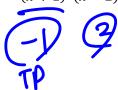
Even Repeated: *x*-intercept and a turning point.

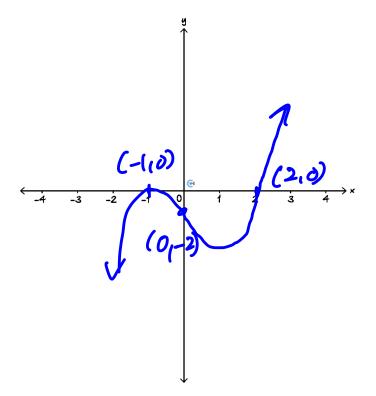
Odd Repeated: x-intercept and a stationary point of inflection.

Question 29 Walkthrough.

Sketch the graphs of the following functions on the axes provided. Ignore the y-axis scale.

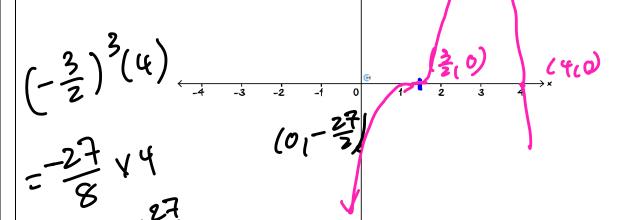
a. $y = (x+1)^2(x-2)$





b. $y = (x - \frac{3}{2})^3 (4 - x) = -(x - \frac{9}{2})^2 (x - 4)$

SPOI

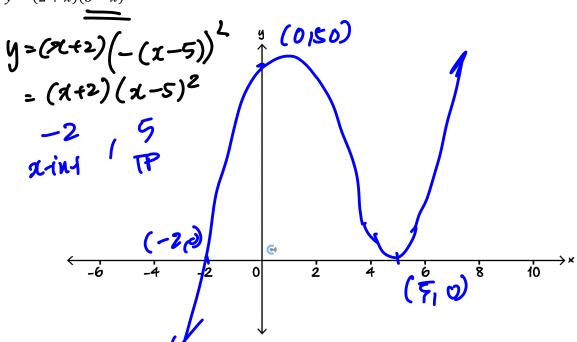


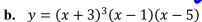
Your turn!

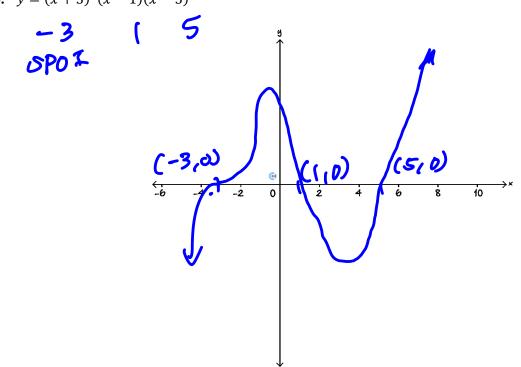
Question 30

Sketch the graphs of the following functions on the axes provided. Ignore the y-axis scale.

a.
$$y = (2+x)(5-x)^2$$



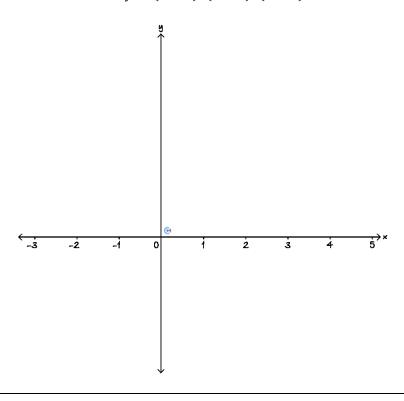




Question 31

Sketch the graph of the following function on the axes provided. Ignore the y-axis scale.

$$y = (x-1)^3(x+1)^2(x-2)$$



Contour Check

<u>Learning Objective</u>: [1.5.1] - Identify the properties of polynomials and solve long division.

Key Takeaways

- The degree of a polynomial is the polynomial's ______power.
- □ The roots of a polynomial are its ________
- For polynomial long division:

<u>Learning Objective</u>: [1.5.2] – Apply remainder and factor theorem to find remainders and factors.

Key Takeaways

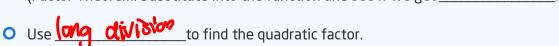
- When P(x) is divided by $(x \varphi)$, the remainder is P(x)
- If $P(\alpha) = 0$ then $(x \alpha)$ is a **fuctor** of P(x).

Learning Objective: [1.5.3] - Find factored form of polynomials.

Key Takeaways

- Steps to factor a cubic polynomial are:
 - Find a single root by trial and error.

(Factor Theorem: Substitute into the function and see if we get _____



- Factorise the quadratic.
- Rational Root Theorem narrows down the possible roots. If the roots are rational numbers, it must be that any.

$$Potential\ root = \pm \frac{Factors\ of\ _Conston!}{Factors\ of\ _Cooling} \frac{a_0}{a_n}$$

Sum and difference of cubes:

$$a^3 + b^3 = (\underline{a + b})(a^2 - ab + b^2)$$

<u>Learning Objective</u>: [1.5.4] - Graph factored and unfactored polynomials.

Key Takeaways

- Graphs of $a(x-h)^n + k$, where n is an Odd Positive Integer that is not equal to 1:
 - The point (h, k) gives us the stationary point of h
- Graphs of $a(x-h)^n + k$, where n is an Even Positive Integer:
 - The point (h, k) gives us the ______
 - These graphs look like a <u>quadractic</u>
- Steps to graphing factorised polynomials:
 - **1.** Plot *x*-intercepts.
 - 2. Determine whether the polynomial is positive or negative.
 - **3.** Use the repeated factors to deduce the shape:

Non-Repeated: Only 2-in-1

Even Repeated: x-intercept and a ______

Odd Repeated: x-intercept and a _______

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-methods-consult-2025

