CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Polynomials [1.5]

Workbook

Outline:

Pg 2-20

Algebra of Polynomial Functions

- Terminologies of Polynomials
- Long Division
- Remainder Theorem
- Factor Theorem
- Factorising Polynomials
- Rational Root Theorem
- Sum and Difference of Cubes

Graphs of a Polynomial

Pg 21-30

- Graphing Polynomials in the form of $a(x-h)^n + k$
- Graphing Factorised Polynomials

Learning Objectives:

- MM12 [1.5.1] Identify the properties of polynomials and solve long division.
- MM12 [1.5.2] Apply remainder and factor theorem to find remainders and factors.
- MM12 [1.5.3] Find factored form of polynomials.
- MM12 [1.5.4] Graph factored and unfactored polynomials.

Section A: Algebra of Polynomial Functions

Sub-Section: Terminologies of Polynomials

Degree of Polynomial Functions

Degree = Highest Power of the Polynomial

Question 1

State the degree of each polynomial.

a.
$$x^3 - 4x^2 + 5x + 6$$

b.
$$3x + 5x^2 - x^7$$

c. A Quadratic.

Roots of Polynomial Functions

Roots = x-intercept

<u>Discussion:</u> Can a quadratic have more than 2 roots? Hence, can there be more roots than the degree?

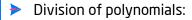
Question 2

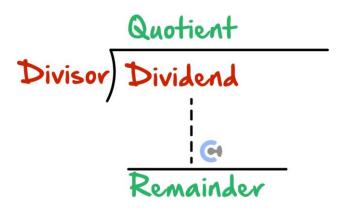
Find the roots of the following polynomial:

$$(x-1)^2(x+3)^4$$

Sub-Section: Long Division

Polynomial Long Division





$$\frac{Dividend}{Divisor} = Quotient + \frac{Remainder}{Divisor}$$

Question 3 Walkthrough.

Simplify the following using polynomial long division.

$$\frac{3x^2 + 10x + 20}{2x + 4}$$

TIP: Always focus on the highest degree term first.

Your turn!

Question 4

Simplify the following using polynomial long division.

$$\frac{x^2 - 3x + 5}{x - 1}$$

Now, a slightly more difficult example!

Question 5

Simplify the following using polynomial long division.

$$\frac{x^3+x^2+2}{x-3}$$

TIP: Always remember to fill in any missing powers of x in the numerator or denominator with "placeholders" that have a coefficient of 0.

Question 6 Extension.

Simplify the following using polynomial long division.

$$\frac{x^4 + 4x^3 + 3x^2 - 2x + 3}{x + 3}$$

Sub-Section: Remainder Theorem

How can we find the remainder without long division?

Exploration: Derivation of the Remainder Theorem

ightharpoonup Consider $\frac{f(x)}{g(x)}$.

$$\frac{f(x)}{g(x)} = q(x) + \frac{R}{g(x)}$$
, where $R = Remainder$

Let's multiply everything by g(x).

$$f(x) =$$

Remember, we are trying to find the remainder R before we do long division.

What functions do we already have before long division?

$$f(x) = q(x) \cdot g(x) + R$$

How can we get f(x) to equal to the remainder R?

 \bullet We can substitute a value of x such that, the ______ is equal to 0.

$$f(\alpha) = \underline{\hspace{1cm}}$$

$$f(\alpha) =$$

Remainder Theorem

Definition: Finds the remainder of long division without the need of long division.

when P(x) is divided by $(x - \alpha)$, the remainder is $P(\alpha)$

- > Steps:
 - **1.** Find x values which makes the divisor equal to 0.
 - **2.** Substitute it into the dividend function.

<u>Discussion:</u> How do we find the remainder of $f(x) \div (x-2)$?

<u>Discussion:</u> How do we find the remainder of $f(x) \div (2x + 1)$?

Question 7 Walkthrough.

Find the remainder of the division, $\frac{f(x)}{g(x)}$, where, $f(x) = x^3 + x^2 - 2x + 5$ and g(x) = x + 1.

Your turn!

Active Recall: Remainder Theorem

- 1. Find x values which makes the equal to 0.
- **2.** Substitute it into the _____ function.

Question 8

Find the remainder of the division, $\frac{f(x)}{g(x)}$, where, $f(x) = x^3 - 2x^2 + 3x + 1$ and g(x) = 2x + 4.

Question 9 Extension.

For the polynomial $f(x) = 3x^3 - 2x^2 + (7 - 2a)x + 1$, we get a remainder of 14 when f(x) is divided by g(x) = x - 1. Find the value of a.

Sub-Section: Factor Theorem

<u>Discussion:</u> What division could f(2) be the remainder of?

<u>Discussion:</u> Hence, what does it mean when f(2) = 0?

This is called the "Factor theorem"

Factor Theorem

For every *x*-intercept, there is a factor:

if
$$P(\alpha) = 0$$
 then, $(x - \alpha)$ is a factor of $P(x)$

Question 10 Walkthrough.

Determine if x + 4 is a factor of $P(x) = 3x^3 + 8x^2 - 20x - 16$.

Your turn!

Question 11

Determine if x + 2 is a factor of $P(x) = 2x^3 - 7x^2 + 7x - 2$.

Question 12 Extension.

Determine if $x - \frac{3}{2}$ is a factor of $P(x) = 6x^3 - x^2 - 20x + 12$.

.

Sub-Section: Factorising Polynomials

Factorising Polynomials

- The steps are:
 - Find a single root by trial and error.

(Factor Theorem: Substitute into the function and see if we get zero.)

- Use long division to find the quadratic factor.
- Factorise the quadratic.

Question 13 Walkthrough.

Find all the roots of $f(x) = x^3 + 3x^2 - 6x - 8$.

NOTE: When the question asks for all roots, you cannot just factorise and end it there!

Your turn!

Question 14

Find all the roots of $f(x) = x^3 + 12x^2 + 17x - 90$.

Question 15

Find all the roots of $f(x) = -2x^3 - 13x^2 - 5x + 6$.

Question 16

Find all the roots of $f(x) = 6x^3 - 27x^2 + 21x + 18$.

Sub-Section: Rational Root Theorem

<u>Discussion:</u> Consider (2x - 1)(3x - 1)(6x - 1). What are the roots and could we have gotten that from trial and error?

So, what should we do?

Rational Root Theorem

Rational Root Theorem narrows down the possible roots.

 $Potential\ root = \pm \frac{Factors\ of\ constant\ term\ a_0}{Factors\ of\ leading\ coefficient\ a_n}$

If the roots are rational numbers, the roots can only be $\pm \frac{factors\ of\ constant\ term\ a_0}{factors\ of\ leading\ coefficient\ a_n}$.

Question 17 Walkthrough.

Find all the roots of $f(x) = 6x^3 + 13x^2 - 14x + 3$.

NOTE: All the roots are part of the suggestion given by the rational root theorem.

Question 18

Find all the roots of $f(x) = 2x^3 - x^2 - 22x - 24$.

 $\underline{\mbox{Discussion:}}$ Why is rational root theorem called a rational root theorem?

Question 19 Extension.

Find all the roots of $f(x) = 6x^3 + 19x^2 - 24x - 16$.

Sub-Section: Sum and Difference of Cubes

Sum and Difference of Cubes

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Question 20 Walkthrough.

Factorise the following polynomial as much as possible.

$$x^3 + 125$$

Question 21

Factorise the following polynomial as much as possible.

$$8x^3 - 216$$

Ouestion 22	Extension

Factorise the following polynomial as much as possible.

 $32x^3 - 256$

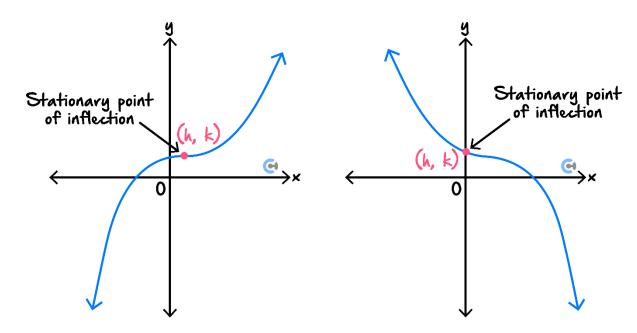
Space f	for Person	al Notes
---------	------------	----------

Section B: Graphs of a Polynomial

<u>Sub-Section</u>: Graphing Polynomials in the Form of $a(x-h)^n + k$

Graphs of $a(x-h)^n + k$, where n is an Odd Positive Integer

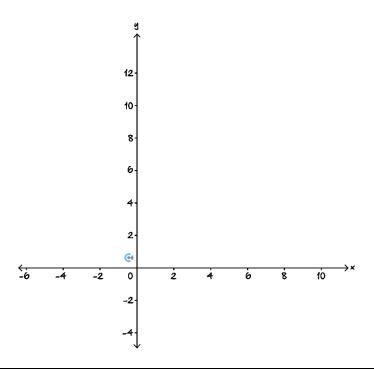
All graphs look like a "cubic".



- The point (h, k) gives us the stationary point of inflection.
- \blacktriangleright n cannot be 1 for this shape to occur!

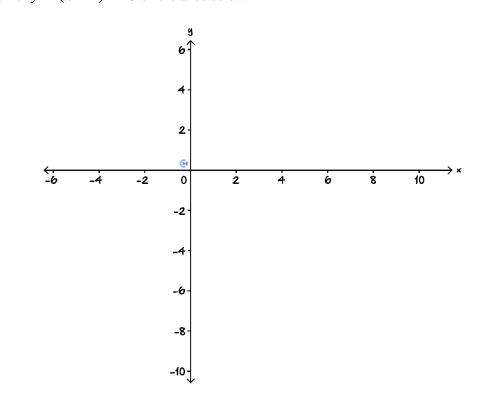
Question 23 Walkthrough.

Sketch the graph of $y = (x + 2)^3 + 3$ on the axes below.



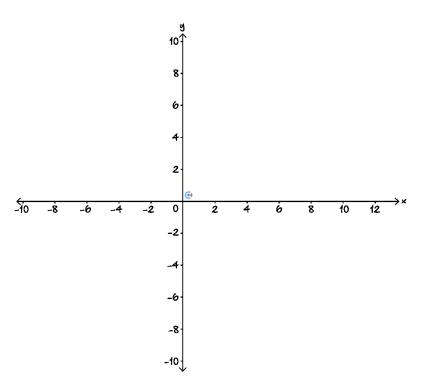
Question 24

Sketch the graph of $y = (x - 1)^3 - 5$ on the axes below.



Question 25

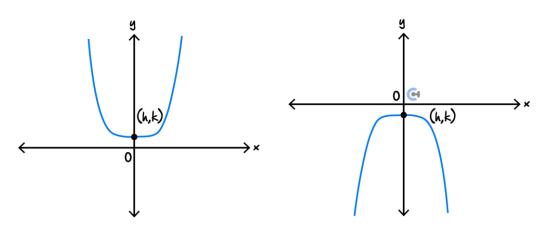
Sketch the graph of $y = \frac{1}{2}(x-2)^3 + 6$ on the axes below.



What about even powers?

Graphs of $a(x-h)^n + k$, where n is an Even Positive Integer

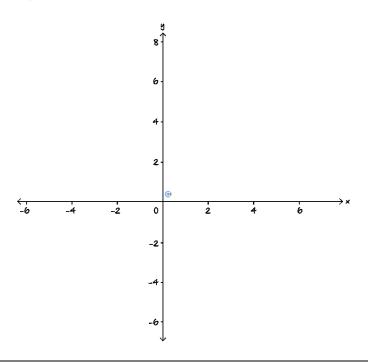
All graphs look like a "quadratic".



The point (h, k) gives us the turning point.

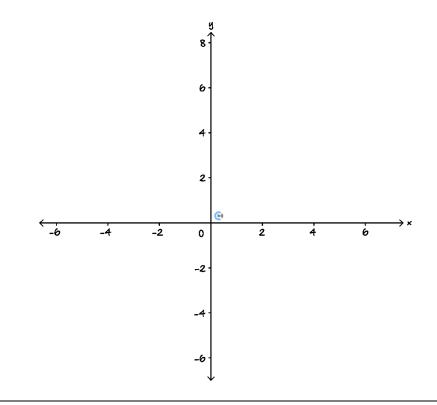
Question 26 Walkthrough.

Sketch the graph of $y = (x + 2)^4 + 1$ on the axes below.



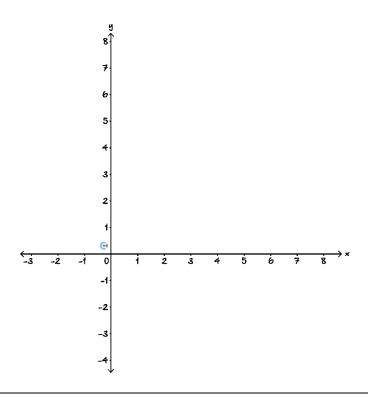
Question 27

Sketch the graph of $y = -(x - 1)^4 + 4$ on the axes below.



Question 28 Extension.

Sketch the graph of $y = \frac{1}{2}(x-2)^4 - 3$ on the axes below.

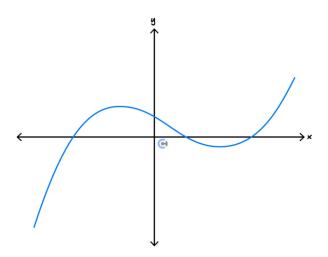


Sub-Section: Graphing Factorised Polynomials

What about the graph of a factorised polynomial?

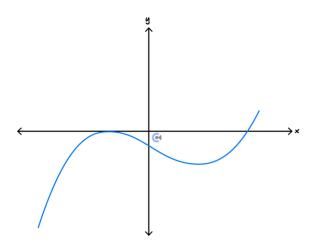
Exploration: Graphs of Factorised Polynomials

All ______ linear factors correspond to ______ of the graph.



E.g., f(x) = (x - a)(x - b)(x - c) results in x-intercepts at (a, 0), (b, 0) and (c, 0).

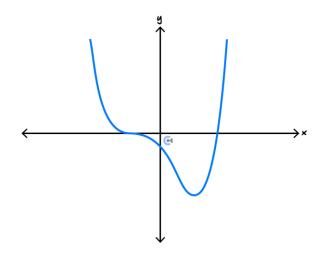
All ______ linear factors correspond to ______ of the graph.



ONTOUREDUCATION VCE Methods ½ Questions? Message +61 440 138 726

E.g., $f(x) = (x - a)^2(x - b)$ will have an x-intercept (a, 0) which is also a local minimum/maximum.

All _____ linear factors of the graph. correspond to _____



E.g., $f(x) = (x - a)^3 (x - b)$ has an x-intercept (a, 0) which is also a stationary point of inflection.

Graphs of Factorised Polynomials

- Steps:
 - **1.** Plot *x*-intercepts.
 - **2.** Determine whether the polynomial is positive or negative.
 - **3.** Use the repeated factors to deduce the shape.

Non-Repeated: Only x-intercept.

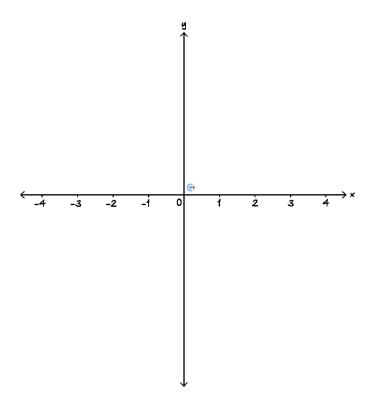
Even Repeated: *x*-intercept and a turning point.

Odd Repeated: *x*-intercept and a stationary point of inflection.

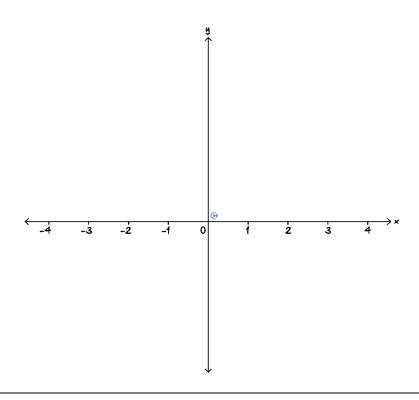
Question 29 Walkthrough.

Sketch the graphs of the following functions on the axes provided. Ignore the y-axis scale.

a.
$$y = (x+1)^2(x-2)$$



b.
$$y = \left(x - \frac{3}{2}\right)^3 (4 - x)$$

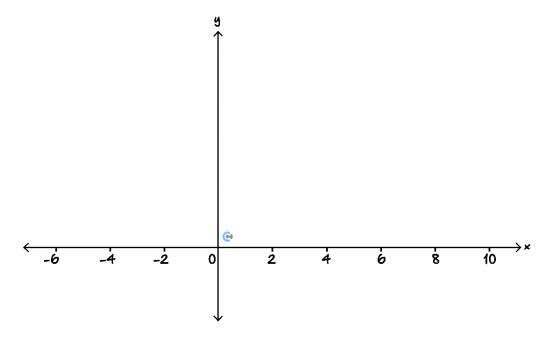


Your turn!

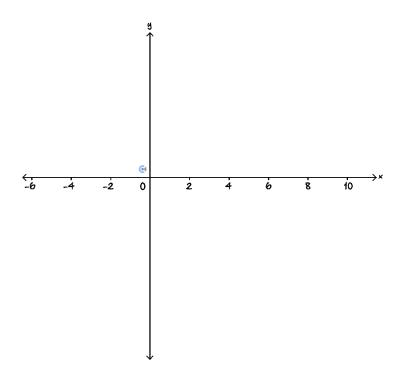
Question 30

Sketch the graphs of the following functions on the axes provided. Ignore the y-axis scale.

a.
$$y = (2 + x)(5 - x)^2$$



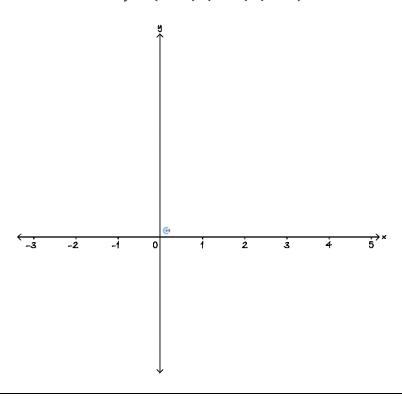
b.
$$y = (x+3)^3(x-1)(x-5)$$



Question 31

Sketch the graph of the following function on the axes provided. Ignore the y-axis scale.

$$y = (x-1)^3(x+1)^2(x-2)$$



Contour Check

<u>Learning Objective</u>: [1.5.1] - Identify the properties of polynomials and solve long division.

Key Takeaways

- ☐ The degree of a polynomial is the polynomial's _____power.
- The roots of a polynomial are its ______.
- For polynomial long division:

$$\frac{Dividend}{Divisor} = Quotient + \underline{\hspace{1cm}}$$

<u>Learning Objective</u>: [1.5.2] - Apply remainder and factor theorem to find remainders and factors.

Key Takeaways

- □ When P(x) is divided by $(x \alpha)$, the remainder is _____.

Learning Objective: [1.5.3] - Find factored form of polynomials.

Key Takeaways

- Steps to factor a cubic polynomial are:
 - Find a single root by trial and error.

(Factor Theorem: Substitute into the function and see if we get _______.)

- O Use ______to find the quadratic factor.
- Factorise the quadratic.
- Rational Root Theorem **narrows down** the possible roots. If the roots are rational numbers, it must be that any.

$$Potential\ root = \pm rac{Factors\ of\ __________a_0}{Factors\ of\ __________a_n}$$

Sum and difference of cubes:

$$a^3 + b^3 = (\underline{})(a^2 - ab + b^2)$$

$$a^{3} + b^{3} = (\underline{})(a^{2} - ab + b^{2})$$
 $a^{3} - b^{3} = (\underline{})(a^{2} + ab + b^{2})$

<u>Learning Objective</u>: [1.5.4] - Graph factored and unfactored polynomials.

Key Takeaways

	Graphs of $a(x -$	$(-h)^n + k$, where n is ar	Odd Positive	Integer tha	at is not eq	ual to 1:
--	-------------------	--------------	-------------------	--------------	-------------	--------------	-----------

- \bigcirc The point (h,k) gives us the stationary point of _____.
- Graphs of $a(x-h)^n + k$, where n is an Even Positive Integer:
 - \bigcirc The point (h,k) gives us the _____.
 - These graphs look like a ______.
- Steps to graphing factorised polynomials:
 - **1.** Plot *x*-intercepts.
 - 2. Determine whether the polynomial is positive or negative.
 - **3.** Use the repeated factors to deduce the shape:

Non-Repeated: Only ______.

Even Repeated: x-intercept and a ______.

Odd Repeated: *x*-intercept and a _____

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via <u>bit.ly/contour-methods-consult-2025</u> (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

