

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½
Polynomials [1.5]

Test Solutions

19 Marks. 20 Minutes Writing. 1 Minute Reading.

Results:

Test Questions	/19	
Test gaestions	, 13	

Section A: Test Questions (19 Marks)

Question 1 (4 marks)

Tick whether the following statements are **True** or **False**.

	Statement	True	False
a.	The minimum number of roots for a cubic is three.		✓
b.	The root of a polynomial that has a factor of $x + 3$ is $x = 3$.		✓
c.	If $f(1) = 2$, then $f(x) \div (3x - 6)$ has a remainder of 2.		✓
d.	The remainder of $(x^3 + 3x^2 - x + 2) \div (x - 2)$ is 20.	✓	
e.	To factorise a quartic, we generally need to find two roots by trial and error.	>	
f.	The rational root theorem suggests that $ax^3 + bx^2 + cx + d$ will have roots that are factors of d divided by the factors of a .	~	
g.	Graphs of polynomials where the highest degree is odd, both start and finish at either positive or negative infinity.		✓
h.	All repeated roots correspond to turning points on the graph of a polynomial.		✓

Consider the function $f(x) = x^3 + ax^2 + bx$. If x - 1 is a factor of f(x) and the remainder of $f(x) \div (x + 4)$ is given by -20, find the value(s) of a and b.

$$f[x_{-}] := x^{3} + a * x^{2} + b * x$$

$$Solve[f[1] == 0 && f[-4] == -20, \{a, b\}]$$

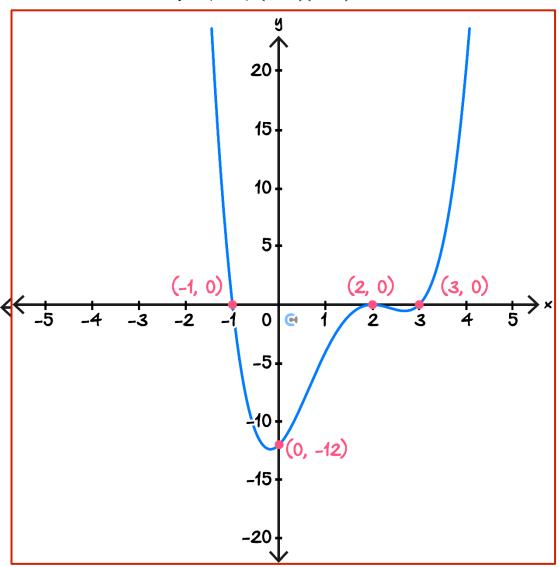
$$\{\{a \rightarrow 2, b \rightarrow -3\}\}$$

Question 3 (3 marks)

Solve the following equation for x.

$$2x^3 + 11x^2 = 12(x+3)$$

Solve
$$[2 x^3 + 11 x^2 = 12 (x + 3)]$$


$$\left\{ \left\{ x \to -6 \right\}, \left\{ x \to -\frac{3}{2} \right\}, \left\{ x \to 2 \right\} \right\}$$

Question 4 (3 marks)

Sketch the graph of the following function on the axes below. Label all axes intercepts with their coordinates.

$$y = (x-2)^2(x-3)(x+1)$$

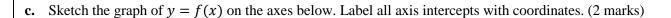
Question 5 (6 marks)

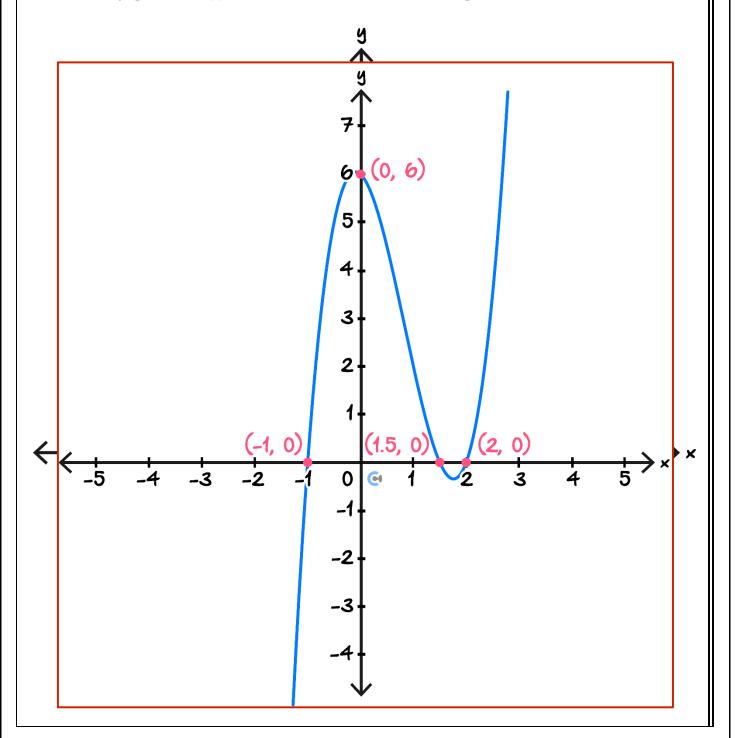
Consider the function $f(x) = 2x^3 - 5x^2 - ax + 6$.

It is known that the remainder, when f(x) is divided by x - 3, is 12.

a. Show that $\alpha = 1$. (1 mark)

We have that f(3) = 12. Therefore, f(3) = 54 - 45 - 3a + 6 = 12 15 - 3a = 12a = 1


b. Hence, solve f(x) = 0. (3 marks)


We find that f(-1) = 0 and so x + 1 is a factor. We can then factorise f(x) to be

$$f(x) = (x+1)(2x-3)(x-2)$$

And so f(x) = 0 has solutions $x = -1, \frac{3}{2}, 2$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

