

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Polynomials [1.5]

Homework Solutions

Homework Outline:

Compulsory Questions	Pg 2 – Pg 18
Supplementary Questions	Pg 19 — Pg 35

Section A: Compulsory Questions

Sub-Section [1.5.1]: Identify the Properties of Polynomials and Solve Long Division

Question 1

Consider the polynomial $f(x) = 4x^3 - 2x^2 - x + 5$.

a. State the degree of f(x).

3

b. State the leading coefficient of f(x).

4

c. State the constant term of f(x).

5

Question	2
Oucsuon	_

Simplify the following using polynomial long division:

$$\frac{x^3 - 10x^2 + 8x + 3}{x - 2}$$

$$x^2 - 8x - \frac{13}{x - 2} - 8$$

Simplify the following using polynomial long division:

$$\frac{2x^4 - 8x^2 + 6x}{x + 3}$$

$$2x^3 - 6x^2 + 10x + \frac{72}{x+3} - 24$$

Question 4 Tech-Active.

Simplify the following using polynomial long division:

$$\frac{2x^4 - 3x^3 - 8x^2 + 4x - 7}{x + 2}$$

$$= \frac{2x^3 - 7x^2 + 6x + \frac{9}{x+2} - 8}{ \frac{\text{TI:}}{\text{expand}} \left(\frac{2 \cdot x^4 - 3 \cdot x^3 - 8 \cdot x^2 + 4 \cdot x - 7}{x+2} \cdot x \right) }{\frac{9}{x+2} + 2 \cdot x^3 - 7 \cdot x^2 + 6 \cdot x - 8} = \frac{\frac{\text{Mathematica:}}{\text{In}[48]^2 - 8 + 6 \times - 7 \times^2 + 2 \times^3 + \frac{9}{2 + x}]}{\frac{9}{2 + x}} = \frac{\frac{\text{Casio:}}{\text{expand}} \left(\frac{2x^4 - 3x^4 - 3x^3 - 8x^2 + 4x - 7}{x+2} \cdot x \right)}{\frac{2 \cdot x^3 - 7 \cdot x^2 + 6 \cdot x + \frac{9}{x+2} - 8}{x+2}} = \frac{-\frac{1}{x^2} - \frac{1}{x^2} - \frac{1}{$$

<u>Sub-Section [1.5.2]</u>: Apply Reminder and Factor Theorem to Find Reminders and Factors

Question 5

Find the remainder of the division, $\frac{f(x)}{g(x)}$, where:

a.
$$f(x) = x^3 - 3x^2 + 2x + 1$$
 and $g(x) = x - 2$.

f(2) = 1

b.
$$f(x) = 2x^3 - x^2 + 3x + 4$$
 and $g(x) = x + 1$.

f(-1) = -2

c.
$$f(x) = -x^3 + 6x^2 + 3x + 2$$
 and $g(x) = x - 3$.

f(3) = 38

For the polynomial $f(x) = 3x^3 - 2x^2 + (9 - 2a)x + 2$, we get a remainder of 8 when f(x) is divided by g(x) = x - 1. Find the value of a.

We have that $f(1) = 8 \implies a = 2$.

_		
O	nestion	7

Consider the expression:

$$f(x) = x^3 + ax^2 - 2x + b$$

Where *a* and *b* are non-zero constants.

It is known that x - 2 is a factor of f(x) and that the remainder when f(x) is divided by x - 3 is 2. Find the values of a and b.

We must have that f(2) = 0 and f(3) = 2 so we get the simultaneous equations

$$4 + 4a + b = 0$$

$$21 + 9a + b = 2$$

which yield a = -3 and b = 8.

<u>Sub-Section [1.5.3]</u>: Find Factored Form of Polynomials

Question 8

Factorise $f(x) = x^3 - 4x^2 + x + 6$ as the product of three linear factors.

f(x) = (x+1)(x-2)(x-3)

Question 9

Factorise $f(x) = x^3 - 4x^2 - 17x + 60$ as the product of three linear factors.

f(x) = (x-3)(x-5)(x+4)

Question 10	עעע	
Factorise $f(x) = 8x^3 - 56x^2 - 70x + 48$ as the product of three linear factors.		

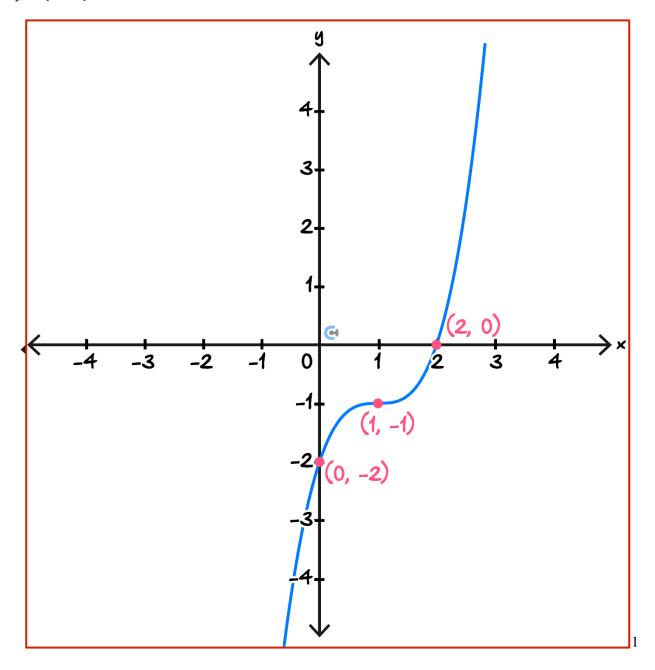
$$f(x) = (2x - 1)(4x + 6)(x - 8)$$

Sub-Section [1.5.4]: Graph Factored and Unfactored Polynomials

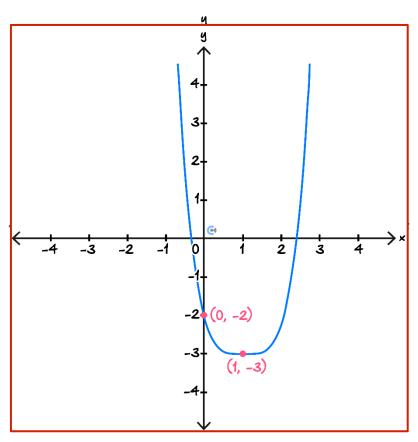
Question 11

Sketch the graphs of each of the functions on the axes provided.

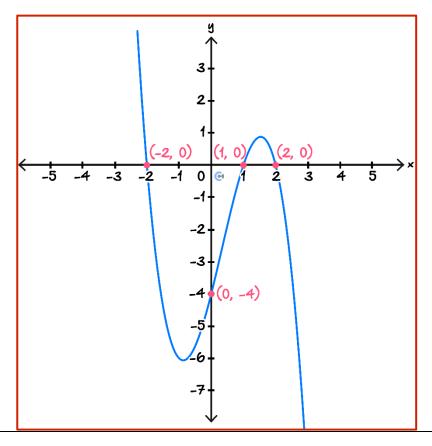
a.
$$y = (x-1)^3 - 1$$



b. $y = (x-1)^4 - 3$

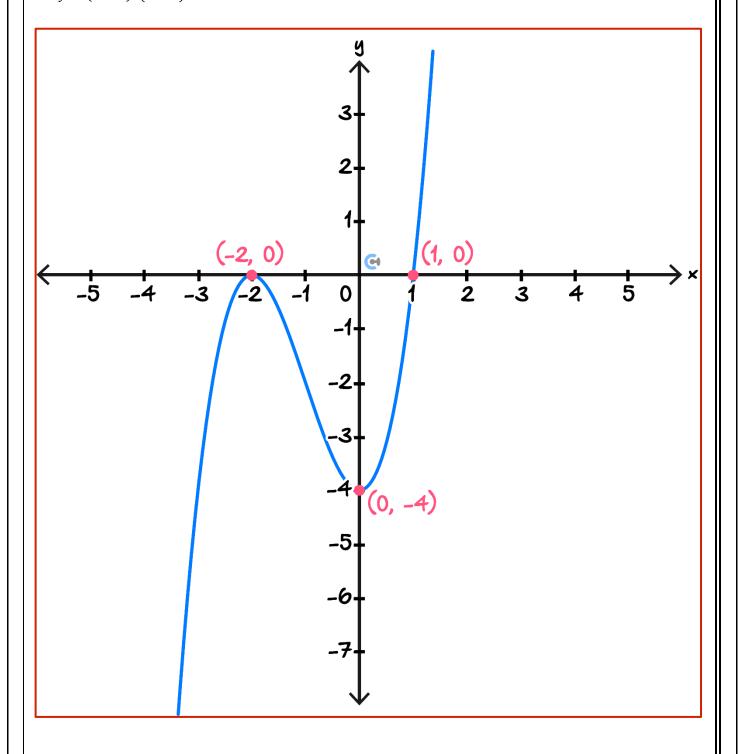


c. y = -(x+2)(x-1)(x-2)

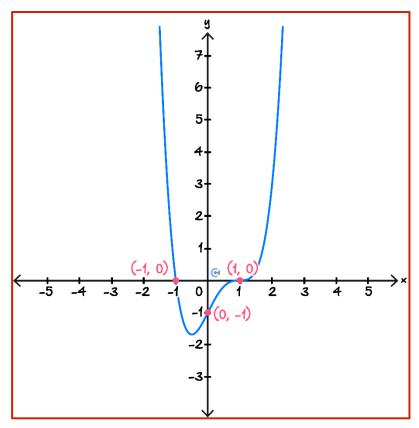


Sketch the graphs of each of the functions on the axes provided.

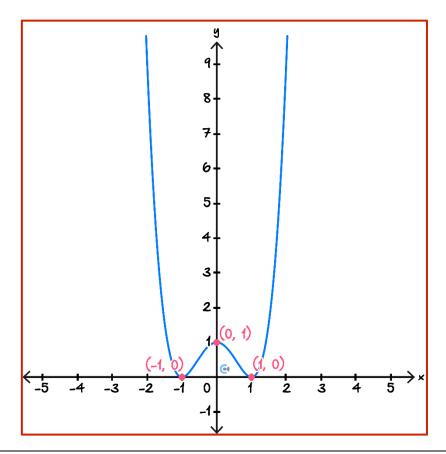
a.
$$y = (x+2)^2(x-1)$$



b.
$$y = (x+1)(x-1)^3$$

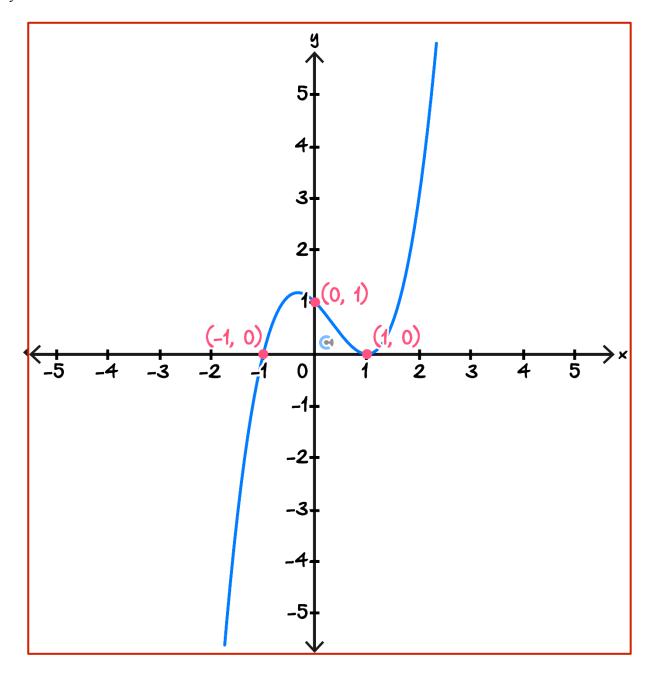


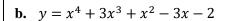
c.
$$y = (x+1)^2(x-1)^2$$

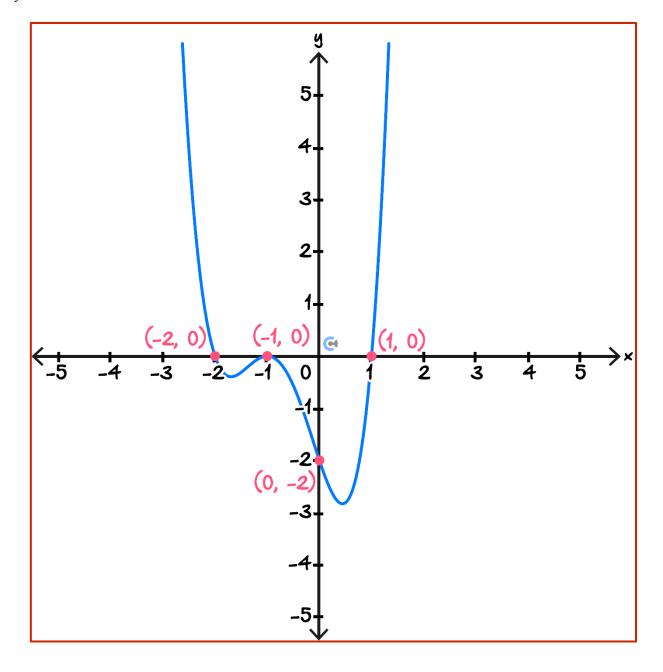


Factorise and hence, sketch the graphs of each of the functions on the axes provided.

a.
$$y = x^3 - x^2 - x + 1$$

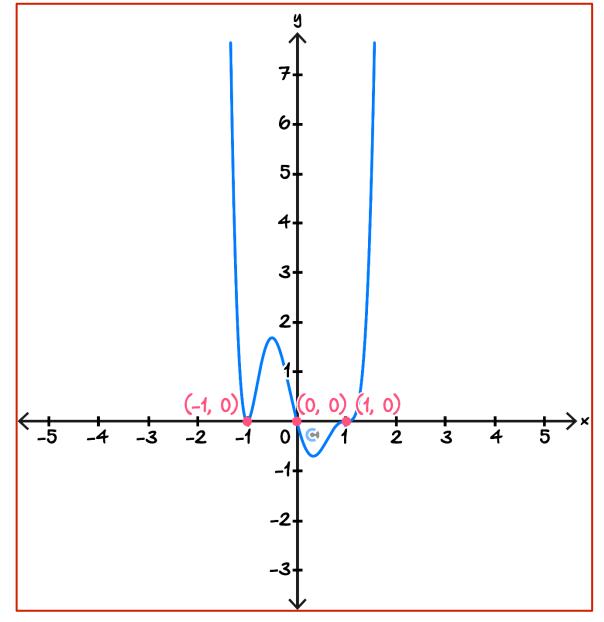






 $\mathbf{c.} \quad y = 4x^6 - 4x^5 - 8x^4 + 8x^3 + 4x^2 - 4x$

HINT: $(x-1)^3$ is a factor.



Sub-Section: Final Boss

Question 14

Consider the polynomial $f(x) = ax^3 - bx^2 + x + 2$, where a and b are integers. It is known that (x - 1) is a factor of f(x) and that there is a remainder of -6 when f(x) is divided by (x + 1).

a. Show that a = 2 and b = 5.

By the remainder theorem we must have that f(1) = 0 and f(-1) = -6, therefore,

$$a - b + 3 = 0$$

$$-a - b + 1 = -6$$

$$\implies -2b + 4 = -6$$

$$\implies b = 5$$

$$\implies a = 2$$

b. Solve the equation f(x) = 0.

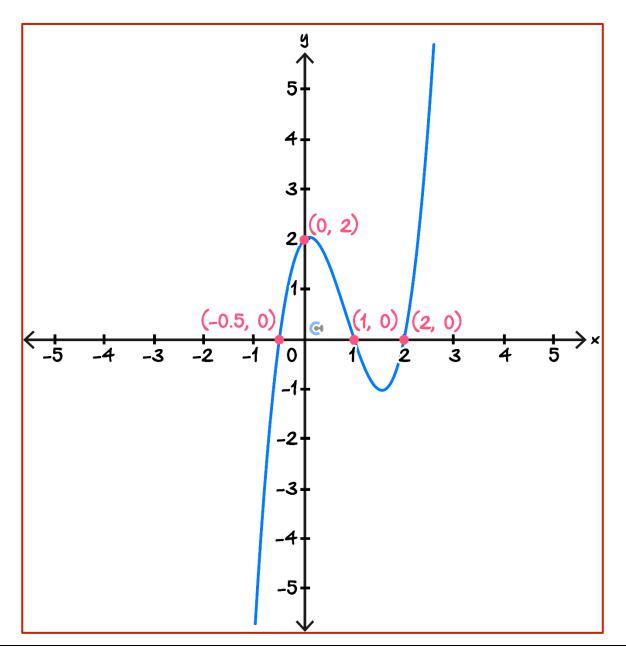
We must solve $f(x) = 2x^3 - 5x^2 + x + 2 = 0$. Factorise f(x). $f(x) = (x - 1)(2x^2 - 3x - 2)$

$$f(x) = (x-1)(2x^2 - 3x - 2)$$

= $(x-1)(2x+1)(x-2)$

Therefore, $f(x) = 0 \implies x = -\frac{1}{2}, 1, 2$

c. Sketch the graph of y = f(x) on the axes below. Label all axes intercepts with coordinates.



Section B: Supplementary Questions

Sub-Section [1.5.1]: Identify the Properties of Polynomials and Solve Long Division

Question 15

Consider the polynomial $f(x) = 3x^2 - 4x^4 + 1 - 2x$.

a. State the degree of f(x).

4

b. State the leading coefficient of f(x).

-4

c. State the constant term of f(x).

1

On	estion	1	6

Simplify the following using polynomial long division:

$$\frac{x^3 + 2x^2 - 5x - 6}{x - 2}$$

 $x^2 + 4x + 3$

Question 17

The polynomial $P(x) = x^4 - 2x^2 - 5x + 3$ can be written in the form P(x) = Q(x)(x-2) + r, where $r \in R$ and Q(x) is a real valued polynomial. Find Q(x) and r.

We divide P(x) by (x-2) to get Q(x). The remainder is r. Thus $Q(x) = x^3 + 2x^2 + 2x - 1$ and r = 1.

The polynomial $P(x) = 2x^4 + 3x^3 - 5x + 1$ can be written in the form $P(x) = Q(x)(x^2 - 2x + 3) + R(x)$, where R(x) is a polynomial of degree 1 and Q(x) is a polynomial.

a. State the degree of Q(x).

Since the degree of R(x) is 1, Q(x) needs an x^2 term so that P(x) has an x^4 term. Similarly Q(x) cannot have an x^n term for n > 2. Hence the degree of Q(x) is 2.

b. Find Q(x) and R(x).

 $Q(x) = 2x^2 + 7x + 8$ and R(x) = -10x - 23.

<u>Sub-Section [1.5.2]</u>: Apply Reminder and Factor Theorem to Find Reminders and Factors

Question 19

Find the remainder of the division $\frac{f(x)}{g(x)}$, where:

a. $f(x) = x^3 - 7x + 8$ and g(x) = x + 3.

Our remainder is f(-3) = -27 + 21 + 8 = 2.

b. $f(x) = 2x^3 - 6x^2 - 2x + 4$ and g(x) = x - 1.

Our remainder is f(1) = 2 - 6 - 2 + 4 = -2

c. $f(x) = -3x^3 + 8x^2 - 3x + 2$ and g(x) = 3x + 1.

Our remainder is $f\left(-\frac{1}{3}\right) = \frac{1}{9} + \frac{8}{9} + 1 + 2 = 4.$

Question	20

For the polynomial $f(x) = ax^3 + 2x^2 - 3ax + 1$, we get a remainder of 5 when f(x) is divided by x + 2. Find the value of a.

We have that $f(-2) = -8a + 8 + 6a + 1 = 9 - 2a = 5 \implies a = 2$.

Consider the expression:

$$f(x) = 2x^3 - ax^2 + b$$

Where a and b are non-zero constants.

It is known that x + 1 is a factor of f(x) and that the remainder when f(x) is divided by x - 2 is 3. Find the values of a and b.

Since x + 1 is a factor of f(x) we know that f(-1) = -2 - a + b = 0.

Since remainder of $\frac{f(x)}{x-2}$ is 3, we know that f(2) = 16 - 4a + b = 3. We get the following pair of simultaneous equations.

$$-2 - a + b = 0$$

$$16 - 4a + b = 3$$

Solving these equations yields a = 5 and b = 7.

CONTOUREDUCATION

Question 22

Find a cubic polynomial f(x) which has the following properties:

- f(x) has a leading coefficient of -2.
- f(x) divided by $x^2 1$ leaves a remainder of 1.
- \rightarrow x-3 is a factor of f(x).

f(x) will be of the form $f(x) = -2x^3 + ax^2 + bx + c$.

Since when f(x) is divided by $x^2 - 1$ it leaves a remainder of 1 we know that f(1) = f(-1) = 1. We also know that f(3) = 0.

Thus we have the following equations.

$$-2 + a + b + c = 1$$

$$2 + a - b + c = 1$$

$$-54 + 9a + 3b + c = 0$$

By subtracting the first equation from the second we get $4-2b=0 \implies b=2$.

We thus know that $a + c = 1 \implies c = 1 - a$ and -48 + 9a + c = 0. From here we see that

$$-47 + 8a = 0 \implies a = \frac{47}{8}.$$

Thus
$$c = 1 - \frac{47}{8} = -\frac{39}{8}$$
.

Hence our polynomial is $-2x^3 + \frac{47}{8}x^2 + 2x - \frac{39}{8}$

<u>Sub-Section [1.5.3]</u>: Find Factored Form of Polynomials

Que	estion 23	
Fact	torise $x^3 - 2x^2 - x + 2$ as a product of three linear factors.	
	(x-1)(x+1)(x-2)	

Question 24

Factorise $x^3 - 6x^2 + 3x + 10$ as a product of three linear factors.

(x-5)(x+1)(x-2)

Question	25
Question	40

Factorise $2x^3 + \frac{25x^2}{3} + x - \frac{4}{3}$ as a product of three linear factors.

 $\frac{1}{3}(2x+1)(3x-1)(x+4)$

Use the fact that $x^n - 1 = (1 + x + x^2 + \dots + x^{n-1})(x - 1)$ to factorise $1 + x^2 + x^4 + x^6 + x^8$ as a product of two-degree four polynomials.

By our hint we know that $(1 + x^2 + x^4 + x^6 + x^8)(x^2 - 1) = x^{10} - 1$. We also know that $x^{10} - 1 = (x^5 - 1)(x^5 + 1)$.

Again applying our fact we see that $x^5 - 1 = (x - 1)(1 + x + x^2 + x^3 + x^4)$ and that $x^5 + 1 = -((-x)^5 - 1) = -(-x - 1)(1 - x + x^2 - x^3 + x^4) = (x + 1)(1 - x + x^2 - x^3 + x^4)$. Hence,

$$x^{10} - 1 = (x - 1)(1 + x + x^{2} + x^{3} + x^{4})(x + 1)(1 - x + x^{2} - x^{3} + x^{4})$$
$$= (x^{2} - 1)(1 + x + x^{2} + x^{3} + x^{4})(1 - x + x^{2} - x^{3} + x^{4})$$

Dividing both sides by $x^2 - 1$ we get that,

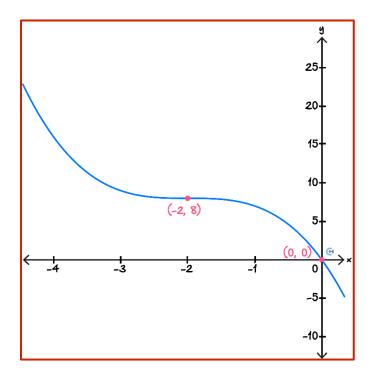
$$1 + x^2 + x^4 + x^6 + x^8 = (1 + x + x^2 + x^3 + x^4)(1 - x + x^2 - x^3 + x^4).$$

Sub-Section [1.5.4]: Graph Factored and Unfactored Polynomials

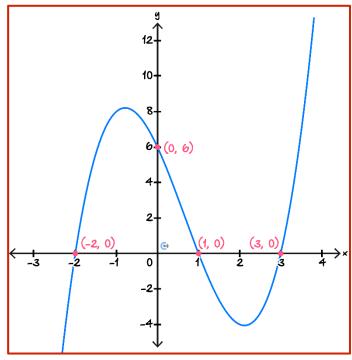
Question 27

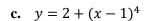
Sketch the graphs of each of the functions on the axes provided.

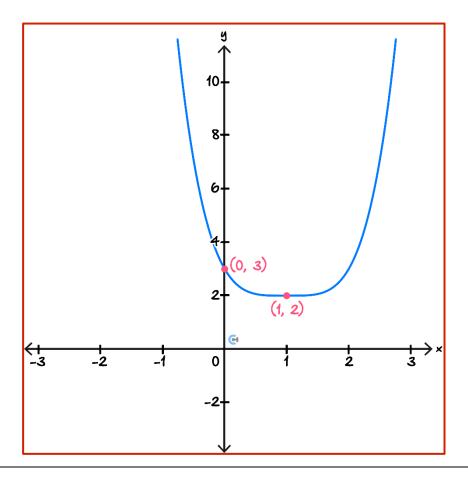
a.
$$y = 8 - (x + 2)^3$$



b.
$$y = (x-1)(x+2)(x-3)$$

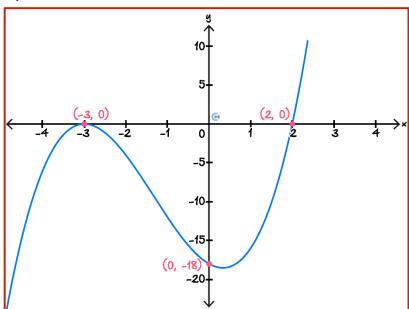




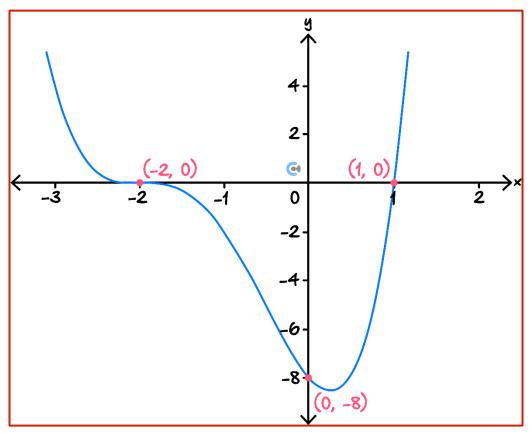


Sketch the graphs of each of the functions on the axes provided.

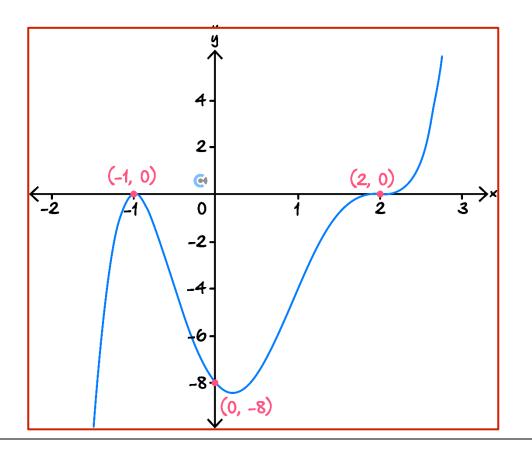
a.
$$y = (x+3)^2(x-2)$$



b.
$$y = (x - 1)(x + 2)^3$$

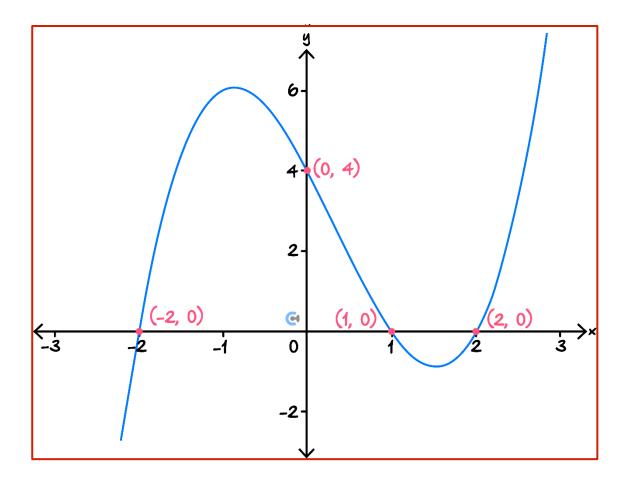


c.
$$y = (x+1)^2(x-3)^3$$

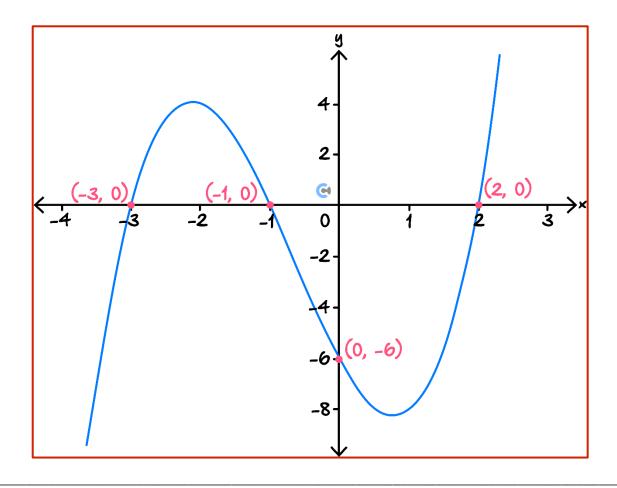


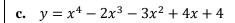
Factorise and hence, sketch the graphs of each of the functions on the axes provided.

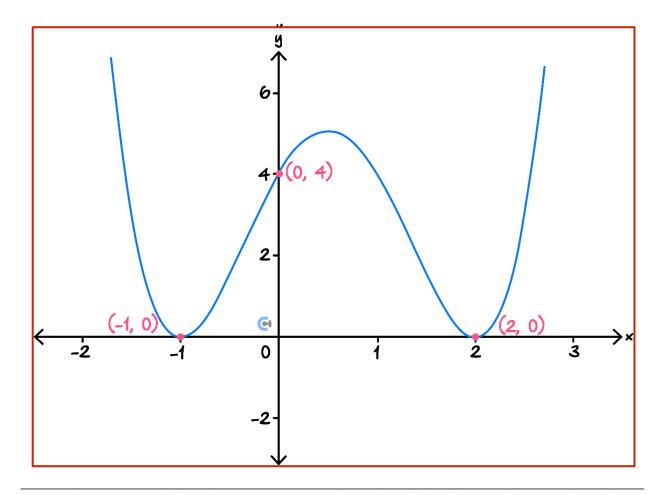
a.
$$y = x^3 - x^2 - 4x + 4$$



b. $y = x^3 + 2x^2 - 5x - 6$



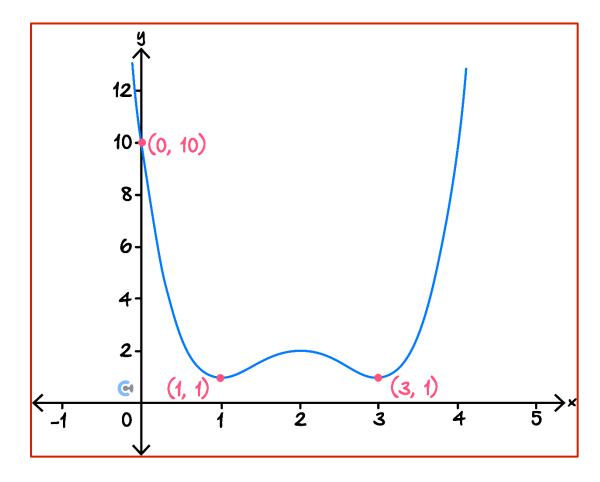




Solution Pending

Sketch the graph of $y = x^4 - 8x^3 + 22x^2 - 24x + 10$ on the axis below.

Hint: Factorise $x^4 - 8x^3 + 22x^2 - 24x + 9$ instead.



Solution Pending

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit:blue-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

