

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Quadratics [1.3]

Test Solutions

Results:

Test Questions	/21	
Extension Test Question	/5	

Section A: Test Questions (21 Marks)

INSTRUCTION: 21 Marks. Y Minutes Reading. Z Minutes Writing.

Question 1 (4 marks)

Tick whether the following statements are **true** or **false**.

	Statement	True	False
a.	Every quadratic can be factorised as the product of two real linear factors.		✓
b.	If the discriminant of a quadratic is negative, then the quadratic has two real solutions.		✓
c.	We can find the turning point of a quadratic if we know only the coordinates of two x -intercepts.		✓
d.	All quadratics have a turning point form.	✓	
e.	The solution to the quadratic inequality $x^2 > 4$ is $x \le -2$ or $x \ge 2$.		✓
f.	The axis of symmetry of $y = 3x^2 - 12x + 13$ is at $x = 2$.	✓	
g.	The equation $x^4 - 2x^2 + 1 = 0$ has two distinct real solutions.	✓	✓
h.	The graph of $y = ax^2 + bx + c$ is symmetric about the line $x = \frac{b}{2a}$.		

Question 2 (3 marks)

The sum of two numbers is 8 and the product of the two numbers is 15.

a. Write down a quadratic equation in the form $ax^2 + bx + c = 0$ that can be solved to find the numbers. (1 mark)

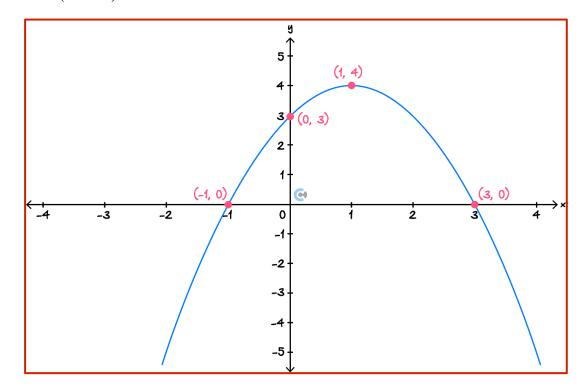
$$x(8 - x) = 15$$

$$8x - x^{2} = 15$$

$$x^{2} - 8x + 15 = 0$$

b. Find the two numbers. (2 marks)

Solution: $(x-3)(x-5) = 0 \implies x = 3, 5$ The two numbers are 3 and 5.


Question 3 (5 marks)

Consider the function $f(x) = -x^2 + 2x + 3$.

a. Write f(x) in the form $a(x-h)^2 + k$. (1 mark)

Solution: $f(x) = -(x-1)^2 + 4$

b. Sketch the graph of y = f(x) on the axes below. Label the turning point and all axes intercepts with coordinates. (2 marks)

c. Hence, find the value(s) of x, such that f(x) > 3. (2 marks)

Solution: 0 < x < 2

Question 4 (4 marks)

Sam is competing in a shotput competition. The trajectory of the shot (name of the spherical ball used), is modelled by a quadratic equation $y = ax^2 + bx + c$, where $y \ge 0$ is the height of the shot above the ground in metres and $x \ge 0$ is the horizontal distance of the shot in metres.

The shot reaches a maximum height of $\frac{7}{2}$ metres when it has travelled two metres horizontally, and it has a height of $\frac{3}{2}$ when it is released (x = 0).

a. Write down the trajectory of the shot in turning point form. (2 marks)

Solution: $y = a(x-2)^2 + \frac{7}{2}$ from the description. We sub in the point $\left(0, \frac{3}{2}\right)$ to find a

$$\frac{3}{2} = 4a + \frac{7}{2}$$

$$4a = -2$$

$$a = -\frac{1}{2}$$

Therefore, $y = -\frac{1}{2}(x-2)^2 + \frac{7}{2}$

b. Find the horizontal distance that Sam's shot travels. (2 marks)

Solution: Find when y = 0. Solve

$$-\frac{1}{2}(x-2)^2 + \frac{7}{2} = 0$$
$$(x-2)^2 = 7$$
$$x = 2 \pm \sqrt{7}$$

Since x > 0, the horizontal distance that the shot travels is $2 + \sqrt{7}$ metres.

Question 5 (5 marks)

Consider the function $f(x) = x^4 - 6x^2 + 8$.

a. Solve the equation f(x) = 0. (3 marks)

Solution: Let $x^2 = a$

$$a^{2} - 6a + 8 = 0$$

 $(a - 3)^{2} = 1$
 $a = 3 \pm 1$

a = 2, 4

Therefore, $x = \pm \sqrt{2}, \pm 2$

b. Use the discriminant to determine the value(s) of k, such that f(x) + k = 0 has no real solutions. (2 marks)

Solution: Let $x^2 = a$, now consider the quadratic

$$a^2 - 6a + 8 + k = 0$$

If this quadratic has no real solutions then f(x) = k = 0 will have no real solutions.

$$\Delta < 0 \implies 36 - 4(8 + k) < 0$$

 $4 - 4k < 0$

$$4-4k<0$$

k > 1

Our solution is k > 1.

Section B: Extension Test Question (5 Marks)

INSTRUCTION: 5 Marks. Y Minutes Reading. Z Minutes Writing.

Question 6 (5 marks)

a. Solve $x^4 - 2kx^2 + 4 = 0$ for x, in terms of k, where $k \in R$. (3 marks)

Solution: Let $x^2 = a^2$

$$a^{2} - 2ak + 4 = 0$$

 $(a - k)^{2} = k^{2} - 4$
 $a = k \pm \sqrt{k^{2} - 4}$

Therefore,

$$x = \sqrt{k + \sqrt{k^2 - 4}}, \sqrt{k - \sqrt{k^2 - 4}}, -\sqrt{k + \sqrt{k^2 - 4}}, -\sqrt{k - \sqrt{k^2 - 4}}$$

b. Hence, determine the values of k for which $x^4 - 2kx^2 + 4 = 0$ has 4 real solutions. (2 marks)

Solution: Firstly, require $k^2-4>0 \implies k>2$ or k<-2. Then we require that $k-\sqrt{k^2-4}>0 \implies k>2$ Therefore, k>2.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit:blue-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

