

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Quadratics [1.3]

Test

Results:

Test Questions	/21	
Extension Test Question	/5	

Section A: Test Questions (21 Marks)

INSTRUCTION: 21 Marks. Y Minutes Reading. Z Minutes Writing.

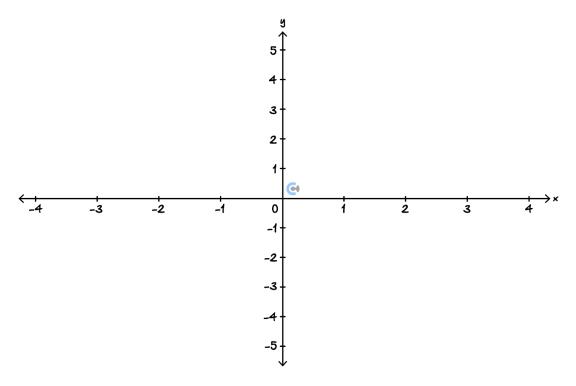
Question 1 (4 marks)

Tick whether the following statements are **true** or **false**.

	Statement	True	False
a.	Every quadratic can be factorised as the product of two real linear factors.		
b.	If the discriminant of a quadratic is negative, then the quadratic has two real solutions.		
c.	We can find the turning point of a quadratic if we know only the coordinates of two x -intercepts.		
d.	All quadratics have a turning point form.		
e.	The solution to the quadratic inequality $x^2 > 4$ is $x \le -2$ or $x \ge 2$.		
f.	The axis of symmetry of $y = 3x^2 - 12x + 13$ is at $x = 2$.		
g.	The equation $x^4 - 2x^2 + 1 = 0$ has two distinct real solutions.		
h.	The graph of $y = ax^2 + bx + c$ is symmetric about the line $x = \frac{b}{2a}$.		

Space for Personal Notes

Question 2 (3 marks)				
The sum of two numbers is 8 and the product of the two numbers is 15.				
a.	Write down a quadratic equation in the form $ax^2 + bx + c = 0$ that can be solved to find the numbers. (1 mark)			
b.	Find the two numbers. (2 marks)			
Space for Personal Notes				


Question 3 (5 marks)

Consider the function $f(x) = -x^2 + 2x + 3$.

a. Write f(x) in the form $a(x - h)^2 + k$. (1 mark)

b. Sketch the graph of y = f(x) on the axes below. Label the turning point and all axes intercepts with coordinates. (2 marks)

c. Hence, find the value(s) of x, such that f(x) > 3. (2 marks)

Question 4 (4 marks)				
Sam is competing in a shotput competition. The trajectory of the shot (name of the spherical ball used), is modelled by a quadratic equation $y = ax^2 + bx + c$, where $y \ge 0$ is the height of the shot above the ground in metres and $x \ge 0$ is the horizontal distance of the shot in metres.				
The shot reaches a maximum height of $\frac{7}{2}$ metres when it has travelled two metres horizontally, and it has a height of $\frac{3}{2}$ when it is released $(x = 0)$.				
a. Write down the trajectory of the shot in turning point form. (2 marks)				
Find the beside and the second of the second				
b. Find the horizontal distance that Sam's shot travels. (2 marks)				

Space for Personal Notes

Qu	Question 5 (5 marks)			
Consider the function $f(x) = x^4 - 6x^2 + 8$.				
a. Solve the equation $f(x) = 0$. (3 marks)				
				
b.	Use the discriminant to determine the value(s) of k , such that $f(x) + k = 0$ has no real solutions. (2 marks)			

Space for Personal Notes

Section B: Extension Test Question (5 Marks)

INSTRUCTION: 5 Marks. Y Minutes Reading. Z Minutes Writing.

Qı	Question 6 (5 marks)			
a.	a. Solve $x^4 - 2kx^2 + 4 = 0$ for x , in terms of k , where $k \in R$. (3 marks)			
b.	Hence, determine the values of k for which $x^4 - 2kx^2 + 4 = 0$ has 4 real solutions. (2 marks)			
Space for Personal Notes				

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

