

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Linear & Coordinate Geometry Exam Skills [1.2]

Workbook

Outline:

Pg 2-21

Recap of [1.1] - Linear and Coordinate Geometry

Inequality

- Midpoint
- Distance Between Two Points
- Vertical Distance VS Horizontal Distance
- Parallel and Perpendicular Lines
- Angle Between a Line and the x-axis
- Angle Between the Two Lines
- Finding Simultaneous Equations for Two Variables
- Number of Solutions for Two Variables

Linear and Coordinate Geometry Exam Skills

Pg 22-31

- Finding the Equation of the Line
- Applying Midpoint to Find Reflected Points
- Find Vertical Distance Between Two Functions
- Finding Distance Between a Point and a Function

Exam 1 Ouestions Pg 32-36

<u>Tech-Active Exam Skills</u> Pg 37-41

Exam 2 Questions Pg 42-46

Section A: Recap of [1.1] - Linear and Coordinate Geometry

Definition

Linear equations

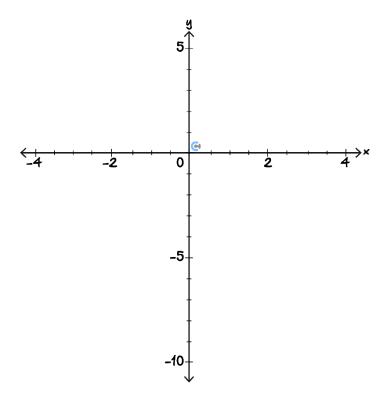
- **Definition:** Equations where the highest power of a variable is 1.
 - Gradient-intercept form:

$$y=mx+c$$
 where $m=gradient=rac{rise}{run}=$ and $c=$

- No singular solution for a linear equation in two variables.
 - \bullet All pairs of coordinates (x, y) that satisfy the equation lie on a **line**. (Hence, *linear* equations).

Sub-Section: Inequality

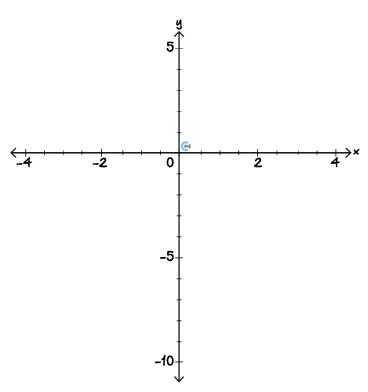
Inequalities rule



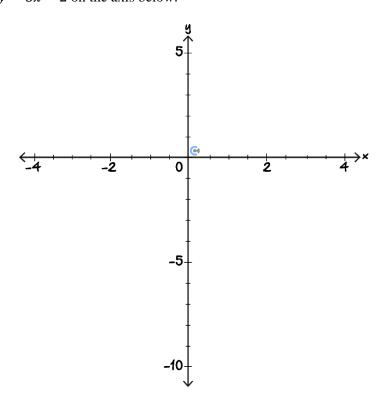
$$x > \frac{b}{a}$$
, where $a < 0$

Multiplying both sides by a negative number ______ the inequality sign.

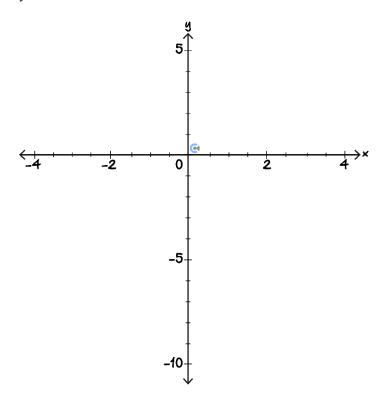
Question 1 Walkthrough.


a. Sketch the graph of y = 2x - 4 on the axis below.

b. Solve the inequality: $-4x + 3 \ge 7$



c. Sketch the region 4x - 2y < 4 on the axis below.


Question 2

a. Sketch the graph of y = 3x - 2 on the axis below.

- **b.** Solve the inequality: -2x + 7 > 4
- **c.** Sketch the region x 2y > 4 on the axis below.

Question 3 Extension.

Solve the inequality: $\frac{x-4}{2x+3} > 2$

Sub-Section: Midpoint

Midpoint

$$\bullet \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

 (x_2, y_2)

Definition: The midpoint, M, of two points A and B is the point halfway between A and B.

$$M(x_m, y_m) = \left(\begin{array}{c} \\ \end{array} \right)$$

The midpoint can be found by taking the _____ of the x-coordinate and y-coordinate of the two points.

Sub-Section: Distance Between Two Points

<u>Distance between two points</u>

Definition: The distance between two points (x_1, x_2) and (y_1, y_2) can be found using Pythagoras' theorem:

Distance = ____

Question 4

Consider the line segment AB where A(2,4) and B(4,8).

a. Find the midpoint of a line segment AB.

b. Find the distance between the midpoint of AB and (-1,4).

Ouestion 5 Extension.

Find a point(s) on the line y = 2x + 3 which has a distance of 4 from the point (4,3).

Sub-Section: Vertical Distance Vs Horizontal Distance

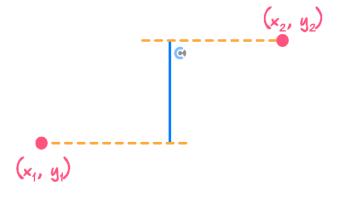
Horizontal distance

Horizontal Distance = $x_2 - x_1$ where _____

Find the difference between their *x*-values.

Question 6

Find the horizontal distance between the two points (1,9) and (7,-4).



What about vertical distance then?

Vertical distance

Vertical Distance = $y_2 - y_1$ where $y_2 > y_1$

Find the difference between their *y*-values.

Question 7

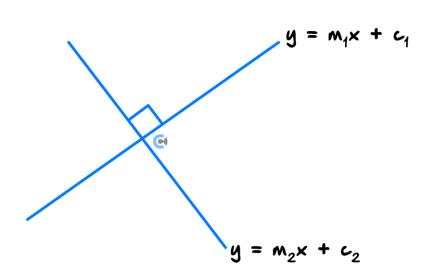
Find the vertical distance between the two points (1,9) and (13,-8).

Sub-Section: Parallel and Perpendicular Lines

Definition

Parallel lines

$$y = m_1 x + c_1$$


$$y = m_2 x + c_2$$

Parallel lines have the _____ gradient.

$$m_1 = m_2$$

Definition

Perpendicular lines

A line that is perpendicular to another line has a gradient, which is the ______ of the gradient of the first line.

$$m_{\perp}=-rac{1}{m}$$

Question	8
Oucsuon	O

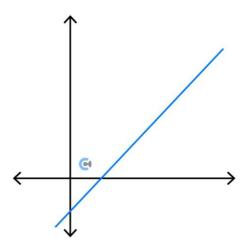
a. Find a line that is parallel to y = 3x - 1 passing through the point (-1,4).

b. Find a line which is perpendicular to y = -3x + 4 passing through the point (3, -1).

Question 9 Extension.

Find the equation of the line that is a perpendicular bisector of the points A(2,4) and B(8,6).

<u>Sub-Section</u>: Angle Between a Line and the x-axis



How do we find the angle between a line and the x-axis?

Angle between a line and the x-axis

 \blacktriangleright The angle between a line and the _____ direction of the x-axis (anticlockwise) is given by:

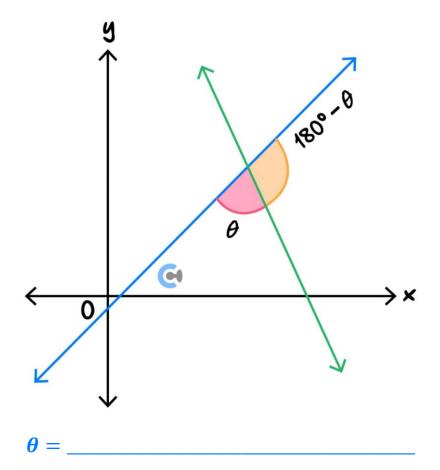
$$tan(\theta) = m$$

Question 10 Tech-Active.

Find the angle made between the line y = 3x - 6 and the x-axis measured in the anticlockwise direction. Give your answer in degrees correct to two decimal places.

NOTE: Angles from the x-axis measured anticlockwise = _____ angles.

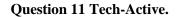
Don't worry about it too much, it's just convention! (More on this in circular functions).


Sub-Section: Angle Between the Two Lines

Slightly more complicated now! How about an angle between two lines?

Acute angle between two lines

Alternatively:


$$tan(\theta) =$$

• For your understanding, note that this formula is derived from the tan compound angle formula covered in SM12.

NOTE: |x| just takes the positive value of x.

Find the acute angle between the lines 3x + 4y = 2 and y = x + 1. Give your answer in degrees correct to two decimal places.

TIP: Make sure your CAS is in degrees.

Space for Personal Notes

MM12 [1.2] - Linear & Coordinate Geometry Exam Skills - Workbook

Sub-Section: Finding Simultaneous Equations for Two Variables

Definition

Simultaneous linear equations

- 1. Elimination method:
 - Add or subtract one equation from the other in order to ______ one of the variables. Then have an equation in one variable that can be solved easily.
- 2. Substitution method:
 - ullet Make one of the variables the subject (generally x or y) and ______ that value into the other equation.

Question 12 Walkthrough.

Solve the following simultaneous linear equations using either elimination or substitution.

$$2x + 3y = 8$$
 and $4x - 4y = -4$

Question 13

Solve the following equation for x and y.

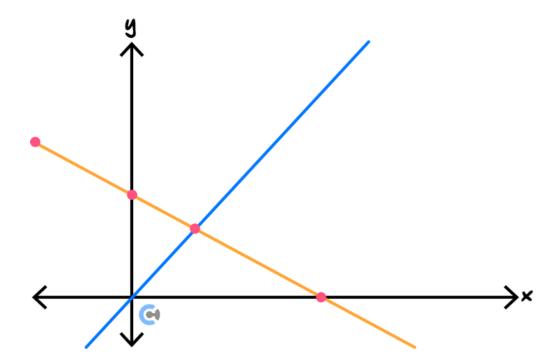
$$2x - 3y = 16$$
 and $x + y = 3$

Question 14 Extension.

Solve the following:

$$-6x + 2y = 10$$
 and $-10 + y = 3x$

Sub-Section: Number of Solutions for Two Variables

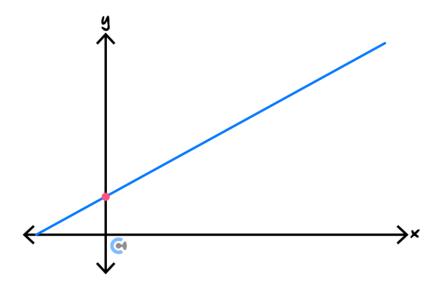


3

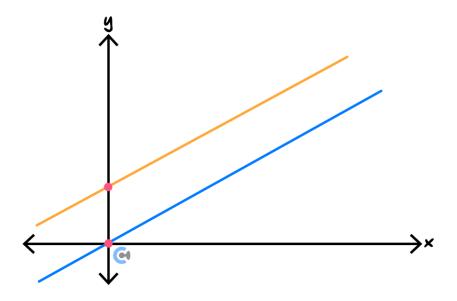
Exploration: Geometry of the number of solutions between linear graphs

Unique solution

$$m_1 \neq m_2$$



They just need to have ______


Infinite solutions

$$m_1=m_2$$
 and $c_1=c_2$

- They just need to have the same _____ and the same _____
- In other words, they have to be the ______.
- No solutions

$$m_1=m_2$$
 and $c_1 \neq c_2$

- lacktriangledown They need to have the ______ but _____+c.
- They have to be two different _____ lines.

General solutions of simultaneous linear equations

- Two linear equations are either:
 - The same line is expressed in a different form. In this case, they have _____ solutions.
 - Unique lines which are parallel. In this case, they have _____ solutions.
 - Unique lines which are not parallel. In this case, they have ______ solution.

Question 15 Walkthrough.

Consider the following pair of simultaneous equations in terms of $k \in \mathbb{R} \setminus \{0\}$:

$$y = kx + 5$$

$$y = 2x - 5k$$

a. Find the value of k for which there are no solutions to the simultaneous equations.

b. Find the value(s) of k for which there is a unique solution to the simultaneous equations.

 \mathbf{c} . Find the value of k for which there are infinite solutions to the simultaneous equations.

TIP: It's a good idea to substitute your answer back into the equations to see if the criteria are met for each part.

Question 16

Consider the following pair of simultaneous equations in terms of $k \in \mathbb{R} \setminus \{0\}$:

$$-3x + y = -2k$$

$$-3kx + y = -2$$

a. Find the value(s) of k for which there is a unique solution to the simultaneous equations.

b. Find the value of k for which there are infinite solutions to the simultaneous equations.

c. Find the value of k for which there are no solutions to the simultaneous equations.

Question 17 Extension.

Consider the following pair of simultaneous equations in terms of $a \in \mathbb{R} \setminus \{0\}$:

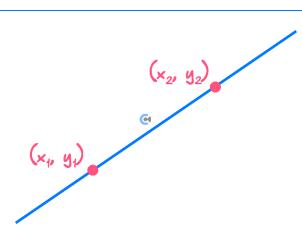
$$-2ax + 4y = 10$$

$$3x + (1-a)y = -5$$

a. Find the value(s) of a for which there are no solutions to the simultaneous equations.

b. Find the value(s) of a for which there is a unique solution to the simultaneous equations.

c. Find the value(s) of α for which there are infinite solutions to the simultaneous equations.



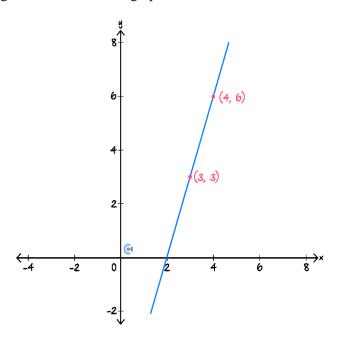
Section B: Linear and Coordinate Geometry Exam Skills

Sub-Section: Finding the Equation of the Line

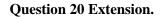
> m: Gradient

$$m=\frac{y_2-y_1}{x_2-x_1}$$

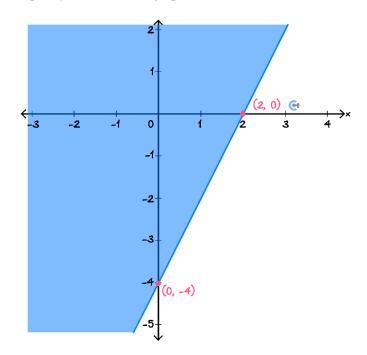
- **→** +*c*: *y*-intercept
 - **G** Substitute in any point to y = mx + c equation.


Question 18 Walkthrough.

Find the equation of the line joining the points (1,3) and (5,5).



Find the equation of the straight line shown on the graph below.



Find the expression for the inequality shown on the graph below.

Sub-Section: Applying Midpoint to Find Reflected Points

How can we use the idea of midpoint to find reflections?

Exploration: Finding reflections

Consider a point reflected around y = 3.

- What do you notice about their midpoint?
- Hence, what should the average of two y-values equal to?

$$\frac{y+5}{2} =$$

Find the reflected point!

Definition

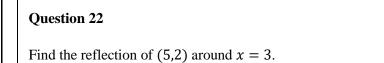
Finding reflections around horizontal and vertical axes

Horizontal axis

➤ The _____ changes for horizontal reflections.

$$\frac{b+d}{2}=m$$

Vertical axis


➤ The _____ changes for horizontal reflections.

$$\frac{a+c}{2}=m$$

Question 21 Walkthrough.

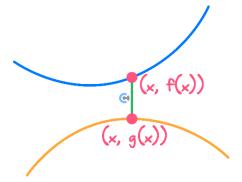
Find the reflection of (3,1) around x = 1.

Question 23 Extension.

Find the reflection of the point (a, b) around the line y = c.

Sub-Section: Find Vertical Distance between Two Functions

<u>Discussion:</u> What can we call any point on the function, f(x)?



NOTE: That's why we say, y = f(x).

Vertical Distance between Two Functions

Find the difference between the two *y*-values.

$$f(x) - g(x)$$
 where f is above g

Question 24 Walkthrough.

Find the vertical distance between the functions $f(x) = x^2 + 1$ and g(x) = x - 1 when x = 2.

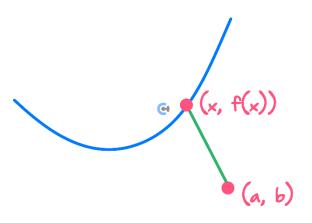
Find the vertical distance between the functions $f(x) = x^2 - 4$ and g(x) = x + 1 when x = 2.

Question 26 Extension.

When x = a, the vertical distance between the functions $f(x) = x^2 + 5$ and g(x) = x + 4 is 7.

Find the possible values of a.

Sub-Section: Finding Distance between a Point And a Function


Active Recall: Point on a Function

Point on f: (x,_____)

Distance between a Function and a Point

Find the distance between the point and (x, function).

Distance =
$$\sqrt{(x-a)^2 + (f(x)-b)^2}$$

Question 27 Walkthrough.

Find the distance between the point (1,2) and f(x) = 3x - 4 when x = 3.

Find the distance between the point (3,2) and f(x) = 2x - 3 when x = 4.

Question 29 Extension.

The distance between the point (3,5) and the function f(x) = x + 1 when x = a is 1.

Find the possible value(s) of a.

Section C: Exam 1 Questions (22 Marks)

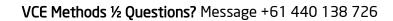
INSTRUCTION: 22 Marks. 27.5 Minutes Writing.

Question 30 (5 marks)

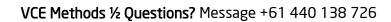
a. Solve the linear equation, 2x - 7 = 4x + 8. (1 mark)

b. Solve the linear inequality, $-2x + 3 \le 4x + 5$. (2 marks)

c. Sketch the inequality 4x - 8 + 6y < 0 on the axis below. (2 marks)



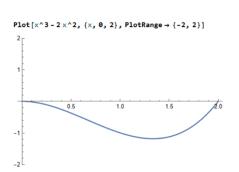
Question 31 (5 marks) Consider the line segment AB with coordinates $A(2,4)$ and $B(6,6)$.				
a. Find the midpoint of AB. (1 mark)				
•••				
	·			
b.	Find the equation of the line segment AB. (2 marks)			
c.	Find the perpendicular bisector of AB . (2 marks)			
Sp	ace for Personal Notes			



Question 32 (5 marks)				
Consider the points $A(2,4)$ and $B(6,6)$.				
a.	Find the distance between points A and B . (1 mark)			
b.	The distance between point A and a point $C(3, k)$ is 1. Find the value of k . (2 marks)			
c.	Find the coordinates of the point D obtained by reflecting A in the line $x = -1$. (1 mark)			
d.	Find the coordinates of the point E obtained by reflecting B in the line $y = 3$. (1 mark)			
Space for Personal Notes				

uestion 33 (2 marks)	
ichard buys 2 bags of brand X an brand Y chips. Find the cos	chips and 3 bags of brand <i>Y</i> chips for a total of \$12. Brand <i>X</i> chips cost \$1 more tof each chip brand.
	2x + 3y = 12
	x - y = 1
-	
pace for Personal Notes	
pace for Personal Notes	

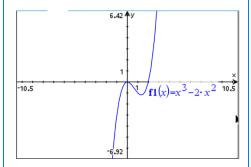
Question 34 (5 marks)					
Consider the linear equations:					
y - kx = -k $y - 2x = k$					
a. For what value(s) of k , will the system have a unique solution? (2 marks)					
b. For what value of k , will the system have no solution? (2 marks)					
c. Explain why the system can never have infinitely many solutions. (1 mark)					
Space for Personal Notes					

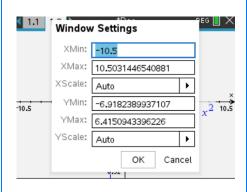

Section D: Tech Active Exam Skills

Calculator Commands: Graphing

CAS CI

Mathematica


- Plot[function,{x,xmin,xmax}, PlotRange→{ymin, ymax}]
- PlotRange is optional but makes the scale appropriate for the question.

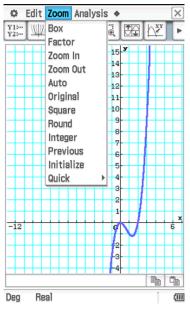

- Menu→ 6 (Analyse) to find min/max x and y intercepts.
- Restrict domain to 0 < x < 2 use the bar can get it from ctrl+ = $\begin{vmatrix} x & y & y \\ y & y & z \end{vmatrix}$
- $f1(x)=x^3-2x^2|0< x<2$

TI-Nspire

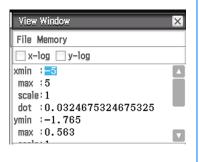
• Open a graph page and plot your function.

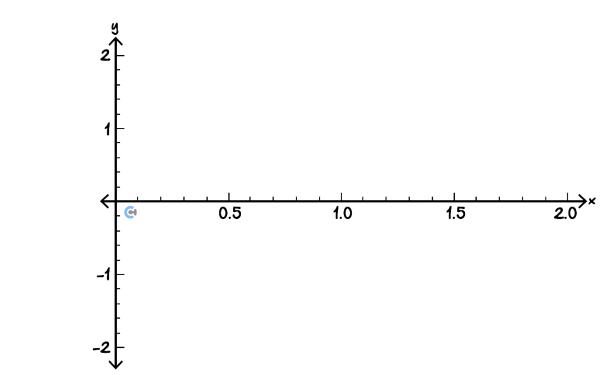
Zoom settings: Menu $\rightarrow 4$ (window/zoom) $\rightarrow 1$ enter your x and y ranges.




Can also click the axis numbers on the graph and alter them directly.

Casio Classpad


Click Graph & Table, and enter the function.


- Analysis→G-Solve to find intercepts.
- Use this button to set the view window.

- Ge Use | to restrict domain → find it in Math 3
- $\sqrt{y_1} = x_3 = 2 \cdot x_1 = x_2 = x_3 = x_3 = x_4 = x_1 = x_1 = x_2 = x_2 = x_3 = x_3 = x_4 = x_4$

Question 35 Tech-Active.

Sketch the graph of $y = x^4 - 2x^3$ for $0 \le x \le \frac{9}{4}$.

Calculator Commands: Solving Equations

➤ TI-Nspire

 $\bullet \quad \mathsf{Menu} \rightarrow 3 \rightarrow 1$

solve
$$(x^2-4\cdot x-9=0,x)$$

 $x=-(\sqrt{13}-2) \text{ or } x=\sqrt{13}+2$

Casio Classpad

♠ Action→Advanced→Solve

solve(
$$x^2-4x-9=0, x$$
)
{ $x=-\sqrt{13}+2, x=\sqrt{13}+2$ }

$$\label{eq:continuous} \begin{split} & \ln[122] \text{:= Solve} \left[\, x^{\,2} - 4 \, x - 9 \, \text{== 0, } x \right] \\ & \text{Out}[122] \text{= } \left\{ \left\{ x \to 2 - \sqrt{13} \, \right\}, \, \left\{ x \to 2 + \sqrt{13} \, \right\} \right\} \end{split}$$

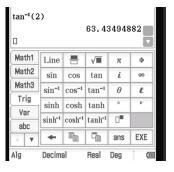
Question 36 Tech-Active.

Solve $x^2 - 3x = 2x + 9$.

<u>Calculator Commands:</u> Finding the Angle between a Line and x-axis

Mathematica

In[124]:= ArcTan[2] / Degree // N
Out[124]= 63.4349


➤ TI-Nspire

etrig button. Check that you are in degrees.

tan⁻¹(2) 63.4349

Casio Classpad

G Keyboard→Trig. Change to decimals and degrees.

Question 37 Tech-Active.

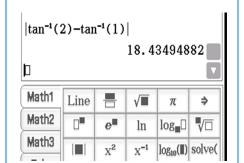
Find the angle between the line y = 3x + 1 and the positive *x*-axis.

Calculator Commands: Finding the Angle between Two Lines

- Mathematica
 - Use the Abs[] function.

In[126]:= Abs[ArcTan[2] - ArcTan[1]] / Degree // N
Out[126]:= 18.4349

- ➤ TI-Nspire
 - Find the modulus sign.



 $|\tan^{-1}(2)-\tan^{-1}(1)|$ 18.4349

Casio Classpad

Modulus sign under Math1.

Question 38 Tech-Active.

Find the angle between the lines y = 3x - 2 and y = x + 1.

Calculator Commands: Simultaneous Equations

- Mathematica
 - Just do && between
 - Solve[equation&&equation , {var1, var2}]

In[128]:= Solve[2 x - 3 y = 16 && x + y = 3, {x, y}]
Out[128]:= { $\{x \to 5, y \to -2\}$ }

- TI-Nspire
 - Menu 371

Solve a System of Equations

solve
$$\begin{cases} 2 \cdot x - 3 \cdot y = 16 \\ x + y = 3 \end{cases}, \{x, y\}$$
 $x = 5$ and $y = -2$

Casio Classpad

Math1 →click highlighted box→ enter equations and variables you are solving for

Question 39 Tech-Active.

Solve simultaneous equations 2x + 3y = 5 and 3x - y = 8. (Give your answer correct to 2 decimal places.)

Section E: Exam 2 Questions (21 Marks)

INSTRUCTION: 21 Marks. 5 Minutes Reading. 26 Minutes Writing.

Question 40 (1 mark)

The vertical distance between the function $f(x) = x^3 + 2$ and g(x) = x - 2 when x = 1 is:

- **A.** 3
- **B.** 4
- **C.** 5
- **D.** 6

Question 41 (1 mark)

It is known that the lines y = mx + 4 and y = 2x - 2 make an angle of 45° when they intersect. The possible values for m are:

- **A.** m = 3 only.
- **B.** $m = -\frac{1}{3}$ only.
- C. $m = -3, \frac{1}{3}$
- **D.** $m = -3, -\frac{1}{3}$

Question 42 (1 mark)

The angle that the line y = -x + 4 makes with the positive *x*-axis is:

- **A.** 45°
- **B.** 135°
- **C.** 120°
- **D.** 30°

Question 43 (1 mark)

Solve the following simultaneous equations:

$$2x + 3y = 17$$
$$x - y = 1$$

- **A.** x = 2, y = 3
- **B.** x = 4, y = 1
- **C.** x = 4, y = 3
- **D.** x = 3, y = 4

Question 44 (1 mark)

The point (2, k) has a vertical distance of 5 units from the line y = 3x - 4. A possible value of k is:

- **A.** 6
- **B.** 7
- **C.** 8
- **D.** 9

Space for Personal Notes

d.	Hence, find the minimum distance between the line segment AB and the line $y = 3x + 4$. (3 marks)					
e.						
	i.	Find the coordinates of the point C obtained from reflecting B in the line $y = 4$. (1 mark)				
	ii.	Find the coordinates of the point D obtained from reflecting A in the line $x = 4$. (1 mark)				
f.	Co	nsider the triangle BAD.				
	i.	Find the area of the triangle <i>BAD</i> . (2 marks)				

VCE Methods ½ Questions? Message +61 440 138 726

	_
Find the angle $\angle ABD$ correct to two decimal places. (3 marks)	
for Personal Notes	
	Find the angle ∠ABD correct to two decimal places. (3 marks) for Personal Notes

Contour Check

<u>Learning Objective</u> : [1.1.1] - Solve and Graph Linear Equations and Inequalities				
Key Takeaways Linear equations are in the form of $y = $ where m is the and c is the The inequality sign when you multiply by a negative.				
<u>Learning Objective</u> : [1.1.2] - Find the Midpoint and Distance (Horizontal & Vertical) between Two Points or Functions				
Key Takeaways				
☐ Midpoint is simply the of 2 points.				
□ Distance formula is derived from				
Horizontal distance is the distance between values.				
. □ Vertical distance is the distance between values.				
<u>Learning Objective</u> : [1.1.3] - Find Parallel and Perpendicular Lines				
Key Takeaways				
Parallel lines have the gradient.				
Perpendicular lines have gradient.				

<u>Learning Objective</u>: [1.1.4] – Find the Angle between a Line and x-axis or Two Lines

Key Takeaways				
To find the angle between a line and the x -axis, we can use equation $m=$				
To find the angle between two lines, we can use $\theta =$ or				
$tan(\theta) = \underline{\hspace{1cm}}$				
<u>Learning Objective</u> : [1.1.5] - Find the Unknown Value for Systems of Linear Equations				
Key Takeaways				

Key Takeaways Two linear equations have unique solutions if they have ______ gradients. Two linear equations have infinitely many solutions when they have ______ gradient and _____ constant. Two linear equations have no solution when they have _____ gradient and _____ constant.

Learning Objective: [1.2.1] - Applying Midpoint to Find Reflected Points

	Key Takeaways
The	changes for reflections about a horizontal line.
The	changes for reflections about a vertical line.

Learning Objective: [1.2.2] - Find the Vertical and Horizontal Distance bet	tween
Functions	

Key Takeaways

The difference between two y-values is f(x) = g(x) where f is ______ g.

<u>Learning Objective</u>: [1.2.3] - Finding the Distance between a Point and a Function

Key Takeaways

- \square A point on the function f is ______.
- \square The distance between a point (a, b) and a point on the function f is ______

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

