

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

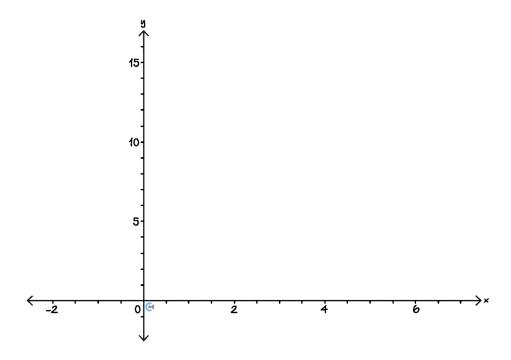
VCE Mathematical Methods ½ Linear & Coordinate Geometry Exam Skills [1.2]

Homework

Homework Outline:

Compulsory Questions	Pg 2 – Pg 16	
Supplementary Questions	Pg 17 – Pg 33	

Section A: Compulsory Questions



<u>Sub-Section [1.2.1]</u>: Applying Midpoint to Find Reflected Points

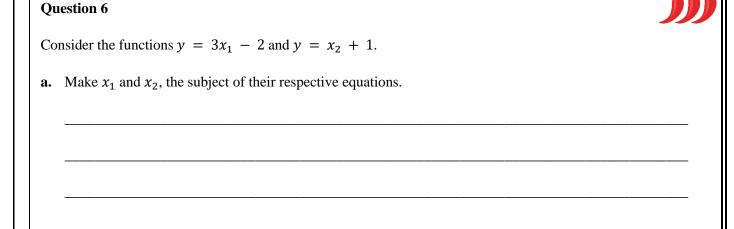
Question 1	
estion 2 epoint $(1, 2)$ is reflected in the line $x = b$ and becomes the point $(5, 2)$. Find the value of b . estion 3 estion $f(x) = x^2$.	
Question 2))
The point $(1,2)$ is reflected in the line $x = b$ and becomes the point $(5,2)$. Find the value of b .	
Question 3	الالا
Consider the function $f(x) = x^2$.	_
a. Let $x' = 4 - x$, find x in terms of x' .	

b. Find f(4 - x').

c. Sketch the graphs of $y = x^2$ and $y = (4 - x)^2$ on the axes below.

d. Hence, determine the line that $y = x^2$ is reflected in to obtain $y = (x - 4)^2$.

e. $y = x^2$ is reflected in the line x = b and becomes $y = (x - 6)^2$. What is the value of b?



<u>Sub-Section [1.2.2]</u>: Find Vertical and Horizontal Distance Between Functions

Question 4 Find the vertical distance between f(x) = x + 1 and g(x) = 2x + 5 when x = 2.

Question 5 Find the horizontal distance between the function f(x) = 3x and $g(x) = x^2$ when y = 4 and x > 0.

VCE Methods ½ Questions? Message +61 440 138 726

h	Hence, create a function in terms of y that gives the horizontal distance between the two functions when
D.	$x_2 > x_1$.
c.	Find the horizontal distance between the two functions when $y = 5$.
	·
1	
_ ا	
2t	pace for Personal Notes

Sub-Section [1.2.3]: Finding Distance Between a Point and a Function

Question 7			J
Find the distance between the p	point (1, 2) and the function	$\text{n } y = x^2 \text{ when } x = 2.$	
Question 8			
Find the positive x -value for w	hich the point (2, 4) has a o	distance $\sqrt{26}$ from the line $y =$	= 4x + 5.
Space for Personal Notes			

Question 9			
Find the point(s) on the line $y = 2x - 1$ which have a distance of 2 from the point $(-2, -3)$.			
Space for Personal Notes			

Sub-Section: Exam 1 Questions

Question 10

Let the coordinates of the point *X* be (4, 2). Find the coordinates of *X'*, which is the point *X* reflected across the lines $x = -\frac{1}{2}$ and y = 3.

Question 11

a. The point A is the midpoint of (-1, -3) and (3, 7). Find the coordinates of A.

b. Find the equation of the line parallel to y = -2x - 2 that passes through the point A.

Onestion	า 12

Consider the functions f(x) = 2x - 3 and $g(x) = x^2$ when x > 0.

a. Find the vertical distance between f and g when x = 3.

b. Find the horizontal distance between f and g when y = 4.

c. Find the distance between the point (-1, 4) and g(x) when x = 1.

Consider the simultaneous linear equations:

$$\frac{m}{2}x + y = 9,$$

$$x + my = -2$$
,

Where m is a real constant.

a. Find the values of m for which there is a unique solution to the simultaneous equations.

b. If possible, determine the value(s) of m for which there are infinitely many solutions.

c. If possible, determine the value(s) of m for which there are no solutions.

Question 14			
Jacob is standing at the point $(3, -1)$ and he wants to walk to the road, which is described by the line $y = 6 - x$.			
a. Find the line perpendicular to $y = 6 - x$ that passes through the point $(3, -1)$. Call this line D .			
· · · · · · · · · · · · · · · · · · ·			
·			
b. Find the points of intersection between the line $y = 6 - x$ and the line D, from part a.			
· · · · · · · · · · · · · · · · · · ·			
c. Hence, find the minimum distance that Jacob can walk to reach the road.			

Sub-Section: Exam 2 Questions

Question 15

The horizontal distance between the function $f(x) = x^3 + 2$ and g(x) = x - 2, when y = 3 is:

- **A.** 3
- **B.** 4
- **C.** 5
- **D.** 6

Question 16

The angle that the line $y = \sqrt{3x} + 4$ makes with the positive x-axis is:

- **A.** 45°
- **B.** 135°
- **C.** 60°
- **D.** 30°

Question 17

Solve the following simultaneous equations:

$$x + 2y = 1$$
$$4x - y = 5$$

A.
$$x = \frac{8}{9}, y = -\frac{2}{9}$$

B.
$$x = \frac{4}{9}, y = \frac{7}{9}$$

C.
$$x = \frac{11}{9}, y = -\frac{1}{9}$$

D.
$$x = \frac{5}{9}, y = \frac{1}{9}$$

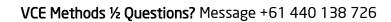
On	estion	18

The point (2, k) has a vertical distance of 3 units from the line y = 3x - 4. A possible value of k is:

- **A.** -1
- **B.** 1
- **C.** 3
- **D.** 4

Question 19

Given that the distance between the point A(4, 1) and B(-3, k) is 7 units, the value of k is:

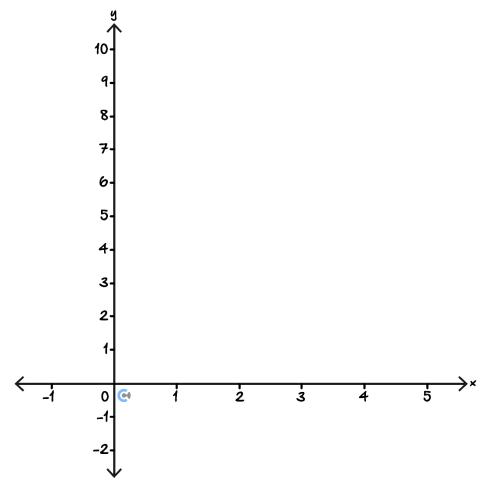

- **A.** -2
- **B.** -1
- **C.** 1
- **D.** 2

Question 20

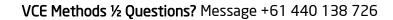
Consider the points A(3, 2) and C(9, 6).

a. Find the equation of the line segment *AC*.

b. Find the coordinates of *M*, the midpoint of the line segment *AC*.



c.	Find the equation of the perpendicular bisector of the line segment AC .		
		-	
		-	
		-	
d.	The point B is obtained by reflecting the point A about the line $y = 4$. Find the horizontal distance between the points B and C .	en	
		-	
		-	
e.	The point D is obtained by reflecting the point A about the line $x = 6$. Find the vertical distance between points D and C .	the	
		-	
		-	
		-	
f.	Find the area of the rectangle ABCD.		
		-	
		-	
Sp	Space for Personal Notes		



Consider the functions f(x) = 2x and g(x) = 8 - 2x.

a. Sketch the graphs of y = f(x) and y = g(x) on the axis below. Label all points of intersection and axis intercepts with coordinates.

b. The graph of y = g(x) is the reflection of y = f(x) in the line x = b. State the value of b.

c.	Let θ_1 be the angle that $f(x)$ makes with the positive x -axis and let θ_2 be the angle that $g(x)$ makes with the positive x -axis.		
		Find θ_1 in degrees correct to the two decimal places.	
	1.		
	ii.	Find θ_2 in degrees correct to the two decimal places.	
	iii.	Write θ_1 in terms of θ_2 .	
	iv.	Hence, or otherwise, determine the acute angle between the lines $y = f(x)$ and $y = g(x)$. Give your answer correct to the two decimal places.	
1			
Sp	Space for Personal Notes		

Section B: Supplementary Questions

<u>Sub-Section [1.2.1]</u>: Applying Midpoint to Find Reflected Points

Question 22		
Find the reflection of the point $(4,6)$ about the line $y=4$.		
	-	
	-	
	-	
Question 23		
The point $(3,2)$ is reflected in the line $y=b$, and to become the point $(3,-6)$. Find the value of b .		
	-	
	-	
	-	
Space for Personal Notes		
Space for reisonal Notes		

MM12 [1.2] - Linear & Coordinate Geometry Exam Skills - Homework

CONTOUREDUCATION

Question 24

Consider the function $f(x) = x^2 + 1$.

a. The point A(1,1) on the graph of y = f(x) is reflected about the line y = 0. Find the coordinates of the reflected points' position.

b. The entire graph of y = f(x) is reflected about the line y = 0. Find the equation of this new graph.

Question 25

The function $y = (x - 1)^2 + 3$ is reflected about the line x = 3 and then reflected about the line y = 2. Find the equation of the graph after these reflections.

<u>Sub-Section [1.2.2]</u>: Find Vertical and Horizontal Distance Between Functions

Question 26

Find the vertical distance between f(x) = 3x + 1 and g(x) = x + 3 when x = 2.

Question 27

Find the horizontal distance between the function f(x) = x + 1 and $g(x) = x^2 - 1$ when y = 8.

Question 28

Consider the functions y = x + 3 and $y = x^2 + 1$.

a. Solve the inequality $x + 3 > x^2 + 1$.

VCE Methods ½ Questions? Message +61 440 138 726

b.	Hence, determine the vertical distance between the two functions when $x = 1$.	
	Trender, determine the volume distance between the two functions when $x=1$.	
		_
		_
		-
		-
Sn	ace for Personal Notes	

Sub-Section [1.2.3]: Finding Distance Between a Point and a Function

Question 29	
Find the distance between the point (1, 2) and the function $y = x^2$, when $x = 3$.	
Outsetters 20	4 4
Question 30	
The distance between the point $A(4,1)$ and the point $B(-3,m)$ is 7, find the possible value(s) of m .	
Space for Personal Notes	

Question 31				
Find the point(s) on the line $y = 3x + 3$ which have a distance of 5 from the point (1, 1).				
				
Space for Personal Notes				

Question 32		
Let the coordinates of the point X be (a, b) . Find the coordinates of X' , which is the point on X reflected across the lines $x = 1$ and $y = -3$. Give your answer in terms of a and b .		
Question 33		
Find the equation of the line that is parallel to $y = -3x - 4$ and passes through the point (7,5).		
Space for Personal Notes		

Solve the simultaneous linear equations:

$$\frac{2}{3}x + \frac{1}{2}y = 4,$$

$$\frac{5}{4}x - \frac{5}{4}y = -\frac{5}{4}.$$

Question 35

Consider the functions f(x) = 2x + 3 and $g(x) = (x + 2)^2$.

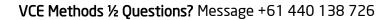
a. Find the vertical distance between f and g, when x = 2.

b.	Find the horizontal distance between f and g , when $y = 4$.
c.	Find the distance between the point (2, 4) and $g(x)$, when $x = 14$.

Consider the simultaneous linear equations:

$$\frac{m}{3} x - y = m,$$

$$4x + my = -7,$$


Where m is a real constant.

a. Find the values of m for which there is a unique solution to the simultaneous equations.

VCE Methods ½ Questions? Message +61 440 138 726

b.	If possible, determine the value(s) of m for which there are infinitely many solutions.
	If massible, determine the value(s) of m for which there are no colutions
c.	If possible, determine the value(s) of <i>m</i> for which there are no solutions.
Sp	pace for Personal Notes

	Question 37			
Cam is standing at the point $(1,6)$ when a bus goes past him. The bus' path is described by the line $2y - 3x = 4$. Find the shortest distance between Cam and the bus.				
_				
_				
Space	for Personal Notes			

Sub-Section: Exam 2 Questions

Question 38

The vertical distance between the function $x^2 + 2$ and the x-axis is 3 when x is equal to:

- **A.** 1
- **B.** 1 and -1
- **C.** 3
- **D.** 3 and -3

Question 39

The distance between points A(1, 2) and B(4, 6) is:

- **A.** 25 units.
- **B.** 16 units.
- **C.** 9 units.
- **D.** 5 units.

Question 40

The image of the point (a, 3) after being reflected about the line y = 2 is:

- **A.** (a, 1)
- **B.** (2 a, 3)
- C. (4 a, 3)
- **D.** (a, -1)

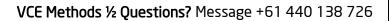
The acute angle between the line $3y + \sqrt{3}x = 1$ and the x-axis is equal to:

- **A.** 30°
- **B.** 60°
- **C.** 150°
- **D.** 120°

Question 42

Consider the following pair of simultaneous equations.

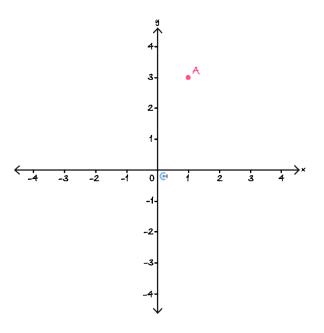
$$ay + x = 1$$


$$2y + (3 - a)x = 1$$

For what value(s) of a do the equations have infinitely many solutions?

- **A.** a = 1
- **B.** a = 2
- C. a = 1, 2
- **D.** $a \in \mathbb{R} \setminus \{1, 2\}$

Question 43			
Consider the line $l: y = 2x + 3$ and the point $p(1,0)$.			
The shortest distance between p and l is the distance between p , and a point q on the line l for which the line segment pq is perpendicular to l .			
a.			
i. Find the vertical distance between l and p .			
ii. Find the horizontal distance between l and p .			
b. The line m is perpendicular to l and goes through the point p . Find the equation of m .			



The point q is the point of intersection between lines l and m . Show, by solving simultaneous equations, that the coordinates of q are $(-1, 1)$.
one in, of sorting simulations equations, that the coordinates of q are (-2, 2).
Hence, find the shortest distance between the point p and the line l .
Find the image of the point p after being reflected by the line l .

Consider the point A(1,3), drawn on the axis below.

- i. The point B is the image of A, when reflected in the line x = -1.
- ii. The point C is the image of A, when reflected in the line y = 2.
- **a.** Label the points *B* and *C* on the axis above.
- **b.** Find the equation of the line going through B and C.

CONTOUREDUCATION

c.	The line $l: y = -\frac{1}{2}x + 2$ is parallel to the line segment BC .		
	i.	Find the angle l makes with the positive direction of the x -axis, correct to the 2 decimal places.	
	ii.	Find the acute angle between the line segments <i>BC</i> and <i>AC</i> correct to the 2 decimal places.	
d.	The	line m is the image of l after it is reflected along the line going through A and B . Find the equation of m .	

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

