

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Linear & Coordinate Geometry [1.1]

Workbook

Outline:

Pg 2-6

Pg 7-12

Pg 13-20

Linear Functions and Graphs

Inequality

Midpoint and Distances

Midpoint

- Distance Between Two Points
- Vertical Distance VS Horizontal Distance

Line Geometry

- Parallel and Perpendicular Lines
- Angle Between a Line and the x-axis.
- Angle Between the Two Lines

Simultaneous Equations

Pg 21-30

- Finding Simultaneous Equations for Two Variables
- Number of Solutions For Two Variables

Section A: Linear Functions and Graphs

Definition

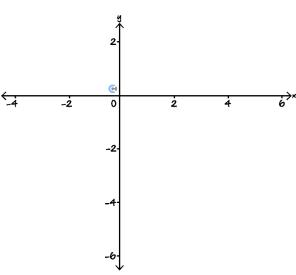
Linear Equations

- **Definition:** Equations where the highest power of a variable is 1.
 - Gradient-intercept form:

$$y = mx + c$$
 $where m = gradient = \frac{rise}{run} =$

and
$$c =$$

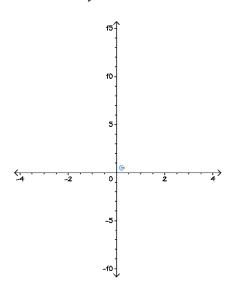
- No singular solution for a linear equation in two variables.
 - \bullet All pairs of coordinates (x, y) that satisfy the equation lie on a **line**. (Hence, *linear* equations).



Let's have a look at sketching some of these equations.

Question 1 Walkthrough.

Sketch the graph of the following linear relations, labelling all axes intercepts.


$$y = 2x - 4$$

Question 2

Sketch the graphs of each of the following linear relations, labelling all axes intercepts with their coordinates.

$$y = -3x + 5$$

Sub-Section: Inequality

Inequalities Rule

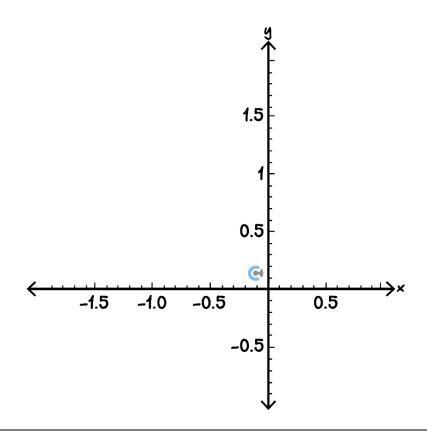
$$x > \frac{b}{a}$$
, where $a < 0$

Multiplying both sides by a negative number ______ the inequality sign.

Question 3

Solve each of the following for x:

$$9-6x \leq 2$$

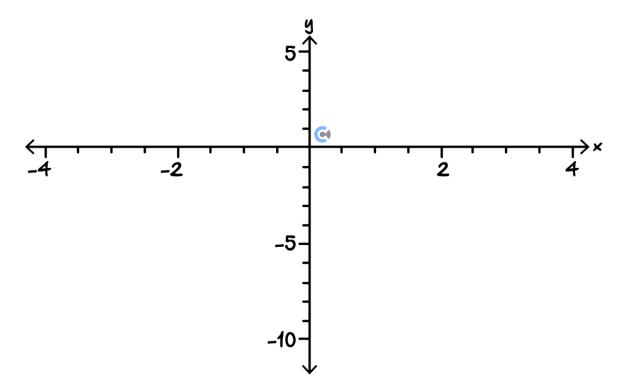


Exploration: Graphs of Linear Inequalities

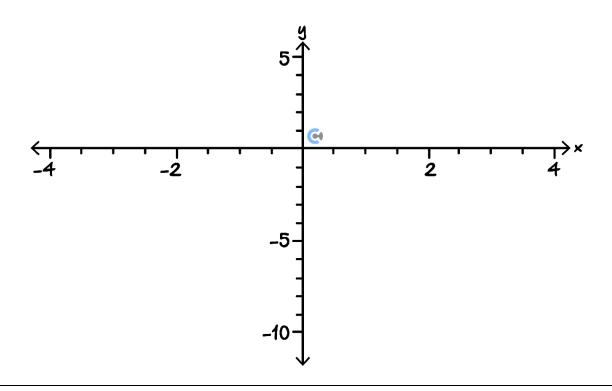
- Instead of just representing _____ on the Cartesian plane, the graph of a linear inequality represents an entire _____ (x, y) which satisfies the inequality.
- Step 1: Put the equation into the form of _____
- Step 2: Sketch the linear equation, ignoring the inequality sign.
 - If the inequality is inclusive ($\leq or \geq$), we draw a [solid] / [dotted] line.
 - If the inequality is exclusive (< or >), we draw a [solid] / [dotted] line
- > Step 3: Shade the region either above or below the line
 - If $y > \text{ or } y \ge :$

Question 4 Walkthrough.

Sketch the linear inequality $y - 1 - x \ge 0$ on the axes below.



CONTOUREDUCATION


Question 5

Sketch the graphs of each of the following linear inequalities, labelling all axes intercepts with their coordinates, and shading the appropriate regions.

a.
$$4x + 2y < -6$$

b.
$$5x - 2y - 8 \le 0$$

Section B: Midpoint and Distances

Sub-Section: Midpoint

<u>Discussion:</u> How might we find a midpoint between two points?

<u>Midpoint</u>

$$\bullet \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Definition: The midpoint, M, of two points A and B is the point halfway between A and B.

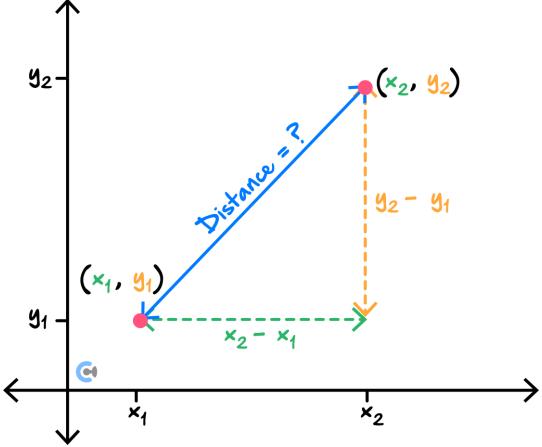
$$M(x_m,y_m)=\bigg($$

The midpoint can be found by taking the _____ of the x-coordinate and y-coordinate of the two points.

Question 6
Find the midpoint between $(3, -5)$ and $(-2, 7)$.

Sub-Section: Distance Between Two Points

Distance Between Two Points


Definition: The distance between two points (x_1, x_2) and (y_1, y_2) can be found using Pythagoras' theorem:

Distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

How does this formula work?

➤ Try to construct a Pythagoras' theorem with the three sides above ©

Question 7

Find the distance between $\left(4, \frac{5}{2}\right)$ and $\left(-1, -\frac{1}{2}\right)$.

Question 8 Extension.

a. Find a point(s) on the line y = x + 3 which has a distance of 4 from the point (-2, -3).

b. Give a reason as to why there is more than 1 more point found in **part a.**

TIP: Don't hesitate to define a point by letting its y-value be the function (linear in the above question!)

Sub-Section: Vertical Distance VS Horizontal Distance

Discussion: How can we find a horizontal distance between two points?

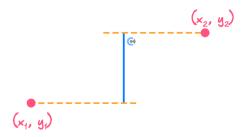
Horizontal Distance

Horizontal Distance= $x_2 - x_1$ where $x_2 > x_1$

Find the difference between their *x*-values.

Question 9

Find the horizontal distance between the two points (1,9) and (13,-4).



What about vertical distance then?

Vertical Distance

Vertical Distance= $y_2 - y_1$ where $y_2 > y_1$

Find the difference between their *y* values.

Question 10

Find the vertical distance between the two points (1,9) and (13,-4).

Key Takeaways

- ✓ A midpoint is simply an average point.
- ☑ The distance between two points is derived from Pythagoras' theorem.
- \checkmark Horizontal distance is simply the difference in their x-values
- \checkmark Vertical distance is simply the difference in their *y*-values.

Section C: Line Geometry

Sub-Section: Parallel and Perpendicular Lines

<u>Discussion:</u> What do we need for the two lines to be parallel?

Parallel Lines

$$y = m_1 x + c_1$$

$$y = M_2 x + c_2$$

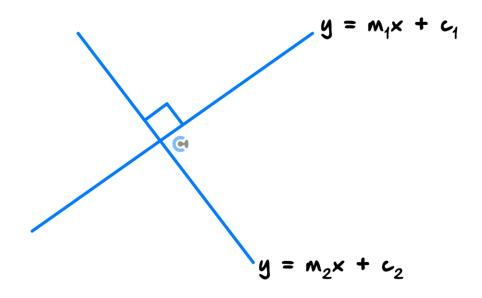
Parallel lines have the _____ gradient.

$$m_1 = m_2$$

Question 11

Find a line which is parallel to y = 2x - 1 passing through the point (-1,3).

TIP: Try to ignore the constant term of the line we must be parallel to. Simply focus on its gradient.


Discussion: What about perpendicular lines?

Definition

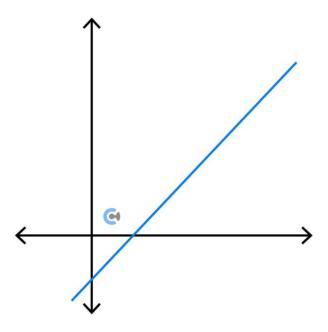
Perpendicular Lines

A line which is perpendicular to another line has a gradient which is the ______ of the gradient of the first line.

$$m_{\perp} = -\frac{1}{m}$$

Question 12

Find a line which is perpendicular to y = -3x - 1 passing through the point (5, -1).


<u>Sub-Section</u>: Angle Between a Line and the *x*-axis

7

How do we find the angle between a line and the x-axis?

Angle between a Line and the x-axis

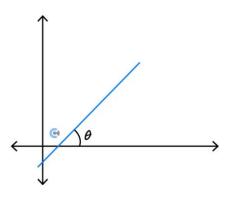
The angle between a line and the _____ direction of the x-axis (anticlockwise) is given by

$$tan(\theta) = m$$

Question 13 Tech-Active.

Find the angle made between the line y = 2x - 6 and the x-axis measured in the anticlockwise direction. Give your answer in degrees correct to two decimal places.

NOTE: Angles from the x-axis measured anticlockwise = _____ angles.


Don't worry about it too much, it's just convention! (More on this in circular functions.)

How does this formula work?

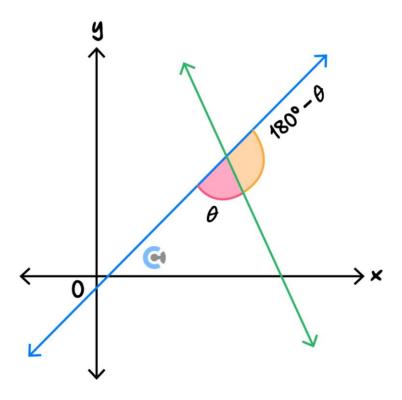
Exploration: Angle between a line and x-axis.

Consider a line in the visual below.

Construct a right-angle triangle with the angle θ .

Consider the opposite and adjacent sides of the right-angle triangle. What can we call them?

Hence what does $tan(\theta)$ equal to given that tan = opposite/adjacent?


Sub-Section: Angle Between the Two Lines

Slightly more complicated now! How about an angle between two lines?

Acute Angle Between Two Lines

$$\theta = |\tan^{-1}(m_1) - \tan^{-1}(m_2)|$$

Alternatively:

$$\tan(\theta) = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

For your understanding, note that this formula is derived from the tan compound angle formula covered in SM12.

NOTE: |x| just takes the positive value of x.

Question 14 Tech-Active.

Find the acute angle between the lines 3x + 2y = 2 and $y = \frac{4}{7}x + 1$. Give your answer in degrees correct to two decimal places.

TIP: Make sure your CAS is in degrees.

Let's see if it's consistent with parallel lines!

Exploration: Understanding parallel lines using the angle between two lines formula

 \blacktriangleright When two lines are parallel, what must be the angle θ between them?

$$\tan(\theta) = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

Let's substitute the value of θ and see what we get!

This looks rather familiar, doesn't it?

And now perpendicular lines!

Exploration: Understanding perpendicular lines using the angle between two lines formula

 \blacktriangleright When two lines are perpendicular, what must be the angle θ between them?

$$\tan(\theta) = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

Let's substitute the value of θ and see what we get! (Note: tan(90) = Undef)

This looks rather familiar, doesn't it?

Key Takeaways

- ✓ Parallel lines have the same gradient.
- ✓ Perpendicular lines have a negative reciprocal gradient.
- \checkmark The angle between a line and x-axis is given by $tan^{-1}(m)$.
- ✓ Tangent of the angle between two lines is given by $\left| \frac{m_1 m_2}{1 + m_1 m_2} \right|$.
- The parallel lines and perpendicular lines formula is consistent with the angle between the two lines formula.

Section D: Simultaneous Equations

Sub-Section: Finding Simultaneous Equations for Two Variables

Simultaneous Linear Equations

- 1. Elimination Method:
 - Add or subtract one equation from the other in order to ______ one of the variables. Then have an equation in one variable that can be solved easily.
- 2. Substitution Method
 - ullet Make one of the variables the subject (generally x or y) and _____ that value into the other equation.

Question 15 Walkthrough.

Solve the following simultaneous linear equations using either elimination or substitution.

$$2x - y = 8$$
 and $2y + 5x = 11$

Question 16

Solve the following equations for x and y.

a.
$$2x - 5y = 4$$
 and $2x + y = 16$

b.
$$-3x + 2y = 2$$
 and $2 - 2y = x$

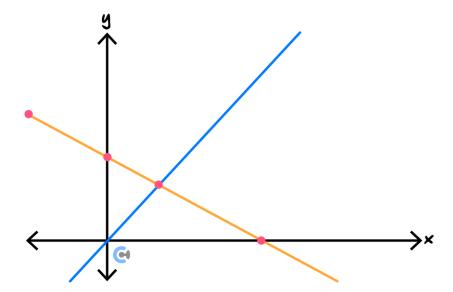
Onestion	17	Fyte	ancian

Solve the following:

$$-3x + 2y = 10$$
 and $-10 + y = \frac{3}{2}x$

Sub-Section: Number of Solutions For Two Variables

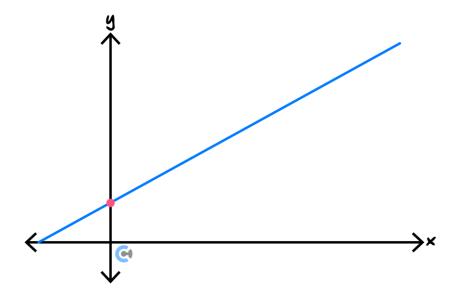
What does the geometry look like for each number of solutions?



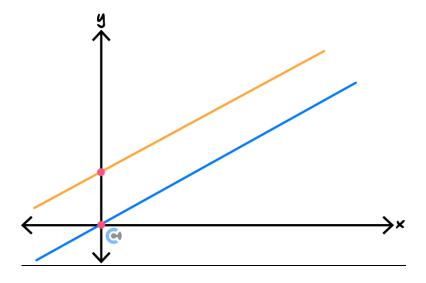
Exploration: Geometry of the number of solutions between linear graphs

Unique Solution

$$m_1 \neq m_2$$



They just need to have _____


Infinite Solutions

$$m_1 = m_2 AND c_1 = c_2$$

- They just need to have the same _____ and the same _____
- In other words, they have to be the ______.
- No Solutions

$$m_1 = m_2 AND c_1 \neq c_2$$

- \bullet They need to have the _____ but ____ +c.
- G They have to be two different _____ lines.

General Solutions of Simultaneous Linear Equations

- Two linear equations are either:
 - The same line is expressed in a different form. In this case, they have _____ solutions.
 - Unique lines which are parallel. In this case, they have _____ solutions.
 - Unique lines which are not parallel. In this case, they have ______ solution.

Question 18 Walkthrough.

Consider the following pair of simultaneous equations in terms of $k \in \mathbb{R} \setminus \{0\}$:

$$y = kx + 5$$

$$y = \frac{2x}{k-1} - 5k$$

a. Find the value of k for which there are no solutions to the simultaneous equations.

Question 19

Consider the following pair of simultaneous equations in terms of $k \in \mathbb{R} \setminus \{0\}$:

$$y = \frac{x}{1 - 2k} - 2k$$

$$y = -kx - 2$$

a. Find the value(s) of k for which there is a unique solution to the simultaneous equations.

b. Find the value of k for which there are infinite solutions to the simultaneous equations.

 \mathbf{c} . Find the value of k for which there are no solutions to the simultaneous equations.

Question 20 Extension.

Consider the following pair of simultaneous equations in terms of $a \in \mathbb{R} \setminus \{0\}$:

$$ax - 2y = -5$$

$$-3x + (a-1)y = 5$$

a. Find the value(s) of a for which there are no solutions to the simultaneous equations.

b. Find the value(s) of α for which there is a unique solution to the simultaneous equations.

VCE Methods ½ Questions? Message +61 440 138 726

\mathbf{c} . Find the value(s) of a for which there are infinite solutions to the simultaneous equations.	
Space for Personal Notes	

Contour Check

Key Takeaways Linear equations are in the form of $y = $ where m is the and c is the The inequality sign when you multiply by a negative. Learning Objective: [1.1.2] - Find Midpoint, Distance (Horizontal & Vertical) Between Two Points Or Functions Key Takeaways Midpoint is simply the of 2 points. Distance formula is derived from values. Vertical distance is the distance between values. Vertical distance is the distance between values. Learning Objective: [1.1.3] - Find Parallel and Perpendicular Lines	<u>Learning Objective</u> : [1.1.1] - Solve and Graph Linear Equations and Inequalities		
The inequality sign when you multiply by a negative. Learning Objective: [1.1.2] - Find Midpoint, Distance (Horizontal & Vertical) Between Two Points Or Functions Key Takeaways Midpoint is simply the of 2 points. Distance formula is derived from Horizontal distance is the distance between values. Vertical distance is the distance between values.	Key Takeaways		
Learning Objective: [1.1.2] - Find Midpoint, Distance (Horizontal & Vertical) Between Two Points Or Functions Key Takeaways Midpoint is simply the of 2 points. Distance formula is derived from Horizontal distance is the distance between values. Vertical distance is the distance between values.	lacksquare Linear equations are in the form of $y=$ where m is the and c is the		
Rey Takeaways Midpoint is simply the of 2 points. Distance formula is derived from Horizontal distance is the distance between values. Vertical distance is the distance between values.	□ The inequality sign when you multiply by a negative.		
 Midpoint is simply the of 2 points. Distance formula is derived from Horizontal distance is the distance between values. Vertical distance is the distance between values. 			
 □ Distance formula is derived from □ Horizontal distance is the distance between values. □ Vertical distance is the distance between values. 	Key Takeaways		
 Horizontal distance is the distance between values. Vertical distance is the distance between values. 	☐ Midpoint is simply the of 2 points.		
Vertical distance is the distance between values.	Distance formula is derived from		
	Horizontal distance is the distance between values.		
<u>Learning Objective</u> : [1.1.3] - Find Parallel and Perpendicular Lines	. Vertical distance is the distance between values.		
	Learning Objective: [1.1.3] - Find Parallel and Perpendicular Lines		
Key Takeaways	Key Takeaways		
Parallel lines have the gradient.	Parallel lines have the gradient.		
Perpendicular lines have gradient.	Perpendicular lines have gradient.		

Learning Objective:	[1.1.4] - Find the Angle Between a Line and x axis or	Two
	Lines	

Key Takeaways $\begin{tabular}{ll} \hline \square To find the angle between a line and the x axis we can use equation $m=$_____. \end{tabular}$

To find the angle between two	lines we can use $\theta = 1$	 10
(0)		
$tan(\theta) =$		

<u>Learning Objective</u>: [1.1.5] - Find The Unknown Value for Systems of Linear Equations

Key Takeaways

- ☐ Two linear equations have unique solution if they have _____ gradients.
- ☐ Two linear equations have infinitely many solutions when they have ______ gradient and _____ constant.
- Two linear equations have no solution when they have _____ gradient and _____ constant.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

